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a b s t r a c t

We introduce and study the so-called Kumaraswamy generalized
gamma distribution that is capable of modeling bathtub-shaped
hazard rate functions. The beauty and importance of this distri-
bution lies in its ability to model monotone and non-monotone
failure rate functions, which are quite common in lifetime data
analysis and reliability. The new distribution has a large number of
well-known lifetime special sub-models such as the exponentiated
generalized gamma, exponentiatedWeibull, exponentiated gener-
alized half-normal, exponentiated gamma, generalized Rayleigh,
among others. Some structural properties of the new distribution
are studied.Weobtain two infinite sumrepresentations for themo-
ments and an expansion for the generating function. We calculate
the density function of the order statistics and an expansion for
theirmoments. Themethod ofmaximum likelihood and a Bayesian
procedure are adopted for estimating the model parameters. The
usefulness of the new distribution is illustrated in two real data
sets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The gamma distribution is the most popular model for analyzing skewed data. The generalized
gamma distribution (GG) was introduced by Stacy [43] and includes as special sub-models: the
exponential, Weibull, gamma and Rayleigh distributions, among others. It is suitable for modeling
data with different forms of hazard rate function: increasing, decreasing, in the form of a bathtub
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and unimodal. This characteristic is useful for estimating individual hazard rate functions and both
relative hazards and relative times [12]. The GG distribution has been used in several research areas
such as engineering, hydrology and survival analysis. Ortega et al. [35] discussed influence diagnostics
in GG regressionmodels; Nadarajah and Gupta [34] used this distribution with application to drought
data; Cox et al. [13] presented a parametric survival analysis and taxonomy of the GG hazard rate
functions and Ali et al. [3] derived the exact distributions of the product X1X2 and the quotient X1/X2,
when X1 and X2 are independent GG random variables providing applications of their results to
drought data from Nebraska. Further, Gomes et al. [18] focused on the parameter estimation; Ortega
et al. [37] compared three types of residuals based on the deviance component in GG regression
models under censored observations; Cox [12] discussed and compared the F-generalized family
with the GG model; Almpanidis and Kotropoulos [4] presented a text-independent automatic phone
segmentation algorithm based on the GG distribution and Nadarajah [32] analyzed some incorrect
references with respect to the use of this distribution in electrical and electronic engineering. More
recently, Barkauskas et al. [5] modeled the noise part of a spectrum as an autoregressive moving
average (ARMA) model with innovations having the GG distribution; Malhotra et al. [28] provided
a unified analysis for wireless systems over generalized fading channels that is modeled by a two-
parameter GG model and Xie and Liu [47] analyzed three-moment auto conversion parametrization
based on this distribution. Further, Ortega et al. [36] proposed a modified GG regression model to
allow the possibility that long-term survivors may be presented in the data and Cordeiro et al. [10]
proposed the exponentiated generalized gamma (EGG) distribution.

In the last decade, several authors have proposed new classes of distributions, which are based
on modifications (in different ways) of the Weibull distribution to provide hazard rate functions
having the form of U. Among these, we mention the Weibull, exponentiated Weibull [30], which
also exhibits unimodal hazard rate function, the additive Weibull [46] and the extendedWeibull [48]
distributions. More recently, Carrasco et al. [7] presented a four-parameter generalized modified
Weibull (GMW) distribution, Gusmão et al. [22] studied a three-parameter generalized inverse
Weibull distribution with decreasing and unimodal failure rate and Pescim et al. [39]proposed the
four-parameter generalized half-normal distribution.

The distribution by Kumaraswamy (denoted with the prefix ‘‘KumW’’ for short) [24] is not very
common among statisticians and has been little explored in the literature. Its cumulative distribution
function (cdf) (for 0 < x < 1) is F(x) = 1 − (1 − xλ)ϕ , where λ > 0 and ϕ > 0 are shape
parameters. The Kum probability density function (pdf) has a simple form f (x) = λϕxλ−1(1− xλ)ϕ−1,
which can be unimodal, increasing, decreasing or constant, depending on the values of its parameters.
This distribution does not seem to be very familiar to statisticians and has not been investigated
systematically in much detail before, nor has its relative interchangeability with the beta distribution
been widely appreciated. However, in a very recent paper, Jones [23] explored the background and
genesis of the Kum distribution and, more importantly, made clear some similarities and differences
between the beta and Kum distributions.

If G(x) is the baseline cdf of a random variable, Cordeiro and de Castro [9] defined the cdf of the
Kumaraswamy-G (Kum-G) distribution by

F(x) = 1 − [1 − G(x)λ]ϕ, (1)

where λ > 0 and ϕ > 0 are two additional parameters to the G distribution. Their role is to govern
skewness and generate a distribution with heavier tails. The density function corresponding to (1) is

f (x) = λϕg(x)G(x)λ−1
[1 − G(x)λ]ϕ−1, (2)

where g(x) = dG(x)/dx. The density (2) does not involve any special function, such as the incomplete
beta function as is the case of the beta-G distribution [14]. This generalization contains distributions
with unimodal and bathtub shaped hazard rate functions. It also contemplates a broad class of models
with monotone risk functions. Some structural properties of the Kum-G distribution derived by
Cordeiro and de Castro [9] are usually much simpler than those properties of the beta-G distribution.

In this note, we combine the works of Kumaraswamy [24], Cordeiro et al. [10] and Cordeiro and
de Castro [9] to study the mathematical properties of a new model, the so-called Kumaraswamy
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Table 1
Some GG distributions.

Distribution τ α k

Gamma 1 α k
Chi-square 1 2 n

2
Exponential 1 α 1
Weibull c α 1
Rayleigh 2 α 1
Maxwell 2 α 3

2
Folded normal 2

√
2 1

2

generalized gamma (KumGG) distribution. The rest of the article is organized as follows. Section 2
introduces the KumGG distribution. Several important special models are presented in Section 3.
In Section 4, we demonstrate that the KumGG density function can be written as a mixture of GG
density functions. Section 5 provides two explicit expansions for the moments and an expansion
for the moment generating function (mgf). In Section 6, we obtain expansions for the moments
of the order statistics. Maximum likelihood estimation is investigated in Section 7. In Section 8, a
Bayesian methodology is applied to estimate the model parameters. Two real lifetime data sets are
used in Section 9 to illustrate the usefulness of the KumGGmodel. Concluding comments are given in
Section 10.

2. The Kumaraswamy-generalized gamma distribution

The cdf of the GG(α, τ , k) distribution [43] is

Gα,τ ,k(t) =
γ (k, (t/α)τ )

0(k)
,

where α > 0, τ > 0, k > 0, γ (k, x) =
 x
0 w

k−1e−wdw is the incomplete gamma function and 0(.) is
the gamma function. Basic properties of the GG distribution are given by Stacy and Mihram [44] and
Lawless [26,27]. Some important special sub-models of the GG distribution are listed in Table 1.

The KumGG cumulative distribution (for t > 0) is defined by substituting Gα,τ ,k(t) into Eq. (1).
Hence, the associated density function with five positive parameters α, τ , k, λ and ϕ has the form

f (t) =
λϕτ

α0(k)


t
α

τk−1

exp


−


t
α

τ

×


γ1


k,


t
α

τλ−1
1 −


γ1


k,


t
α

τλϕ−1

, (3)

where γ1(k, x) = γ (k, x)/0(k) is the incomplete gamma ratio function, α is a scale parameter and the
other positive parameters τ , k, ϕ and λ are shape parameters. One major benefit of (3) is its ability of
fitting skewed data that cannot be properly fitted by existing distributions. The KumGGdensity allows
for greater flexibility of its tails and can be widely applied in many areas of engineering and biology.

TheWeibull and GG distributions are themost important sub-models of (3) forϕ = λ = k = 1 and
ϕ = λ = 1, respectively. The KumGG distribution approaches the log-normal (LN) distribution when
ϕ = λ = 1 and k → ∞. Other sub-models can be immediately defined from Table 1: Kum–Gamma,
Kum–Chi-Square, Kum–Exponential, Kum–Weibull, Kum–Rayleigh, Kum–Maxwell and Kum–Folded
normal with 4, 3, 3, 4, 3, 3 and 2 parameters, respectively.

If T is a random variable with density function (3), we write T ∼ KumGG(α, τ , k, λ, ϕ). The
survival and hazard rate functions corresponding to (3) are

S(t) = 1 − F(t) =


1 −


γ1


k,


t
α

τλϕ
(4)
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Fig. 1. Plots of the KumGG density function for some parameter values.
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Fig. 2. TheKumGGhazard rate function. (a) A bathtubhazard rate function. (b) Anunimodal hazard rate function. (c) Increasing,
decreasing and constant hazard rate function.

and

h(t) =
λϕτ

α0(k)


t
α

τk−1

exp


−


t
α

τ
γ1


k,


t
α

τλ−1

×


1 −


γ1


k,


t
α

τλ−1

, (5)

respectively. Plots of the KumGG density function for selected parameter values are given in Fig. 1.
The hazard rate function (5) is quite flexible for modeling survival data. See the plots for selected
parameter values given in Fig. 2.

We can simulate the KumGG distribution by solving the nonlinear equation


1 − u1/ϕ1/λ

− γ1


k,


t
α

τ
= 0, (6)
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where u has the uniform U(0, 1) distribution. Some properties of the KumGG distribution are:

If T ∼ KumGG(α, τ , k, λ, ϕ) ⇒ bT ∼ KumGG(bα, τ , k, λ, ϕ), ∀b > 0
If T ∼ KumGG(α, τ , k, λ, ϕ) ⇒ Tm

∼ KumGG(αm, τ/m, k, λ, ϕ), ∀m ≠ 0.

So, the new distribution is closed under power transformation.
A physical interpretation of the KumGG distribution (for λ and ϕ positive integers) is as follows.

Suppose a system is made of ϕ independent components and that each component is made up of
λ independent subcomponents. Suppose the system fails if any of the ϕ components fails and that
each component fails if all of the λ subcomponents fail. Let Xj1, . . . , Xjλ denote the lifetimes of the
subcomponents within the jth component, j = 1, . . . , ϕ having a common GG distribution. Let Xj
denote the lifetime of the jth component, j = 1, . . . , ϕ and let X denote the time to failure distribution
of the entire system. The cdf of X is

Pr(X ≤ x) = 1 − Pr

X1 > x, . . . , Xϕ > x


= 1 − {1 − Pr (X1 ≤ x)}ϕ

and then

Pr(X ≤ x) = 1 − {1 − Pr (X11 ≤ x, . . . , X1λ ≤ x)}ϕ = 1 − {1 − Prλ (X11 ≤ x)}ϕ .

So, X has precisely the KumGG distribution given by (3).

3. Special sub-models

The followingwell knownandnewdistributions are special sub-models of theKumGGdistribution.

• Exponentiated Generalized Gamma distribution.
If ϕ = 1, the KumGG distribution reduces to the exponentiated generalized gamma (EGG) density
introduced by Cordeiro et al. [10]. If τ = ϕ = 1 in addition to k = 1, the special case corresponds
to the exponentiated exponential (EE) distribution [20,21]. If τ = 2 in addition to k = ϕ = 1, it
becomes the generalized Rayleigh (GR) distribution [25].

• Kum–Weibull distribution [9].
For k = 1, Eq. (3) yields the Kum–Weibull (KumW) distribution. If ϕ = k = 1, it reduces to the
exponentiatedWeibull (EW) distribution (see, [30,31]). If ϕ = λ = k = 1, (3) becomes theWeibull
distribution. If τ = 2 and k = 1, we obtain the Kum–Rayleigh (KumR) distribution. If k = τ = 1, it
gives the Kum–exponential (KumE) distribution. If ϕ = λ = k = 1, it yields two important special
sub-models: the exponential (τ = 1) and Rayleigh (τ = 2) distributions, respectively.

• Kum–Gamma distribution [9].
For τ = 1, the KumGG distribution reduces to the four-parameter Kum–Gamma (KumG4)
distribution. If ϕ = τ = 1, we obtain the exponentiated gamma (EG3) distribution with three
parameters. If ϕ = τ = α = 1, it gives to the exponentiated gamma (EG2) distribution with
two parameters. Further, if k = 1, we obtain the Kum–Gamma distribution with one parameter.
If ϕ = λ = τ = 1, it produces the two-parameter gamma distribution. In addition, if k = 1, we
obtain the one-parameter gamma distribution.

• Kum–Chi-Square distribution (new).
For τ = 2, α = 2 and k = p/2, it becomes the Kum–Chi-Square (KumChiSq) distribution. If
ϕ = 1, α = τ = 2 and k = p/2, it gives the exponentiated-chi-square (EChiSq) distribution.
If ϕ = λ = 1, in addition to α = τ = 2 and k = p/2, we obtain the well-known chi-square
distribution.

• Kum–Scaled Chi-Square distribution (new).
For τ = 1, α =

√
2σ and k = p/2, it becomes the Kum–Scaled Chi-Square (KumSChiSq)

distribution. For ϕ = τ = 1, α =
√
2σ and k = p/2, it gives the exponentiated scaled chi-

square (ESChiSq) distribution. If ϕ = λ = 1, in addition to α =
√
2σ , τ = 1 and k = p/2, the

special case coincides with the scaled chi-square (SChiSq) distribution.
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• Kum–Maxwell distribution (new).
For τ = 2, α =

√
θ and k = 3/2, the KumGG distribution reduces to the Kum–Maxwell (KumMa)

distribution. For ϕ = 1, τ = 2, α =
√
θ and k = 3/2, we obtain the exponentiated Maxwell (EM)

distribution. If ϕ = λ = 1 in addition to α =
√
θ, τ = 2 and k = 3/2, it reduces to the Maxwell

(Ma) distribution (see, for example, [6]).
• Kum–Nakagami distribution (new).

For τ = 2, α =
√
w/µ and k = µ, it becomes the Kum–Nakagami (KumNa) distribution. For

ϕ = 1, τ = 2, α =
√
w/µ and k = µ, we obtain the exponentiated Nakagami (EM) distribution.

If ϕ = λ = 1, in addition to α =
√
w/µ, τ = 2 and k = µ, it corresponds to the Nakagami (Na)

distribution (see, for example, [41]).
• Kum–generalized half-normal distribution (new).

If τ = 2γ , α = 2
1
2γ θ and k = 1/2, the special case is referred to as the Kum–generalized

half-normal (KumGHN) distribution. For ϕ = 1, τ = 2γ , α = 2
1
2γ θ and k = 1/2, it gives the

exponentiated generalized half-normal (EGHN) distribution. For α = 2
1
2 θ, τ = k = 2, we obtain

the Kum–half-normal (KumHN) distribution. If ϕ = 1, α = 2
1
2 θ , τ = 2 and k = 1/2, the reduced

model is called the exponentiated half-normal (EHN) distribution. If ϕ = λ = 1, in addition to
α = 2

1
2γ θ, τ = 2γ , k = 1/2, it becomes the generalized half-normal (GHN) distribution [8].

Further, if ϕ = λ = 1 in addition to α = 2
1
2 θ, τ = 2 and k = 1/2, it gives the well-known

half-normal (HN) distribution.

4. Expansion for the density function

Let T follow the KumGG(α, τ , k, λ, ϕ) distribution. The density function of T is straightforward
to compute using any statistical software with numerical facilities. The density function of the
GG(α, τ , k) distribution in given by

gα,τ ,k(t) =
τ

α0(k)


t
α

τk−1

exp


−


t
α

τ
, t > 0.

From Eq. (3) and using the expansion

(1 − z)b−1
=

∞−
j=0

(−1)j0(b)
0(b − j)j!

z j,

which holds for |z| < 1 and b > 0 real non-integer, the density function of T can be rewritten as

f (t) =
λϕτ

α0(k)


t
α

τk−1

exp


−


t
α

τ
γ1


k;


t
α

τλ−1

×

∞−
j=0

(−1)j0(ϕ)
0(ϕ − j)j!


γ1


k,


t
α

τλj
.

Using Eq. (19) (given in Appendix A), we obtain

f (t) =
λϕτ

α0(k)


t
α

τk−1

exp


−


t
α

τ ∞−
m,j=0

(−1)j0(ϕ)sm(λ)
0(ϕ − j)j!


γ1


k,


t
α

τλj+m

, (7)

where the quantities sm(λ) are calculated from (20). Further, if λj + m is a real non-integer, we have
γ1


k,


t
α

τλj+m

=

∞−
l=0

(−1)l

λj + m

l


1 − γ1


k,


t
α

τl

.
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Using the binomial expansion in the above expression, (7) can be rewritten as

f (t) =
λϕτ

α0(k)


t
α

τk−1

exp


−


t
α

τ ∞−
j,l,m=0

l−
q=0

(−1)j+l+q0(ϕ)sm(λ)
0(ϕ − j)j!

×


λj + m

l


l
q


γ1


k,


t
α

τq

.

Now, by Eq. (23) (given in Appendix A), f (t) admits the mixture representation

f (t) =

∞−
d,j,l,m=0

l−
q=0

w(d, j, l,m, q)gα,τ ,k(1+q)+d(t), t > 0, (8)

whose weighted coefficients are

w(d, j, l,m, q) =
(−1)j+l+qλϕ0(ϕ)0[k(1 + q)+ d]sm(λ)cq,d

0(k)q+10(ϕ − j)j!


λj + m

l


l
q


.

The coefficients satisfy
∑

∞

m,i=0w(d, j, l,m, q) = 1 and the quantities sm(λ) and cq,d are determined
from (20) and from the recurrence relation (22), respectively.

Eq. (8) shows that the KumGG density function is a mixture of GG density functions. Hence,
some of their mathematical properties (such as the ordinary, inverse and factorial moments, mgf and
characteristic function) can follow directly from those properties of the GG distribution.

5. Moments and generating function

Let T be a randomvariable having the KumGG(α, τ , k, λ, ϕ) density function (3). In this section, we
provide two different expansions for determining the rth ordinarymoment of T , sayµ′

r = E(T r). First,
we deriveµ′

r as infinite sums from themixture representation (8). The rthmoment of the GG(α, β, k)
distribution is µ′

r,GG = αr 0(k + r/β)/0(k) and then Eq. (8) yields

µ′

r = λϕαr0(ϕ)

∞−
d,j,l,m=0

l−
q=0

(−1)j+l+q0[k(1 + q)+ d + r/τ ]sm(λ)cq,d
0(k)q+10(ϕ − j)j!


λj + m

l


l
q


. (9)

Eq. (9) depends on the quantities cq,d that can be computed recursively from (22).
Now, we derive another infinite sum representation for µ′

r by computing the moment directly

µ′

r =
λϕταr−1

0(k)

∫
+∞

0


t
α

τk+r−1

exp


−


t
α

τ
γ1


k,


t
α

τλ−1

×


1 −


γ1


k,


t
α

τλϕ−1

dt.

Setting x = (t/α)τ in the last equation yields

µ′

r =
λϕαr

0(k)

∫
+∞

0
xk+

r
τ −1 exp (−x) γ1 (k, x)λ−1 1 − γ1 (k, x)λ

ϕ−1
dx. (10)

For the ϕ > 0 real non-integer, we can write
1 − γ1 (k, x)λ

ϕ−1
=

∞−
j=0

(−1)j0(ϕ)
0(ϕ − j)j!

γ1(k, x)λj
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and then

µ′

r =
λϕαr

0(k)

∞−
j=0

(−1)j0(ϕ)
0(ϕ − j)j!

∫
+∞

0
xk+

r
τ −1γ1(k, x)λ(1+j)−1 exp(−x)dx.

Applying Eq. (19) (given in Appendix A), γ1 (k, x)λ(1+j)−1 can be expanded as

γ1 (k, x)λ(1+j)−1
=

∞−
l=0

l−
m=0

(−1)l+m

λ(1 + j)− 1

l


l
m


γ1 (k, x)m

and then µ′
r reduces to

µ′

r =
λϕαr

0(k)

∞−
j,l=0

l−
m=0

vj,l,mI

k +

r
τ
,m

, (11)

where

vj,l,m =
(−1)j+l+m0(ϕ)

0(ϕ − j)j!


λ(1 + j)− 1

l


l
m


and

I

k +

r
τ
,m


=

∫
∞

0
xk+

r
τ −1γ1(k, x)m exp(−x)dx.

For ϕ = 1, we obtain the same result by Cordeiro et al. [10]. The series expansion for the incomplete
gamma function yields

I

k +

r
τ
,m


=

∫
∞

0
xk+

r
τ −1


xk

∞−
p=0

(−x)p

(k + p)p!

m

exp(−x)dx.

This integral can be determined from Eqs. (24) and (25) of Nadarajah [33] in terms of the Lauricella
function of type A [15,2] defined by

F (n)A (a; b1, . . . , bn; c1, . . . , cn; x1, . . . , xn)

=

∞−
m1=0

. . .

∞−
mn=0

(a)m1+···+mn(b1)m1 . . . (bn)mn

(c1)m1 . . . (cn)mn

xm1
1 . . . xmn

n

m1! . . .mn!
,

where (a)i == a(a+ 1) . . . (a+ i− 1) is the ascending factorial (with the convention that (a)0 = 1).
Numerical routines for the direct computation of the Lauricella function of type A are available,
see [15] and Mathematica [45]. We obtain

I

k +

r
τ
,m


= k−m0

r/τ + k(m + 1)


× F (m)A


r/τ + k(m + 1); k, . . . , k; k + 1, . . . , k + 1; −1, . . . ,−1


. (12)

Themoments of the KumGGdistribution can be obtained from (9) or from the alternative equations
(11) and (12). Graphical representations of the skewness and kurtosis when α = 0.5, τ = 0.08 and
k = 3, as a function of λ for selected values of ϕ, and as a function of ϕ for some choices of λ, are given
in Figs. 3 and 4, respectively.

Further, we derive the mgf of the GG(α, τ , k) distribution as

Mα,τ ,k(s) =
1
0(k)

∞−
m=0

0

m
τ

+ k
 (αs)m

m!
.
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Fig. 3. Skewness and kurtosis of the KumGG distribution as a function of the parameter λ for selected values of ϕ.
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Fig. 4. Skewness and kurtosis of the KumGG distribution as a function of the parameter ϕ for selected values of λ.

Consider the Wright generalized hypergeometric function defined by

pΨq

[
α1, A1


, . . . ,


αp, Ap


β1, B1


, . . . ,


βq, Bq);

x
]

=

∞−
m=0

p∏
j=1
0(αj + Ajm)

q∏
j=1
0(βj + Bjm)

xm

m!
.

By combining the last two equations, we can write

Mα,τ ,k(s) =
1
0(k) 1

Ψ0

[
(k, τ−1)

–; αs
]
, (13)

provided that τ > 1. Clearly, special formulas for the mgf of the distributions listed in Table 1 follow
immediately from Eq. (13) by simple substitution of known parameters.

The KumGG generating function follows by combining Eqs. (8) and (13). For τ > 1, we have

M(s) =

∞−
d,j,l,m=0

l−
q=0

w(d, j, l,m, q)
0(k(1 + q)+ d) 1

Ψ0

[
(k(1 + q)+ d, τ−1)

–; αs
]
. (14)

Eq. (14) is the main result of this section. The mgf of any KumGG sub-model, as those discussed in
Section 3, can be determined immediately from (14) by substitution of known parameters.
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6. Order statistics

The density function fi:n(t) of the ith order statistic, for i = 1, . . . , n, from random variables
T1, . . . , Tn having KumGG density (3), is given by

fi:n(t) =
1

B(i, n − i + 1)
f (t)F(t)i−1

{1 − F(t)}n−i,

where B(·, ·) denotes the beta function. Using the binomial expansion in the above equation, we
readily obtain

fi:n(t) =
1

B(i, n − i + 1)
f (t)

n−i−
j1=0


n − i
j1


(−1)j1F(t)i+j1−1.

We now present an expression for the density of the KumGG order statistics as a function of the
baseline density multiplied by infinite weighted sums of powers of Gα,τ ,k(t). This result enables
us to derive the ordinary moments of the KumGG order statistics as infinite weighted sums of the
probability weighted moments (PWMs) of the GG distribution. Following Cordeiro and de Castro [9],
we can write

F(t)i+j1−1
=

∞−
r=0

pr,i+j1−1Gα,τ ,k(t)r ,

where the coefficients pr,u = pr,u(λ, ϕ) can be determined as

pr,u =

u−
l1=0

(−1)l1


u
l1

 ∞−
m1=0

∞−
l2=r

(−1)m1+r+l2


l1ϕ
m1


m1λ

l2


l2
r


for r, u = 0, 1, . . . Hence, fi:n(t) can be further reduced to

fi:n(t) =
1

B(i, n − i + 1)

∞−
d,j,l,m,r=0

l−
q=0

n−i−
j1=0

(−1)j1

n − i
j1


w(d, j, l,m, q)pr,i+j1−1

× γ1

[
k,


t
α

τ]r
gα,τ ,k(1+q)+d(t). (15)

The (s, r)th probability weighted moment (PWM) of a random variable Y having the GG(α, τ , k)
distribution, say δs,r , is formally defined by

δs,r = E{Y sGα,τ ,k(Y )r} =

∫
∞

0
ysGα,τ ,k(y)rgα,τ ,k(y)dy.

Hence, Eq. (15) can be rewritten as

fi:n(t) =

∞−
d,j,l,m,r=0

l−
q=0

n−i−
j1=0

t(d, j, j1, l,m, q)tτ(kq+d)γ1

[
k,


t
α

τ]r
gα,τ ,k(t),

where

t(d, j, j1, l,m, q) = λϕ0(ϕ)
(−1)j+j1+l+qsm(λ)cq,d

B(i, n − i + 1)ατ(kq+d)0(k)q0(ϕ − j)j!


n − i
j1


λj + m

l


l
q


.

It is important to point out that in the infinite summations, the indices can usually stop after a large
number of summands. Finally, the moments of the KumGG order statistics can be expressed as

E

T s
i:n


=

∞−
d,j,l,m,r=0

l−
q=0

n−i−
j1=0

t(d, j, j1, l,m, q)pr,i+j1−1δs+τ(kq+d),r .
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7. Maximum likelihood estimation

Let Ti be a random variable following (3) with the vector of parameters θ = (α, τ , k, λ, ϕ)T . The
data encountered in survival analysis and reliability studies are often censored. A very simple random
censoring mechanism that is often realistic is one in which each individual i is assumed to have a
lifetime Ti and a censoring time Ci, where Ti and Ci are independent random variables. Suppose that
the data consist of n independent observations ti = min(Ti, Ci) for i = 1, . . . , n. The distribution of
Ci does not depend on any of the unknown parameters of Ti. Parametric inference for such data are
usually based on likelihoodmethods and their asymptotic theory. The censored log-likelihood l(θ) for
the model parameters is

l(θ) = r log


λϕτ

α0(k)


−

−
i∈F


ti
α

τ
+ (τk − 1)

−
i∈F

log

ti
α



+ (λ− 1)
−
i∈F

log


γ1


k,

ti
α

τ

+ (ϕ − 1)
−
i∈F

log


1 −


γ1


k,

ti
α

τλ

+ϕ
−
i∈C

log


1 −


γ1


k,

ti
α

τλ
, (16)

where r is the number of failures and F andC denote the uncensored and censored sets of observations,
respectively.

The score components corresponding to the parameters in θ are:

Uα(θ) = −
rτk
α

+
τ

α

−
i∈F

ui −
τ

α

−
i∈F

visi +
λτ(ϕ − 1)
α0(k)

−
i∈F

uipi +
λτϕ

α0(k)

−
i∈C

uipi,

Uτ (θ) =
r
τ

−
1
τ

−
i∈F

ui log(ui)+
k
τ

−
i∈F

log(ui)+
1
τ

−
i∈F

visi log(ui)

−
λ(ϕ − 1)

τ

−
i∈F

vipi log(ui)−
λϕ

τ

−
i∈C

vipi log(ui),

Uk(θ) = −rλψ(k)+

−
i∈F

log(ui)+

−
i∈F

siqi + (ϕ − 1)[rλψ(k)]
−
i∈F

piγ1(k, ui)

− λ(ϕ − 1)
−
i∈F

piqi + λϕψ(k)(n − r − 1)
−
i∈C

piγ1(k, ui)− λϕ
−
i∈F

piqi,

Uλ(θ) =
r
λ

+

−
i∈F

log[γ1(k, ui)] − (ϕ − 1)
−
i∈F

bi[γ1(k, ui)]
λ
− ϕ

−
i∈C

bi[γ1(k, ui)]
λ

and

Uϕ(θ) =
r
ϕ

+

n−
i=1

log(ωi),

where

ui =


ti
α

τ
, gi = uk

i exp(−ui), ωi = 1 − γ1(k, ui)
λ,

vi =
gi
0(k)

, si =
(λ− 1)
γ1(k, ui)

,
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[γ̇ (k, ui)]k =

∞−
n=0

(−1)n

n!
J(ui, k + n − 1, 1), pi =

γ1(k, ui)
λ−1

ωi
,

qi =
[γ̇ (k, ui)]k

0(k)
, bi =

log[γ1(k, ui)]

ωi
,

ψ(.) is the digamma function and J(ui, k + n − 1, 1) is defined in Appendix B.
The MLEθ of θ is obtained numerically from the nonlinear equations Uα(θ) = Uτ (θ) = Uk(θ) =

Uλ(θ) = Uϕ(θ) = 0. For interval estimation and hypothesis tests on the model parameters,
we require the 5 × 5 unit observed information matrix J = J(θ) whose elements are given in
Appendix B. Under conditions that are fulfilled for parameters in the interior of the parameter space
but not on the boundary, the asymptotic distribution of (θ − θ) is N5(0, I(θ)−1), where I(θ) is the
expected information matrix. This matrix can be replaced by J(θ), i.e., the observed information
matrix evaluated atθ. The multivariate normal N5(0, J(θ)−1) distribution can be used to construct
approximate confidence intervals for the individual parameters. We can compute the maximum
values of the unrestricted and restricted log-likelihoods to construct LR statistics for testing some sub-
models (see Section 3) of the KumGGdistribution. For example, wemay use LR statistics to check if the
fit using the KumGG distribution is statistically ‘‘superior’’ to the fits using the KumGHN, KumSChiSq,
GG and KumW distributions for a given data set.

8. A Bayesian analysis

As an alternative analysis, we use the Bayesian method which allows for the incorporation of
previous knowledge of the parameters through informative priori density functions. When this
information is not available, we can consider a noninformative prior. In the Bayesian approach, the
information referring to the model parameters is obtained through a posterior marginal distribution.
In this way, two difficulties usually arise. The first refers to attaining marginal posterior distribution,
and the second to the calculation of themoments of interest. Both cases require numerical integration
that,many times, do not present an analytical solution. Here, we use the simulationmethod ofMarkov
Chain Monte Carlo (MCMC), such as the Gibbs sampler and Metropolis–Hastings algorithm.

Since we have no prior information from historical data or from previous experiment, we assign
conjugate but weakly informative prior distributions to the parameters. Since we assumed informa-
tive (but weakly) prior distribution, the posterior distribution is a well-defined proper distribution.
Here, we assume the elements of the parameter vector to be independent and consider that the joint
prior distribution of all unknown parameters has a density function given by

π(α, τ , k, λ, ϕ) ∝ π(α)× π(τ)× π(k)× π(λ)× π(ϕ). (17)

Here, α ∼ 0(a1, b1), τ ∼ 0(a2, b2), k ∼ 0(a3, b3), λ ∼ 0(a4, b4) and ϕ ∼ 0(a5, b5), where 0(ai, bi)
denotes a gamma distribution with mean ai/bi, variance ai/b2i and density function given by

f (v; ai, bi) =
baii v

ai−1 exp(−vbi)
0(ai)

,

where v > 0, ai > 0 and bi > 0. All hyper-parameters are specified. Combining the likelihood func-
tion (16) and the prior distribution (17), the joint posterior distribution for α, τ , k, λ and ϕ reduces to

π(α, τ , k, λ, ϕ|t) ∝


λϕτ

ατk0(k)

r

exp


−

−
i∈F


ti
α

τ∏
i∈F

tτk−1
i


γ1


k,


ti
α

τλ−1

×

∏
i∈F


1 −


γ1


k,


ti
α

τλϕ−1∏
i∈C


1 −


γ1


k,


ti
α

τλϕ
×π(α, τ , k, λ, ϕ). (18)
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The joint posterior density (18) is analytically intractable because the integration of the joint
posterior density is not easy to perform. So, the inference can be based onMCMC simulation methods
such as the Gibbs sampler and Metropolis–Hastings algorithm, which can be used to draw samples,
fromwhich features of the marginal distributions of interest can be inferred. In this direction, we first
obtain the full conditional distributions of each unknown quantity, which are given by

π(α|t, τ , k, λ, ϕ) ∝ (ατk)−r exp


−

−
i∈F


ti
α

τ∏
i∈F


γ1


k,


ti
α

τλ−1

×

∏
i∈F


1 −


γ1


k,


ti
α

τλϕ−1∏
i∈C


1 −


γ1


k,


ti
α

τλϕ
×π(α),

π(τ |t, α, k, λ, ϕ) ∝


τ

ατk

r

exp


−

−
i∈F


ti
α

τ∏
i∈F

tτki


γ1


k,


ti
α

τλ−1

×

∏
i∈F


1 −


γ1


k,


ti
α

τλϕ−1∏
i∈C


1 −


γ1


k,


ti
α

τλϕ
×π(τ),

π(k|t, α, τ , λ, ϕ) ∝ [ατk0(k)]−r
∏
i∈F

tτki


γ1


k,


ti
α

τλ−1

×

∏
i∈F


1 −


γ1


k,


ti
α

τλϕ−1∏
i∈C


1 −


γ1


k,


ti
α

τλϕ
×π(k),

π(λ|t, α, τ , k, ϕ) ∝ (λ)r
∏
i∈F


γ1


k,


ti
α

τλ
1 −


γ1


k,


ti
α

τλϕ−1

×

∏
i∈C


1 −


γ1


k,


ti
α

τλϕ
× π(λ)

and

π(ϕ|t, α, τ , k, λ) ∝ (ϕ)r
∏
i∈F


1 −


γ1


k,


ti
α

τλϕ∏
i∈C


1 −


γ1


k,


ti
α

τλϕ
×π(ϕ).

Since the full conditional distributions forα, τ , k,λ andϕ donot have a closed form,we require the use
of the Metropolis–Hastings algorithm. The MCMC computations were implemented in the statistical
software package R.

9. Applications

In this section, the usefulness of the KumGG distribution is illustrated in two real data sets.

9.1. Aarset data-uncensored

Weshow the superiority of theKumGGdistribution as compared to someof its sub-models and also
to the following non-nested models: the exponentiated generalized gamma (EGG) and beta Weibull
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Fig. 5. (a) TTT plot for the Aarset data. (b) TTT plot for the Serum reversal data.

Table 2
MLEs of themodel parameters for Aarset data, the corresponding SEs (given in parentheses) and the statistics AIC, BIC and CAIC.

Model α τ k λ ϕ AIC BIC CAIC

KumGG 84.5056 79.5358 0.0080 0.5393 0.3431 423.1 432.7 424.5
(0.2099) (2.0929) (0.0021) (0.2387) (0.0565)

EGG 86.0359 28.0261 1.0398 0.0241 1 456.5 464.1 457.4
(0.3373) (0.0177) (0.00007) (0.0034) (–)

GG 86.9281 259.00 0.0028 1 1 446.7 452.4 447.2
(1.2391) (17.0524) (0.0004) (–) (–)

Weibull 44.9126 0.9490 1 1 1 486.0 489.8 486.3
(6.6451) (0.1196) (–) (–) (–)

α γ a b

Beta Weibull 49.6326 5.9441 0.0783 0.0702 (–) 444.5 452.1 445.4
(3.7606) (0.1394) (0.0166) (0.0288) (–)

(BW) distributions. The BW density function [16] is given by

F(t) =
1

B(a, b)

∫ {1−exp[−(t/α)γ ]}

0
wa−1(1 − w)b−1dw.

We consider the data set presented by Aarset [1]which describes the lifetimes of 50 industrial
devices put on life test at time zero. These data have been used by Mudholkar and Srivastava [29]
for illustrating the appropriateness of the exponentiated Weibull model to fit lifetime data. Fig. 5(a)
shows that the TTT-plot for these data has first a convex shape and then a concave shape. It
then indicates a bathtub-shaped hazard rate function. Hence, the KumGG distribution could be an
appropriate model for fitting these data.

Table 2 lists the MLEs (and the corresponding standard errors in parentheses) of the model
parameters and the values of the following statistics for some models: AIC (Akaike Information
Criterion), BIC (Bayesian Information Criterion) and CAIC (Consistent Akaike Information Criterion).
The AIC and BIC values for the KumGG model are the smallest values among those of the five fitted
models, and hence our new model can be chosen as the best model.

A comparison of the proposed distribution with some of its sub-models using LR statistics is
performed in Table 3. The numbers in this table, specially the p-values, suggest that the KumGGmodel
yields a better fit to these data than the other three distributions.

In order to assess if the model is appropriate, Fig. 6(a) plots the empirical survival function
and the estimated survival function of the KumGG distribution. The proposed distribution is a very
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Table 3
LR statistics for the Aarset data.

Model Hypotheses Statistics w P-value

KumGG vs EGG H0 : ϕ = 1 vs H1 : H0 is false 35.4 <0.0001
KumGG vs GG H0 : ϕ = λ = 1 vs H1 : H0 is false 27.6 <0.0001
KumGG vs Weibull H0 : ϕ = λ = k = 1 vs

H1 : H0 is false
68.9 <0.0001
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Fig. 6. (a) Estimated survival function by fitting the KumGG distribution and some other models and the empirical survival for
the Aarset data. (b) Estimated densities of the KumGG, EGG, GG, Weibull and BWmodels for the Aarset data.

competitive model for describing the bathtub-shaped failure rate of the Aarset data. The plots of the
estimated densities and the histogram of these data are given in Fig. 6(b). They show that the KumGG
distribution produces a better fit than the other four models.

Bayesian analysis.
The following independent priors were considered to perform the Gibbs sampler:

α ∼ 0(0.01, 0.01), τ ∼ 0(0.01, 0.01),
k ∼ 0(0.01, 0.01), λ ∼ 0(0.01, 0.01) and ϕ ∼ 0(0.01, 0.01),

so that we have a vague prior distribution. Considering these prior density functions, we generated
two parallel independent runs of the Gibbs sampler with size 50,000 for each parameter, disregarding
the first 10,000 iterations to eliminate the effect of the initial values and, to avoid correlation problems,
we considered a spacing of size 20, obtaining a sample of size 2000 from each chain. To monitor the
convergence of the Gibbs sampler, we performed the methods suggested by Cowles and Carlin [11].
To monitor the convergence of the Gibbs samples, we used the between and within sequence
information, following the approach developed in Gelman and Rubin [17] to obtain the potential scale
reduction, R̂. In all cases, these values were close to one, indicating the convergence of the chain. The
approximate posteriormarginal density functions for the parameters are presented in Fig. 7. In Table 4,
we report posterior summaries for the parameters of the KumGG model. We note that the values for
the means a posteriori (Table 4) are quite close (as expected) to the MLEs obtained for the KumGG
model given in Table 2. SD represents the standard deviation from the posterior distributions of the
parameters and HPD represents the 95% highest posterior density (HPD) intervals.

9.2. Serum reversal data-censored

Aids is a pathology that mobilizes its sufferers because of the implications for their interpersonal
relationships and reproduction. Therapeutic advances have enabled seropositive women to bear
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Fig. 7. Approximate posterior marginal densities for the parameters from the KumGG model for the Aarset data.

Table 4
Posterior summaries for the parameters from the KumGG model for the
Aarset data.

Parameter Mean SD HPD (95%) R̂

α 84.5551 0.5130 (83.5624; 85.5690) 1.0015
τ 79.5361 0.1007 (479.3344; 79.7280) 1.0002
k 0.0080 0.0010 (0.0061; 0.0099) 1.0003
λ 0.5397 0.0991 (0.3539; 0.7402) 0.9999
ϕ 0.3434 0.0999 (0.1550; 0.5452) 0.9999

children safely. In this respect, the pediatric immunology outpatient service and social service of
Hospital das Clínicas have a special program for care of newborns of seropositive mothers, to provide
orientation and support for antiretroviral therapy to allow these women and their babies to live
as normally as possible. Here, we analyze a data set on the time to serum reversal of 148 children
exposed to HIV by vertical transmission, born at Hospital das Clínicas (associated with the Ribeirão
Preto School of Medicine) from 1995 to 2001, where the mothers were not treated [42,38]. Vertical
HIV transmission can occur during gestation in around 35% of cases, during labor and birth itself
in some 65% of cases, or during breast feeding, varying from 7% to 22% of cases. Serum reversal or
serological reversal can occur in children of HIV-contaminated mothers. It is the process by which
HIV antibodies disappear from the blood in an individual who tested positive for HIV infection. As
the months pass, the maternal antibodies are eliminated and the child ceases to be HIV positive. The
exposed newbornsweremonitored until definition of their serological condition, after administration
of Zidovudin (AZT) in the first 24 h and for the following 6 weeks. We assume that the lifetimes are
independently distributed, and also independent from the censoring mechanism. We assume right-
censored lifetime data (censoring random). Fig. 5(b) shows that the TTT-plot for these data has first
a convex shape and then a concave shape. It indicates a bathtub-shaped hazard rate function. Hence,
the KumGG distribution could be an appropriate model for fitting the data.

Table 5 lists the MLEs (and the corresponding standard errors in parentheses) of the parameters
and the values of the AIC, BIC and CAIC statistics. These results indicate that the KumGG model has
the lowest AIC, BIC and CAIC values among those of all fitted models, and hence it could be chosen as
the best model.

A comparison of the proposed distribution with some of its sub-models using LR statistics is
performed in Table 6. The numbers in this table, specially the p-values, suggest that the KumGGmodel
yields a better fit to these data than the other three distributions. In order to assess if the model
is appropriate, plots of the estimated survival functions of the KumGG, EGG, GG, Weibull and BW
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Table 5
MLEs of the model parameters for the serum reversal data, the corresponding SEs (given in parentheses) and the statistics AIC,
BIC and CAIC.

Model α τ k λ ϕ AIC BIC CAIC

KumGG 350.05 49.8303 0.2176 0.1282 0.3424 770.7 785.7 771.1
(1.5707) (5.8895) (0.0073) (0.0236) (0.0522)

EGG 350.45 22.2991 1.0741 0.1072 1 798.1 810.1 798.3
(2.4187) (0.0375) (0.0004) (0.0113) (–)

GG 379.40 24.5312 0.0974 1 1 783.7 792.7 783.9
(8.8211) (10.3258) (0.0402) (–) (–)

Weibull 307.62 3.1132 1 1 1 808.0 814.0 808.1
(12.3523) (0.3250) (–) (–) (–)

α γ a b

Beta Weibull 349.99 6.3895 0.3944 0.9273 (–) 797.9 809.9 798.2
(23.0923) (0.7657) (0.0468) (0.3361) (–)

Table 6
LR statistics for the serum reversal data.

Model Hypotheses Statistics w P-value

KumGG vs EGG H0 : ϕ = 1 vs H1 : H0 is false 29.4 <0.0001
KumGG vs GG H0 : ϕ = λ = 1 vs H1 : H0 is false 17.0 0.0002
KumGG vs Weibull H0 : ϕ = λ = k = 1 vs

H1 : H0 is false
43.3 <0.0001
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Fig. 8. Estimated survival function by fitting the KumGG distribution and some other models and the empirical survival for
the serum reversal data.

distributions and the empirical survival function are given in Fig. 8. We conclude that the KumGG
distribution provides a good fit for these data.

Bayesian analysis.
Now, for the serum reversal data, the following independent priors were considered to perform

the Gibbs Sampler:

α ∼ 0(0.01, 0.01), τ ∼ 0(0.01, 0.01),
k ∼ 0(0.01, 0.01), λ ∼ 0(0.01, 0.01) and ϕ ∼ 0(0.01, 0.01),

so that we have a vague prior distribution. The histograms with the approximate posterior marginal
density functions of the parameters are shown in Fig. 9. In Table 7, we report posterior summaries for
the parameters of the KumGGmodel. We observe that the values for the means a posteriori (Table 7)
are quite close (as expected) to the MLEs for the KumGG model listed in Table 5.
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Fig. 9. Approximate posterior marginal densities for the parameters from the KumGG model for the serum reversal data.

Table 7
Posterior summaries for the parameters from the KumGG model for the
serum reversal data.

Parameter Mean SD HPD (95%) R̂

α 350.0872 1.0046 (348.0408; 351.9952) 1.0031
τ 49.8320 0.3021 (49.2220; 50.4063) 1.0027
k 0.2159 0.0519 (0.1166; 0.3173) 1.0018
λ 0.1283 0.0411 (0.0434; 0.2056) 1.0075
ϕ 0.3418 0.0501 (0.2422; 0.4373) 0.9998

10. Concluding comments

A four-parameter lifetimedistribution, so-called ‘‘theKumaraswamygeneralized gamma (KumGG)
distribution’’, is proposed as a simple extension of the generalized gamma (GG) distribution [43].
The new model extends several distributions widely used in the lifetime literature and it is more
flexible than the GG, exponentiated GG, generalized half-normal, exponentiated Weibull, among
several others distributions. The proposed distribution could have increasing, decreasing, bathtub and
unimodal hazard rate functions. It is then very versatile to model lifetime data with a bathtub-shaped
hazard rate function and also tomodel a variety of uncertainty situations. We provide amathematical
treatment of this distribution including the order statistics. Explicit expressions for the moments and
moment generating function are provided which hold in generality for any parameter values. We
obtain infinite weighted sums for themoments of the order statistics. The application of the proposed
distribution is straightforward. The estimation of the parameters is approached by two different
methods: maximum likelihood and a Bayesian approach. The KumGG distribution allows goodness-
of-fit tests for some well-known distributions in reliability analysis by taking these distributions as
sub-models. The practical relevance and applicability of the newmodel are demonstrated in two real
data sets. The applications demonstrate the usefulness of the KumGG distribution, and with the use
of modern computer resources with analytic and numerical capabilities, it can be an adequate tool
comprising the arsenal of distributions for lifetime data analysis.
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Appendix A

Following Cordeiro and de Castro [9], we can write

γ1

[
k,


t
α

τ]λ−1

=

∞−
m=0

sm(λ)γ1

[
k,


t
α

τ]m
, (19)

where

sm(λ) =

∞−
j=m

(−1)j+m

λ− 1

j


j
m


. (20)

Now, we use the series expansion for the incomplete gamma ratio function given by

γ1

[
k,


t
α

τ]
=

1
0(k)


t
α

τk ∞−
d=0

[
−


t
α

τ]d 1
(k + d)d!

.

By application of an equation by Gradshteyn and Ryzhik [19, Section 0.314] for a power series raised
to a positive integer q, we obtain

∞−
d=0

ad


t
α

τdq

=

∞−
d=0

cq,d


t
α

τd
, (21)

where the coefficients cq,d (for d = 1, 2, . . .) are determined from the recurrence relation

cq,d = (da0)−1
d−

p=1

(qp − d + p)apcq,d−p, (22)

cq,0 = aq0 and ap = (−1)p/[(k + p)p!]. Clearly, cq,d can be computed from cq,0, . . . , cq,d−1. It can be
written explicitly as a function of the quantities a0, . . . , ad, although it is not necessary for numerically
programming our expansions. Further, using Eq. (21), we obtain

γ1

[
k,


t
α

τ]q
=

1
0(k)q


t
α

τkq ∞−
d=0

cq,d


t
α

τd
, (23)

whose quantities cq,d are obtained from (22).

Appendix B

By differentiating (16), the elements of the observed information matrix J(θ) for the parameters
(α, τ , k, λ, ϕ) are:

Jαα =
rτk
α2

−
τ(1 − τ)

α2

−
i∈F

ui −
τ

α2

−
i∈F

visi


−1 +

τ

γ1(k, ui)
{γ1(k, ui)[−k + ui] + vi}


+
λτ(ϕ − 1)

α2

−
i∈F

vipi


−1 +

τ

ωi
{ωi(−k + ui − visi)− λvi[γ1(k, ui)]

2
}


+
λτϕ

α2

−
i∈F

vipi


−1 +

τ

ωi
{ωi(−k + ui − visi)− λvi[γ1(k, ui)]

2
}


,
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Jατ = −
rk
α

+
1
α

−
i∈F

ui [1 + log(ui)] −
1
α

−
i∈F

visi

×


1 +

log(ui)

γ1(k, ui)
{γ1(k, ui)[k − ui] − vi}


+
λ(ϕ − 1)

α

−
i∈F
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
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log(ui)
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rτ
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qi
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1
ωi
(ωi{log(ui)+ si[−ψ(k)γ1(k, ui)+ qi]})

+ {λωipi[−ψ(k)γ1(k, ui)+ qi]}


+
λτϕ

α

−
i∈C

vipi


−ψ(k)+

1
ωi
(ωi{log(ui)

+ si[−ψ(k)γ1(k, ui)+ qi]})+ {λωipi[−ψ(k)γ1(k, ui)+ qi]}


,

Jαλ = −
τ

α

−
i∈F

vi

γ1(k, ui)
+
τ(ϕ − 1)

α

−
i∈F

vipi

1 + λbi


ωi + [γ1(k, ui)]

λ


+
τϕ

α

−
i∈C

vipi

1 + λbi


ωi + [γ1(k, ui)]

λ

,

Jαϕ =
λτ

α

n−
i=1

vipi, Jτϕ(θ) = −
λ

τ

n−
i=1

vipi log(ui),

Jττ = −
r
τ 2

−
1
τ 2

−
i∈F

ui[log(ui)]
2
+

1
τ 2

−
i∈F

visi[log(ui)]
2

γ1(k, ui)
[γ1(k, ui)(k − ui)− vi]

−
λ(ϕ − 1)
τ 2

−
i∈F

vipi[log(ui)]
2

ωi
{ωi[(k − ui)+ visi] + λvi[γ1(k, ui)]

2
}

−
λϕ

τ 2

−
i∈C

vipi[log(ui)]
2

ωi
{ωi[(k − ui)+ visi] + λvi[γ1(k, ui)]

2
},

Jτk =
1
τ

−
i∈F

log(ui)+
1
τ

−
i∈F

visi log(ui)

[
log(ui)−

qi
γ1(k, ui)

]
−
λ(ϕ − 1)

τ

×

−
i∈F

vipi log(ui)


−ψ(k)+ log(ui)+

[
−ψ(k)+

qi
γ1(k, ui)

]
× [λ− 1 + λpiγ1(k, ui)]


−
λϕ

τ

−
i∈C

vipi log(ui)

×


−ψ(k)+ log(ui)+

[
−ψ(k)+

qi
γ1(k, ui)

]
[λ− 1 + λpiγ1(k, ui)]


,

Jτλ =
1
τ

−
i∈F

vi log(ui)

γ1(k, ui)
−
(ϕ − 1)
τ

−
i∈F

vipi log(ui){1 + λbiωi[1 + piγ1(k, ui)]}

−
ϕ

τ

−
i∈C

vipi log(ui){1 + λbiωi[1 + piγ1(k, ui)]},



Author's personal copy

M.A.R. de Pascoa et al. / Statistical Methodology 8 (2011) 411–433 431
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where

[γ̇ (k, ui)]k =
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n=0

(−1)n

n!
J(ui, k + n − 1, 1),

[γ̈ (k, ui)]kk =

∞−
n=0

(−1)n

n!
J(ui, k + n − 1, 2),

ψ ′(.) is the derivative of the digamma function, ui, gi, ωi, vi, si, pi, qi and bi are defined in Section 7. The
J(., ., .) function can be easily calculated from the integral given by Prudnikov et al. [40, vol 1, Section
2.6.3, integral 1]

J(a, p, 1) =

∫ a

0
xp log(x)dx =

ap+1

(p + 1)2
[(p + 1) log(a)− 1]

and

J(a, p, 2) =

∫ a

0
xp log2(x)dx =

ap+1

(p + 1)3
{2 − (p + 1) log(a)[2 − (p + 1) log(a)]}.
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