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Abstract 

This paper compares the impacts of alternative models of spatial dependence on the accuracy of 

house price predictions in a mass appraisal context. Explicit modeling of spatial dependence is 

characterized as a more fluid approach to defining housing submarkets. This approach allows the 

relevant “submarket” to vary from house to house and for transactions involving other dwellings 

in each submarket to have varying impacts depending on distance. We compare the predictive 

ability of different specifications of both geostatistical and lattice models as well as a simpler 

model based on submarkets with fixed boundaries. We conclude that – for our data – no spatial 

statistics method does as well in terms of predictive ability as a simple OLS model that includes a 

series of dummy variables defining submarkets. However, of the spatial statistics methods, 

geostatistical models provide more accurate predictions than lattice models. We argue that this is 

due to the fact that the kriging procedure used to make predictions in a geostatistical framework 

directly incorporates spatial information about nearby properties. That is not possible in a lattice 

framework due to the reliance on a matrix  of weights that incorporates relationships only for the 

sample of properties that transact. 
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Executive Summary 

 

 

House prices are customarily modeled using hedonic regression models whereby the 

price is explained by structural and locational attributes.  As with all regression models, 

errors should be independent from one another, else parameter estimates will be 

inefficient and confidence intervals will be incorrect.  The price of a house is likely, 

however, to be related to the price of adjacent properties.  If a hedonic model cannot 

perfectly capture the effects of location then the residuals of adjacent properties will be 

correlated.  The aim of this paper is to analyze how best to take into account this spatial 

dependence in a mass appraisal context. 

 

We investigate whether spatial statistical models perform better than an OLS model with 

neighborhood dummy variables.  The comparison is therefore about whether the structure 

of the errors has to be modeled or whether neighborhood variables can be used.  This is 

also an issue of ease of use as the latter approach is simpler to implement.  This is not the 

first study on this topic, but previous analyses have generally relied on a limited subset of 

the available spatial techniques or have used a small sample of properties. 

 

We use a rich database of over 4,800 residential sales in Auckland, New Zealand.  Two 

variations each of two OLS, four geostatistical, and two lattice models are considered.  

Our results suggest that the geostatistical methods perform better than the simple OLS 

model, but that a simple adjustment of predictions using the average residuals in 

neighborhoods (submarkets) is almost as good.  When submarket dummy variables are 

added to the OLS model, the predictions are more accurate than the predictions generated 

with the geostatistical methods.  The lattice models perform poorly, in some cases worse 

than the unadjusted OLS predictions, and we conclude that such models are not suited for 

ex-sample prediction purposes.  Overall, we find that valuer-defined submarkets are more 

useful in a mass appraisal context than the more fluid concept of submarkets implied by 

formal modeling of the spatial dependence of residuals. 
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1. Introduction 

House prices are customarily modeled using hedonic regression models whereby the 

price is explained by structural and locational attributes.  As with all regression models, 

errors should be independent from one another, else parameter estimates will be 

inefficient and confidence intervals will be incorrect.  The independence assumption is 

unlikely to be valid in a standard ordinary least squares (OLS) context, as house price 

residuals have been shown to exhibit spatial dependence in spite of efforts to model 

locational effects accurately (Pace, Barry and Sirmans , 1998).  This obviously creates 

problems as such models are used for house price index construction (Can and 

Megbolugbe, 1997) and also for mass appraisal (Basu and Thibodeau, 1998; Bourassa, 

Hoesli and Peng, 2003).  Basu and Thibodeau (1998), for instance, argue that spatial 

dependence exists because nearby properties will often have similar structural features 

(they were often developed at the same time) and also share locational amenities.  More 

generally, LeSage and Pace (2004) discuss both theoretical and statistical reasons that 

would explain why data from several fields of study would be prone to spatial 

dependence. 

Such dependence can be treated in two ways.  We assume a general model,  

εµ += )( XY ,        (1) 

where Y is a vector of transaction prices, X is a matrix of values for residential property 

characteristics, and e is an error term.  One approach is to model µ(X) so that residuals 

over space do not exhibit any pattern.  This usually implies including geographical 

coordinates or other spatial indicators as regressors, parametrically or even 

nonparametrically (Colwell, 1998; Clapp, 2003; Fik, Ling and Mulligan, 2003).  One 

such approach includes as a regressor the weighted average of recent sales prices for 

nearby properties (Can and Megbolugbe, 1997).  An alternative approach is to model ε , 

that is, to assume not only that 0)( =εE , but also that Ω=′)( εεE , which is a matrix with 

at least some nonzero off-diagonal elements.  Ripley (1981) and Cressie (1993) provide a 

discussion of relevant spatial statistics methods for modeling ε .  These include 

geostatistical models such as those applied in real estate by Dubin (1998) or Basu and 
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Thibodeau (1998) and the lattice models that have been refined and applied by Pace and 

his colleagues (e.g., Pace and Barry, 1997a). 

Theoretically speaking, the assumptions behind the two classes of spatial statistics 

differ in terms of the definition of the domain over which spatial locations are permitted 

to vary (see Cressie, 1993, pp. 8-9, for details).  In the case of lattice models, which 

include simultaneous autoregressive (SAR) and conditional autoregressive (CAR) 

variants, locations are restricted to a discrete set of points.  In contrast, geostatistical 

models permit an infinite number of locations within a given geographical area.  This has 

implications for the way predictions based on each type of model take into account 

spatial information.  Given their constraints, the lattice models seem less suited than the 

geostatistical models for prediction purposes.  Whether this is of practical relevance is an 

empirical question that we will address here. 

Our focus is to compare the utility of spatial statistical methods relative to each other 

and to simpler OLS methods in a mass appraisal context.  For testing purposes, we use a 

large sample of 4,880 residential sales in Auckland, New Zealand.  For each method, 100 

random samples each containing 80% of the transactions are generated to estimate the 

predictive ability (and variability) of each technique for the 20% ex-samples.  We 

estimate four geostatistical models, one each based on exponential and spherical 

variograms and then robust versions of the same models.  We then estimate two lattice 

models, SAR and CAR.  We compare predictions from these models with each other and 

with the predictions from two OLS models.  The predictions from one OLS model are 

adjusted by the unweighted average residuals for valuer-defined submarkets, while the 

predictions from the other OLS model are not.  Finally, we add a set of submarket 

dummy variables to each of the models (geostatistical, lattice, and OLS) in order to assess 

the impacts of simple controls for neighborhood effects on the accuracy of predictions.4  

We are particularly interested in comparing the predictions based on the OLS model that 

                                                 
4 An alternative approach would be to incorporate variables measuring neighborhood 

characteristics (as in Dubin, 1988, for example).  Such data would typically be available 

for small areas defined for census purposes.  However, census areas are less likely to 

correspond to housing submarkets than are the valuer-defined areas used here. 
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incorporates submarket dummies with those based on the spatial statistical models 

without submarket dummies. 

Previous research has either focused on a limited subset of the available spatial 

techniques or used a small sample of properties.  Using a small sample from Baltimore, 

Dubin (1988) compares ex-sample predictions using OLS and a geostatistical technique 

and concludes that the geostatistical approach is superior even when some neighborhood 

(census block group) characteristics are included as explanatory variables.  Basu and 

Thibodeau (1998), for instance, compare the predictive ability of OLS and one 

geostatistical technique, concluding that the latter is superior for six of eight regions in 

Dallas.  Dubin, Pace and Thibodeau (1999) compare regression coefficients across OLS 

and four different spatial methods (including both geostatistical and lattice models) using 

a small simulated example for which the true parameters are known.  Most of the spatial 

models performed better than OLS with respect to parameter estimation.  Militino, Ugarte 

and García-Reinaldos (2004) apply several models – including CAR, SAR, and 

geostatistical – to 293 transactions from Pamplona, Spain, but do not attempt ex-sample 

predictions. 

A recent study by Case et al. (2004) is in some ways similar to the present one.  They 

apply OLS and several spatial statistical methods to a very large sample of about 50,000 

transactions from Fairfax County, Virginia, using out-of-sample prediction accuracy for 

comparison purposes.  In their final results, two of the three spatial methods produced 

more accurate ex-sample predictions than an OLS model that included median residuals 

for a small number of nearest neighbors.  Although these authors estimated an OLS 

model with neighborhood (census tract) dummy variables, they did not then use that 

model for prediction purposes.  Also, unlike the present paper, they performed their 

predictions using only one split of the data.  This means that their results may depend on 

the particular split. 

The paper is structured as follows.  We first discuss the relationship between the ideas 

of spatial dependence and housing submarkets.  These ideas are very closely related; 

thinking in terms of housing submarkets is helpful in conceptualizing the problem that 

spatial dependence models seek to rectify.  Section 3 contains a presentation of the spatial 

statistical methods that are used in the paper, while section 4 outlines our research design.  
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We discuss our empirical analysis in the following section.  Section 6 concludes the 

paper. 

 

2. Spatial Dependence and Housing Submarkets 

The concepts of spatial dependence and housing submarkets are closely related.  The 

submarket concept relies on the idea of substitutability.  Substitutes are pairs of goods for 

which an increase in the price of one leads to an increase in the demand for the other.  

Pairs of goods with similar characteristics are likely to be substitutes.  In equilibrium, 

prices equalize across substitutes.  Within housing submarkets, prices of houses are 

similar because submarkets contain close substitutes.  Implicit prices of the 

characteristics of houses are similar for the same reason. 

Spatial dependence or autocorrelation refers to the existence of covariance in the 

errors in the context of hedonic price estimation for residential proper ty markets.  Given 

the similarities in the prices of housing characteristics within a submarket, errors are 

more likely to be correlated within submarkets than across submarkets.  Therefore, 

controlling for submarkets in hedonic equations can substantially reduce estimation 

errors.  This can be accomplished in a variety of ways.  Simple methods include 

incorporating a series of dummy variables for the submarkets, estimating a separate 

equation for each submarket, or adjusting predicted values using the errors within each 

submarket.5 

Controlling for submarkets in hedonic price equations assumes either that one has a 

predefined set of submarkets or that one is going to use some method to define them.  

Predefined submarkets are typically geographical areas, suc h as those defined by real 

estate agents (e.g., Palm, 1978) or by valuers (e.g., Bourassa, Hoesli and Peng, 2003).  

Alternatively, submarkets can be defined in terms of the characteristics of dwellings, 

neighborhoods, or census units.  Statistical techniques, such as principal components and 

                                                 
5 Bourassa, Hoesli and Peng (2003) show that the latter method, although quite simple, 

results in significant improvements in the accuracy of predictions based on a market-wide 

hedonic equation, thus we test for its impact here. 
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cluster analysis, can be used to combine similar dwellings or neighborhoods into 

submarkets, which may or may not be geographical areas (e.g., Bourassa et al., 1999).  

Ugarte, Goicoa and Militino (2004) demonstrate the use of mixture models which both 

estimate hedonic equations and classify transactions into submarkets which are not 

geographical areas.  However, there is some evidence to suggest that geographical 

submarkets are more meaningful and therefore useful for improving prediction accuracy 

(Bourassa, Hoesli and Peng, 2003). 

Spatial statistical methods allow for a more fluid concept of submarkets than is 

permitted by the fixed definitions based on geographical areas or housing or 

neighborhood characteristics.  In effect, methods such as the lattice or geostatistical 

approaches applied here allow for the relevant submarket to vary from property to 

property.  The relationships between the focal property in a submarket and nearby 

properties are captured in a matrix of weights in the case of lattice models or by a 

distance function based on a fitted variogram (or semivariogram) in the case of 

geostatistical models.  This more fluid approach to modeling the relationships between 

properties would seem a priori to allow for more effective reduction of prediction errors 

due to spatial dependence. 

Whether these spatial statistical approaches are more effective than simpler methods 

for improving mass appraisal accuracy is the empirical question that we address here.  It 

is useful in this context to consider Can's (1992) distinction between adjacency and 

neighborhood effects.  The lattice and geostatistical methods focus on adjacency effects, 

or the external effects of nearby properties on the property in question.  The simpler 

methods mentioned above, such as controlling for location within a relatively 

homogeneous geographical area defined by valuers for appraisal purposes, imply a focus 

on neighborhood effects.  Thus our empirical question is whether adjacency or 

neighborhood effects predominate.  In other words, is it more important to account for 

each property's situation within the boundaries of relatively homogeneous neighborhoods 

that are recognized as such in a particular market or to account for the relationships 

between each property and its neighbors? 
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3. Alternative Methods for Modeling Spatial Dependence 

In this section, we present two modeling approaches for spatial data that we use in 

this paper: lattice and geostatistical models. We refer the reader to Ripley (1981) and 

Cressie (1993) for a more complete and detailed description of the statistical aspects of 

these models.  In a nutshell, the lattice approach models the covariance matrix of the 

errors parametrically, whereas the geostatistical approach builds upon a direct 

(nonparametric) estimation of the covariance matrix of the underlying process. Moreover, 

the underlying assumptions of the two approaches differ (see the discussion in Section 1). 

 

3.1. Lattice Models 

In this subsection, we assume that the data are issued from equation (1), with 

0)( =εE  and Ω=′)( εεE .  Lattice models assume βµ XX =)(  and parameterize the 

covariance function of the error term of the model by assuming either that 

)(21 CI φσ −=Ω−  (CAR models) or that )()(21 DIDI αασ −′−=Ω−  (SAR models), 

where C  and D  represent spatial weight matrices that specify the dependence among 

observations.  These matrices satisfy the conditions that their rows sum to 1, that their 

diagonal is 0 (an observation does not impact its own prediction) and that 1 ,0 <≤ φα .  

Many choices for specifying the weight matrices are available in the literature (see Getis 

and Aldstadt, 2004, for a review), but some of them show only small practical 

differences, such as the results in Militino, Ugarte and García -Reinaldos (2004).  

The estimates of the parameters α (or φ ) and β  are then obtained by maximizing the  

log-likelihood 

( ))()(
2
1

ln
2
1

.ln 11 ββ XYXYconstL −Ω′−−Ω+= −− .    (2) 

The most important computational issue here is the evaluation of the log-determinant 

( 1ln −Ω ), which is infeasible by standard methods for large sample sizes, given that Ω  is 

of size n  by n .  Pace and Barry (1997a, 1997b) have derived approximations to these 
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terms that are implemented in their Matlab code. 6  In this paper, we use their code to fit 

CAR and SAR models, with the Delauney spa tial weight matrix (Cressie, 1993, p. 374). 

Predictions are computed simply as β̂ˆ XY = .  Ripley (1981, p. 90) gives a formula to 

compute fitted values (that is predictions for in-sample observations) for SAR models 

(see also Pace and Gilley, 1997, 1998).  This formula borrows strength from the 

information provided by neighboring observations through the spatial weight matrix D .  

We are interested in ex-sample predictions, therefore ruling out the use of this formula.  

 

3.2. Geostatistical Models 

The modeling approach developed in this section is based on the assumption that the 

observed data at a location s is a realization of a random process }:)({ FssY ∈ , which is 

supposed to satisfy a second-order stationarity assumption, that is, for which µ=))(( sYE  

for all Fs∈ (constant mean) and )())(),(( 2121 ssCsYsYCov −=  for all Fss ∈21 , .  In 

effect, the covariance between locations depends only on the distance between them. 

)(⋅C is called the covariogram. 

The geostatistical approach attempts to model the covariance matrix directly through 

a procedure based on three steps: (1) the computation of an empirical variogram, (2) the 

parametric modeling of this variogram, and (3) kriging (that is, prediction).  The only 

information needed to perform these three steps is the notion of variogram defined as a 

function of the distance h  between locations: 

))()(()(2 sYhsYVarh −+=γ ,      (3) 

where )(hγ is called the semivariogram. 

The classical and most popular estimator of the variogram is obtained by the method 

of moments and was first proposed by Matheron (1962): 

( )∑ −=
)(

2
^

)()(
)(

1)(2
hN

ji sYsY
hN

hγ ,      (4) 

                                                 
6 This code is available at http://www.spatial-statistics.com.  



 10 

where }:),{()( hssjihN ji =−=  and )(hN  is the number of distinct elements of )(hN .  

For a given distance h , this variogram estimator is a variance estimator over all pairs of 

observations that are at a distance h  apart.  Note that when data are irregularly spaced, 

the variogram is usually smoothed by summing over pairs of points that lie in a tolerance 

region.  )(ˆ hγ is an unbiased estimator of )(hγ , but is badly affec ted in presence of 

outliers because of  the 2)(⋅  term in the sum.  Therefore, Cressie and Hawkins (1980) 

have defined a more robust estimator: 











+













−= ∑ )(
494.0

457.0)()(
)(

1
)(2

4

)(

2/1~

hN
sYsY

hN
h

hN
jiγ ,   (5) 

which achieves robustness through )()( ji sYsY − .  In the presence of outlying 

observations this estimator is more stable. 

The second step of the procedure consists of fitting a parametric model to the 

empirical variogram (either classical or robust).  The most popular variogram models 

include the exponential variogram defined by 

( )



−−+
=

)/exp(1

0
);(

0 ee ahcc
h ϑγ





≠
=

0if
0if

h
h

,    (6) 

where ),,( 0 ′=
ee accϑ  with 00 ≥c , 0≥ec and 0≥ea , and the spherical variogram 

defined by 

{ }








+

−+=

s

sss

cc

ahahcch

0

3
0 )/)(2/1()/)(2/3(

0

);( ϑγ    








>

≤<

=

 ah if

0 if

0 if

s

sah

h

, (7) 

where ),,( 0 ′= ss accϑ , with 00 ≥c , 0≥sc  and 0≥sa .  The parameter 0c  is the limit of 

)(hγ  when 0→h  and is called the “nugget effect”.  The other parameters in ϑ  control 

the functional form of );( ϑγ h  (see Cressie, 1993, pp. 61-63, for details).  The parametric 

variograms can be fitted to data by several procedures, which include – among others – 

(restricted) maximum likelihood and generalized least squares. 

Given a fitted variogram, the procedure goes on to compute the prediction at a point 

0s  as a linear combination of the responses, that is, 
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∑
=

=′=
n

i
ii sYYsY

1
0 )()(ˆ λλ ,       (8) 

where ),,( 1 ′= nλλλ Κ is obtained by minimizing the mean squared error  

∑
=

−
n

i
ii sYsYE

1

2
0 ))()(( λ .       (9) 

The solution for λ  depends on )( 0 iss −γ  for all ni ,,1 Κ= , and on )( ji ss −γ  for all 

nji ≤≤  ,1 .  )(ˆ
0sY  is the best linear unbiased predictor.  The solution obtained is an exact 

interpolation at the sample points, that is, )()(ˆ
ii sYsY = for all ni ,,1 Κ= .  Note also that 

the formula above allows the computation of predictions at both sampled and unsampled 

locations. 

When the process is not stationary, a preliminary step can be performed to capture the 

trend.  For instance, one can first fit a regression model and then compute the variogram 

on the residuals of this regression.  The final predictions are then computed by adding the 

kriging predictions on residuals to the fitted values of the regression.  This can introduce 

some bias, and a GLS iterative procedure could be constructed based on the covariance 

matrix resulting from a variogram model (see Basu and Thibodeau, 1998).  The bias is of 

order n/1 , making this issue of little concern in our case (and in residential real estate 

analysis in general) given that sample sizes are often quite large. 

To implement the geostatistics approach, we used the S+Spatial Toolbox of the 

commercial software Splus. Several other free or commercial software package s are 

available. 

 

4. Research Design 

The main objective of the paper is to contrast the out-of-sample accuracy in house 

price predictions of several alternative specifications.  We consider 8 different 

techniques, each with and without submarket dummy variables, for a total of 16 

techniques.  These include two OLS approaches, four types of geostatistical models and 

two types of lattice models.  We perform hedonic regressions for each of the 16 
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techniques using 100 randomly selected samples of our data each containing 80% of the 

observations.  Hence the methods are compared based on the same 100 samples of data. 

For each model and for each of the 100 splits, out-of-sample predictions are generated 

for the remaining 20% of data.  The OLS predictions are performed with and without 

taking spatial dependence into account.  The method of accounting for spatial 

dependence in this case is to adjust the predictions by the unweighted average residuals 

for each of the submarkets.  We thus have 16 sets of predictions and we calculate the 

proportion of predictions that are within 10% and 20% of the sale prices.  This is done for 

each of the 100 samples and the median and distributions of the proportions are 

calculated for each model.  These form the basis for our comparisons. 

The source of data for this study is the official database of all real estate transactions 

in New Zealand.  We use data pertaining to detached and semi-detached dwellings.  We 

focus on sales in the City of Auckland in 1996.  A total of 4,880 transactions were 

retained for the analysis.7  The database contains the date of sale, the sale price, and such 

information as: exact location, floor area, age, wall material and condition, and quality of 

the principal structure.  The land area is provided for 65% of the units.  The units for 

which no land area is provided are generally “cross-leased”, which means that the land is 

owned collectively by the owners of the dwellings on that site.  The collective owners 

lease a fraction of the land to each individual owner for a “peppercorn”, or nominal, rent.  

For all such cross-leased dwellings, we set land area equal to zero and set a dummy 

variable equal to one.  Supplementary information used for mass appraisal purposes is 

also available.  These data include important characteristics such as water views, and the 

quality of landscaping and of the neighborhood.  For the dependent variable in our 

hedonic models we use the sale price net of the value of any chattels. 
                                                 
7 A sale was removed from the sample if it fell into one of the following categories: 

(a) the property had a land area larger than 0.25 hectares (this excluded properties that 

may have been sold primarily for redevelopment purposes); (b) the property had a floor 

area either less than 30 square meters (probably due to an error in data entry); (c) the 

transaction was flagged as not being “arm’s length”; or (d) the property was located on an 

island. 



 13 

The use of GIS also allowed the data set to be supplemented with the measure of the 

distance between each property and the central business district (CBD).  In addition, we 

use geographical areas (sales groups) defined by official appraisers in New Zealand as 

our spatial submarkets.  Finally, quarterly time dummy variables are included in each 

model. 

Some variables were transformed before entering into the estimations.  The dependent 

variable, house price, both land and floor area, and distance to the CBD are as natural 

logarithms. 8  In addition, both age and age squared are included in the model as the 

relation between house value and age is expected to follow a U-shaped curve.  Table 1 

contains the means of the raw independent and dependent variables used in the analyses. 

The submarket dummy variables identify location within one of 34 geographical 

areas within the city.  These submarkets, referred to as “sales groups”, were defined by 

valuers for mass appraisal purposes and are considered to be relatively homogeneous 

submarkets.  For estimation purposes, we combined three sale s groups located in or near 

the CBD because they had relatively few transactions; these form the default category. 

 

5. Empirical Analysis 

Table 2 contains examples of hedonic regression results using OLS with and without 

submarket dummy variables for a random sample of 80% of the data.  The adjusted R2 

statistic increases from 0.722 to 0.798 when the 33 submarket dummy variables are 

added to the model.  The results are consistent with expectations.  The logarithms of land 

and floor area are positively related to sale price, as is the square of the age of the 

property.  Age itself is negatively related to the sale price.  The quality and condition of 
                                                 

8 The OLS predictions are calculated as 
^

)lnexp( Y , although the correct transformation 

would be )ˆ5.0lnexp( 2
^

σ+Y .  Because we are unable to implement equivalent 

transformations for predictions based on the other methods, we do not add 2ˆ5.0 σ  before 

taking the antilogs of the OLS predictions.  Given the large sample size, this has only a 

trivial impact on the results. 



 14 

the properties are also important.  The logarithm of distance to the CBD is negatively 

related to sale price and is highly significant.  The sale price is approximately 10% higher 

for properties with a water view.  Good landscaping, the number of attached garages, and 

to a lesser extent, a driveway, significantly affect dwelling prices.  The quality of the 

neighborhood is very important, and higher quality levels are associated with higher 

prices.  In the model with submarket dummy variables, 25 out of 33 are significant at the 

95% confidence level.  When such variables are included in the model, there is a decline 

in the percentage price impact of being in better neighborhoods.  This would be expected 

as submarket variables will capture part of the variation in neighborhood quality. 

We perform two exploratory analyses to determine whether spatial dependence exists 

in our data.  First, we depict the error structure of the OLS regression that does not 

include submarket variables by constructing a semivariogram (Figure 1).  We also 

investigate the median of the residuals for various x and y coordinates, respectively 

(Figure 2).  For this purpose, we divide the city into a grid of 19 cells from west to east 

by 13 cells from south to north (the west-east dimension is greater than the south-north 

dimension in Auckland).  The semivariogram shows that there is covariance in the error 

structure and that this declines with distance (the semivariogram increases with distance).  

Figure 2 shows that the median of residuals is not constant across geographical areas.  In 

particular, residuals tend to be negative to the west and south and positive to the east and 

north.  Hence, spatial dependence clearly exists in the error structure of the OLS model. 

The next step is to analyze how best to account for such dependence to obtain more 

accurate house price predictions.  Figure 3a shows boxplots of the proportion of 

predictions within 10% of sales price, while Figure 3b shows the proportion of 

predictions within 20%.  Results for six methods are shown: OLS with and without 

adjustment by the average residuals in submarkets, the exponential and robust 

exponential variogram models and the CAR and SAR models.  Predictions with the 

spherical models are not reported as those predictions are very similar to predictions with 

the exponential variogram model.  Both parts of Figure 3 depict results with and without 

submarket dummy variables.  The body of each boxplot is constructed from the first to 

the third quartiles, while the whiskers are set at ±1.5 times the inter-quartile range from 

the median.  However, if no observation exists at that distance, the whisker is set at the 
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closest observation towards the body of the boxplot.  If there are observations outside of 

the whiskers, each of these is depicted by a line.  Within the body of each boxplot, the 

median over the 100 splits appears as a bar, while the 95% confidence interval is depicted 

by the indented and unshaded area in the center of the plot. 

When the OLS model without submarket dummy variables is considered, the median 

of predictions within 10% of sales price across the 100 splits is 39.8%.9  The 

geostatistical models yield significantly more accurate predictions (median of 

approximately 44%).  However, a simple adjustment to the OLS predictions using the 

unweighted average residuals in submarkets yields predictions that are only marginally 

less accurate than the predictions generated using the geostatistical models.  The CAR 

and SAR methods produce predictions that are worse than the unadjusted OLS 

predictions.  It is possible that the error structure contained in O is not reflected in the 

data.  This suggests that the lattice models, although useful in improving the efficiency of 

parameter estimates, are not well suited for mass appraisal purposes.  Similar results are 

obtained for predictions within 20% of actual sales price.  Some 73.8% of adjusted OLS 

predictions are within 20%, which is only marginally less than with the geostatistical 

models (approximately 75.5%).  Again, CAR and SAR models yield the least accurate 

predictions. 

When submarket variables are added to the OLS model, the median of predictions 

within 10% rises to 46.8% and that of predictions within 20% to 77.9%.10  The 

geographical subdivisions that are used by appraisers work significantly better in 

improving the accuracy of house price predictions than do the spatial statistical models.  

Geographical submarkets are more important in predicting house prices than the more 

fluid approach which permits “submarkets” to vary from house to house.  Hence, the 

valuers’ geographical definition of submarkets is useful for mass appraisal purposes.  

                                                 
9 For comparison purposes, Fik, Ling and Mulligan (2003) note that Freddie Mac prefers 

to have at least 50% of predictions within 10% of the actual values. 
10 By definition, the adjustment using average residuals in submarkets is ineffective when 

submarket dummy variables are included in the model. 
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This conclusion is of practical importance, as a hedonic model with submarket dummy 

variables is substantially  easier to implement than spatial statistical methods. 

This conclusion could be a consequence of the extensive set of variables in this data 

set and/or the fact that the variables are measured relatively  accurately.  To test the 

sensitivity of our results to the number of attributes considered, we re-estimated the 

models without several property characteristics.11  The same conclusion holds true when 

these variables are deleted.  The second conjecture could only be tested on another data 

set where variables would be measured with less accuracy.  The good results obtained for 

OLS predictions with submarket dummy variables could also be due to these 

geographical areas being very well defined and hence capturing much of the spatial 

dependence in house prices in Auckland.  Further work could focus on data sets for cities 

in which such requirements are not met, or the Auckland data could be used in 

combination with arbitrarily defined submarkets. 

When submarket dummy variables are included in all estimations, the gestatistical 

models yield slightly higher percentages of predictions within the 10% and 20% limits 

than the OLS model (80.1% versus 77.9%).  It is likely that the geostatistical estimations 

that incorporate submarket variables are superior to the corresponding OLS model 

because, to use Can’s (1992) terminology, the former capture adjacency effects as well as 

neighborhood effects.  The CAR and SAR models, however, offer little or no increase in 

prediction accuracy above the OLS model. 

 

6. Conclusions  

The price of a house is likely to be related to the price of adjacent properties.  If a 

hedonic model cannot perfectly capture the effects of location then the residuals of 

adjacent properties will be correlated.  The aim of this paper is to analyze how best to 

take into account this spatial dependence in a mass appraisal context.  We investigate 

                                                 
11 In the list of variables in Table 2, we deleted variables from “Walls in good condition” 

to “Average quality of the principal structure” and from “Water view” to “Very good 

neighborhood.” 
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whether spatial statistical models perform better than an OLS model with neighborhood 

dummy variables.  The comparison is therefore about whether the structure of the error s 

has to be modeled or whether neighborhood variable s can be used.  This is also an issue 

of ease of use as the latter approach is simpler to implement.  This is not the first study on 

this topic, but previous analyses have generally relied on a limited subset of the available 

spatial techniques or have used a small sample of properties.  The recent paper by Case et 

al. (2004) is in some ways similar to this paper, but no test of the ex-sample effectiveness 

of the OLS model with submarket dummy variables is conducted. 

We use a rich database of over 4,800 res idential sales in Auckland, New Zealand.  

Two variations each of two OLS, four geostatistical, and two lattice models are 

considered.  Our results suggest that the geostatistical methods perform better than the 

simple OLS model, but that a simple adjustment of predictions using the average 

residuals in neighborhoods (submarkets) is almost as good.  When submarket dummy 

variables are added to the OLS model, the predictions are more accurate than the 

predictions generated with the geostatistical methods.  The lattice models perform poorly, 

in some cases worse than the unadjusted OLS predictions, and we conclude that such 

models are not suited for ex-sample prediction purposes. 

Overall, we find that valuer-defined submarkets are more useful in a mass appraisal 

context than the more fluid concept of submarkets implied by formal modeling of the 

spatial dependence of residuals.  This appears to differ from Case et al.’s (2004) 

conclusions, although our methods are not the same as theirs and, as noted above, they do 

not make predictions from their OLS estimation with census tract dummies. 

This work could be expanded in a number of ways.  First, we could compare our 

results with those obtained using various methods that focus on measuring the impact of 

location more effectively in µ(X).  Our best model yields a proportion of predictions 

within 10% of house values that is just shy of 50%.  Fik, Ling and Mulligan (2003) show 

that when x and y coordinates are interacted with a limited set of independent variables in 

a hedonic equation of residential units in Tucson, the proportion of predictions within 

10% of sales price is 65%.  The use of such a model would imply reducing the number of 

hedonic attributes considered, however.  Second, the models that we consider could be 

applied in the context of a city where property attributes are measured less accurately 
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than is the case in Auckland.  Finally, these methods could be analyzed using submarkets 

that are defined less homogenously.  It could be that spatial statistical methods yield 

better forecasts in such an environment. 
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Table 1.  Sample statistics 

Variable  Mean 

Net sale price (NZ$)  328,398 
Age of dwelling  46 
Land area (square meters)  55 
Cross-leased or strata-titled   
Floor area (square meters)  144 
Detached houses (proportion)  1.00 
Wall condition (proportion)   
     Good  0.39 
     Average  0.58 
     Bad   0.03 
Roof material (proportion)   
     Tile  0.41 
     Metal  0.55 
     Other  0.04 
Wall material (proportion)   
     Wood  0.63 
     Brick  0.13 
     Fibrolite  0.06 
     Other  0.18 
Quality of the principal structure (proportion)  
     Superior  0.19 
     Average  0.76 
     Poor  0.05 
Distance to CBD (km)   6.8 
Water view (proportion)  0.09 
Modernization (proportion)  0.26 
Landscaping (proportion)   
     Good  0.16 
     Average  0.79 
     Poor  0.05 
Driveway  0.85 
Quality of the neighborhood (proportion)   
     Very good  0.03 
     Good  0.20 
     Average  0.68 
     Poor  0.09 
Number of attached garages  0.75 

Sample size  4,880 
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Table 2.  Examples of results for OLS estimations without and with submarket dummy 

variables 

Variables  Estimates for 
equation without 
submarket 
dummies 

Estimates for equation with submarket 
dummies (estimates for submarket 
dummies are preceded by the sales 
group number) 

Intercept  12.816*** 11.344*** (4)   -0.206*** 
Log of floor area   0.690***   0.457*** (5)   -0.053 
Log of land area   1.898***   2.560*** (6)   -0.009 
Cross-leased or strata-titled   0.099***   0.128*** (7)    0.226*** 
Age of dwelling   -0.003***  -0.004*** (8)    0.031 
Age of dwelling squared    4.720x10-5***   5.096x10-5*** (9)    0.176*** 
Walls in good condition    0.088***   0.083*** (10)  0.165*** 
Walls in average condition    0.063***   0.052*** (12) -0.062 
Dwelling with a tile roof   -0.030  -0.028 (13)  0.103*** 
Dwelling with a metal roof   -0.068***  -0.041** (14)  0.214*** 
Dwelling with wooden walls    -0.015  -0.006 (15) -0.059 
Dwelling with brick walls    -0.056***  -0.019 (16) -0.379*** 
Dwelling with fibrolite walls    -0.102***  -0.049*** (17) -0.237*** 
Superior quality of the principal structure   0.231***   0.124*** (18) -0.410*** 
Average quality of the principal structure   0.094***   0.050*** (19) -0.322*** 
Log of distance to the CBD  -0.172***  -0.137*** (22) -0.647*** 
Quarter 2    0.008   0.014 (23) -0.117*** 
Quarter 3   -0.020**  -0.019** (24) -0.006 
Quarter 4    0.015   0.017 (25)  0.177*** 
Water view    0.103***   0.079*** (26)  0.181*** 
Modernization    0.034***   0.029*** (27) -0.096** 
Average landscaping    0.026   0.013 (28) -0.315*** 
Good landscaping    0.077***   0.060*** (29) -0.220*** 
Driveway    0.019   0.010 (30) -0.141*** 
Average neighborhood    0.098***   0.021 (31) -0.119*** 
Good neighborhood    0.231***   0.067*** (32) -0.130*** 
Very good neighborhood    0.323***   0.205*** (33) -0.189*** 
Number of attached garages    0.039***   0.036*** (34) -0.010 
    (35) -0.074* 
    (37) -0.233*** 
    (38) -0.268*** 
    (39) -0.225*** 
    (53) -0.274*** 

Adjusted R2  
  0.722 0.798  

Note: The symbols *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 
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Figure 1.  Empirical semivariogram 
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Figure 2.  Median values of residuals 
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Figure 3a.  Proportion of predictions within 10% of actual value 

 
Figure 3b.  Proportion of predictions within 20% of actual value 
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