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INTRODUCTION

Statistical challenges of high-dimensional data
BY IAIN M. JOHNSTONE1 AND D. MICHAEL TITTERINGTON2,*

1Department of Statistics, Stanford University, Stanford, CA 94305, USA
2Department of Statistics, University of Glasgow, Glasgow G12 8QQ, UK

Modern applications of statistical theory and methods can involve extremely large
datasets, often with huge numbers of measurements on each of a comparatively small
number of experimental units. New methodology and accompanying theory have emerged
in response: the goal of this Theme Issue is to illustrate a number of these recent
developments. This overview article introduces the difficulties that arise with high-
dimensional data in the context of the very familiar linear statistical model: we give
a taste of what can nevertheless be achieved when the parameter vector of interest is
sparse, that is, contains many zero elements. We describe other ways of identifying low-
dimensional subspaces of the data space that contain all useful information. The topic
of classification is then reviewed along with the problem of identifying, from within a
very large set, the variables that help to classify observations. Brief mention is made of
the visualization of high-dimensional data and ways to handle computational problems
in Bayesian analysis are described. At appropriate points, reference is made to the other
papers in the issue.

Keywords: Bayesian analysis; classification; cluster analysis; high-dimensional data;
regression; sparsity

1. Introduction

While the origins of statistical investigation (e.g. Graunt 1662) predate even those
of this eldest of extant scientific journals, the largest development of the science of
statistics occurred in the twentieth century. The theory and practice of frequentist
methods, the likelihood approach and the Bayesian paradigm all flourished, and
informal graphical methods, computational algorithms and careful mathematical
theory grew up together.

For most of the period, the primary motivating practical problems consisted of
a comparatively large number of ‘experimental units’, on which a comparatively
small number of features were measured. If, informally, we let p denote the
dimension of what is ‘unknown’ and let n denote the cardinality of what is
‘known’, then traditional theory, and most practice, has until recently been largely
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limited to the ‘small p, large n’ scenario. This scenario also naturally reflected
the contemporary limitations of computers (the term meant people prior to 1950)
and graphical display.

A natural mode for asymptotic approximation therefore imagines that n → ∞
while p remains of smaller order than n, in fact usually fixed. Among the most
familiar theoretical results of this type are the Laws of Large Numbers and the
Central Limit Theorems. The former says that the sample mean of a random
sample of size n from a population has as a limit, in a well-defined sense, the
population mean, as n tends to ∞. The corresponding central limit theorem
shows that the limiting distribution of the sample mean about the population
mean (when scaled up by

√
n) is of the normal or Gaussian type. In statistics, such

results are useful in deriving asymptotic properties of estimators of parameters,
but their validity relies on there being, in theory at least, many ‘observations
per parameter’.

In practice, n will generally correspond to the number of experimental units
on which data are available; for p, however, there are at least two, albeit related,
interpretations. The more basic interpretation is as the measure of complexity
of the model to be fitted to the data. However, that is often determined by the
dimension of the data as given by the number of items (variables) recorded for
each experimental unit, and in our presentation we shall use p to represent either
interpretation, as appropriate.

Over the last 20 years or so, however, the practical environment has changed
dramatically, with the spectacular evolution of data acquisition technologies and
computing facilities. At the same time, applications have emerged in which
the number of experimental units is comparatively small but the underlying
dimension is massive; illustrative examples might include image analysis,
microarray analysis, document classification, astronomy and atmospheric science.
Methodology has responded vigorously to these challenges, and procedures have
been developed or adapted to provide practical results.

However, there is a need for consolidation in the form of a systematic and
critical assessment of the new approaches as well as development of appropriate
theoretical underpinning (Lindsay et al. 2004). In terms of asymptotic theory, the
key scenarios to be investigated can be described as ‘large p, small n’ or in some
cases as ‘large p, large n’; theory for the former scenario would assume that p
goes to infinity faster than n and for the latter would assume that p and n go to
infinity at the same rate.

The practical and theoretical challenges posed by the large p/small n
settings, along with the ferment of recent research, formed the backdrop to the
2008 research programme ‘Statistical Theory and Methods for Complex, High-
dimensional Data’ at the Isaac Newton Institute for Mathematical Sciences,
which stimulated this Theme Issue. It is important to emphasize the breadth
of the research community represented in that programme and this Theme Issue.
From a theoretical/methodological point of view, it is of relevance not only to
statisticians but also to many in the growing population of machine-learning
researchers. In addition, increasingly many areas of application generate data,
the analysis of which requires the type of theory and methodology described in
this issue.

Before setting the scene for the papers in this volume, we conclude this
introduction to the introduction with some general remarks.
Phil. Trans. R. Soc. A (2009)
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It should not, of course, be imagined that the ‘large p’ scenarios are mere
alternative cases to be explored in the same spirit as their ‘small p’ forebears. A
better analogy would lie in the distinction between linear and nonlinear models
and methods—the unbounded variety and complexity of departures from linearity
is a metaphor (and in some cases a literal model) for the scope of phenomena
that can arise as the number of parameters grows without limit.

Indeed, a priori, the enterprise seems impossible. Good data-analytical practice
has always held that the number of data points n should exceed the number of
parameters p to be estimated by some solid margin: n/p ≥ 5 is a plausible rule
of thumb, mentioned for example by Hamilton (1970) and repeated in the classic
text by Huber (1981).

The large p/small n world would therefore seem to depend on a
certain statistical alchemy—the computational transformation of ignorance into
parameter estimates by fearless specification and fitting of high-dimensional
models.

Nevertheless, as will be indicated by example in the papers in this volume, in a
variety of methodological settings, as well as in numerous scientific applications,
there has been notable success with large-p models and methods.

The key, of course, is that we are not always ignorant. Indeed, it seems
clear that the enterprise can have hopes of success only if the actual number
of influential parameters, k, say, is much smaller than the nominal number p.
Thus, prior knowledge of the existence of a sparse representation, either of a
hypothesized form or to be discovered by exploration, is a sine qua non.

At the same time, statistical theory is challenged to provide heuristics,
principles and results to help explain when sparse models can be expected to
be well estimable, or alternatively when the enterprise is simply too ambitious
without further reliable prior information.

One such theoretical construct that emerges in a couple of papers in this
volume is the ‘phase diagram’. An asymptotic model of a large-p regression or
classification problem is expressed in terms of parameters such as the data ratio
n/p and the effective parameter sparsity k/n, for which the diagram depicts sharp
transitions between conditions in which estimation/classification is possible and
those in which it must fail entirely.

2. Areas of application

Specific frontier fields for development and application of methods for
analysing complex, high-dimensional data include a wide variety of areas
within bioinformatics, classification problems in astronomy, tool development for
implementing Basel II finance proposals, weather prediction and so on.

In this Theme Issue, the greatest emphasis in terms of applications is on
aspects of biology. This was also the case in the Newton Institute research
programme, with one of the workshops being explicitly so directed. Bickel
et al. (in press) provide an extensive review of genomics and the array of
statistical techniques that have been recruited or developed to handle the
required data analysis: the use of exploratory data analysis, cluster analysis
and visualization methods to investigate patterns and structures; the use of
modern approaches to classification and prediction to identify disease states or
Phil. Trans. R. Soc. A (2009)
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motifs, with the help of methods like the ‘least absolute shrinkage and selection
operator’ (Lasso), which we shall describe in §3, to handle scenarios involving
very large numbers of explanatory variables or ‘predictors’; the application of
latent-variable models such as hidden Markov models for DNA sequencing;
and the need to overcome problems associated with multiple testing when
investigation of a large number of variables requires the performance of a large
number of statistical tests. This last issue is the main theme of Benjamini
et al. (in press), the other biologically oriented paper in the batch. They apply
the highly influential false-discovery-rate approach, see §5, in the context of
type 2 diabetes.

3. From simple linear regression to high dimension

In this section, we attempt to indicate the nature of the general issue of high
dimension by starting with a very elementary statistical model and showing how
a straightforward process of evolution quickly takes us into realms where the
difficulties of high dimension become clear.

(a) The traditional scenario

A very simple statistical model can be described as follows. We have data in
the form of a pair of measurements on n individuals, {xi , yi ; i = 1, . . . , n}, where xi
is a predictor and yi is a response, and it is assumed that the two measurements
are related by

yi = β1 + β2xi + εi ,

for each i. It is also assumed that, independently for each i, εi ∼ N (0, σ 2); that
is, εi follows a Gaussian distribution with mean zero and variance σ 2. Thus, the
‘average’ relationship between the predictor and the response follows a straight
line with intercept β1 and slope β2; this is written as

E(yi|xi) = β1 + β2xi ,

and is referred to as the simple linear regression model for y on x , ‘simple’
because there is only one predictor. The two ‘parameters’, β1 and β2, are unknown
constants to be estimated. In one possible application, the predictor might be ‘age’
and the response might be ‘systolic blood pressure’. (Typically, σ 2 would also be
unknown, but for simplicity here we take it as known.)

There is a convenient vector–matrix notation for the model for the complete
set of n data pairs,

y = Xβ + ε, (3.1)

where the n×1 vector y contains the responses, the vector β contains the two (in
general p) parameters except for σ 2, the n×1 vector ε contains the ‘noise’ and the
n×p so-called design matrix X completes the model. In simple linear regression,
each element in the first column of X is 1.
Phil. Trans. R. Soc. A (2009)
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The standard way of estimating the unknown slope and intercept in β is to use
Gauss’s least-squares approach and obtain

β̂ = arg min
β

∑
i

(yi − β1 − β2xi)
2,

which means that β̂ is the minimizer of the sum of squares function on the right-
hand side. In the general vector–matrix notation, this can be written in terms of
the Euclidean or �2 norm, as

β̂ = arg min
β

‖y − Xβ‖2
2.

There is another important interpretation of β̂. Our distributional assumption
about ε implies that y ∼ Nn(Xβ, σ 2I ), in which Nn now denotes an n-variate
multi-variate Gaussian distribution, with Xβ as the vector of means and σ 2I as
the covariance matrix, and where I is the n×n identity matrix. The probability
density function for y is then

p(y|X , β) = {√(2πσ 2)}−n/2 exp
{
−‖y − Xβ‖2

2

2σ 2

}
.

The available data provide y and X . When viewed as a function of the parameters,
this is now called the likelihood function, and, clearly,

β̂ = arg max
β

p(y|X , β).

Thus, β̂ are the so-called ‘maximum-likelihood estimators’ of β; the use of
maximum-likelihood estimators is a very common paradigm for statistical
inference.

In our problem, β̂ satisfies

XTX β̂ = XTy

and
β̂ = (XTX )−1XTy,

the explicit formula in the second equation being available provided that XTX can
be inverted. (Here XT is the matrix transpose of X .) Furthermore, if the model
is correct,

β̂ ∼ Np(β, σ 2(XTX )−1), (3.2)

from which (frequentist) interval estimates for β can be obtained, with slight
modification if, as is usually the case, σ 2 has to be estimated.

In general, for many maximum-likelihood scenarios concerning parametric
models involving a fixed number of parameters β, for large n, approximately
if rarely exactly,

β̂ ∼ Np(β, Σβ̂),

for a certain matrix Σβ̂ . Thus, β̂ is asymptotically unbiased, in that on average
it does not overestimate or underestimate β, and normally distributed.
Phil. Trans. R. Soc. A (2009)
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(b) A high-dimensional reality check and what to do about it

For the above elegant and simple analysis, we must have p ≤ n, otherwise
(XTX ) is singular and the parameters in the regression model cannot be uniquely
estimated. Furthermore, in the general maximum-likelihood contexts, especially
if p is not fixed, the asymptotic theory breaks down. What if p > n or even
p 	 n in the regression problem, i.e. p is much greater than n? One approach
to side-stepping the singularity of (XTX ) is to use a method of regularization,
otherwise known as penalized least squares or penalized maximum likelihood. An
early example of this is ridge regression (Hoerl & Kennard 1970), in which we
estimate β by

β̂R = Sλ2X
Ty,

where Sλ2 = (XTX + λ2I )−1, and the positive scalar λ2 is called a ridge parameter
or regularization constant. The frequency distribution of β̂R is

β̂R ∼ Np(Sλ2X
TXβ, σ 2Sλ2(X

TX )Sλ2). (3.3)

Thus the estimator β̂R is now biased, but it can be calculated; as λ2 increases,
bias increases, but ‘variance’ decreases, to compensate. There are a number of
interpretations for β̂R:

(i) β̂R = arg minβ{‖y − Xβ‖2
2 + λ2‖β‖2

2},
(ii) β̂R minimizes ‖y − Xβ‖2

2 subject to ‖β‖2
2 ≤ c2(λ2), for some c2(λ2),

depending on λ2, and
(iii) β̂R minimizes ‖β‖2

2 subject to ‖y − Xβ‖2
2 ≤ b2(λ2), for some b2(λ2),

depending on λ2.

The first interpretation shows that β̂R corresponds to what is called �2
regularization because the penalty function is given by the �2 or quadratic norm.
(It also has an interpretation in the Bayesian approach to statistical analysis,
as discussed in §7.) In the other interpretations, λ2 or its inverse is a Lagrange
multiplier.

However, although invertible, XTX + λ2I is p×p and still potentially a very
large matrix. A dominant strategy in current approaches to this sort of difficulty
is to try to exploit sparsity; in other words, to seek a solution for β in which
many of the elements are zero. After all, if n < p, it is intuitively plausible that
only sparse solutions can be obtained ‘reliably’. Furthermore, in practice, if there
are vast numbers of predictors, it is often scientifically plausible that only a small
proportion are likely to be influential as predictors. With this in mind, we try
changing the penalty function and consider what is called �0 regularization. Our
three equivalent formulations are now as follows:

(i) β̂0 = arg minβ{‖y − Xβ‖2
2 + λ0‖β‖0}, where ‖β‖0, the number of non-zero

elements in β, is the �0 norm of β,
(ii) β̂0 minimizes ‖y − Xβ‖2

2 subject to ‖β‖0 ≤ c0(λ0), and
(iii) β̂0 minimizes ‖β‖0 subject to ‖y − Xβ‖2

2 ≤ b0(λ0).
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


Introduction. Statistical challenges 4243

 on May 6, 2010rsta.royalsocietypublishing.orgDownloaded from 
The problem about implementing this approach is its combinatorial character:
there is no alternative to considering, individually, each configuration of zero and
non-zero values in β, and this leads to unacceptable computational complexity
and a potential proliferation of local optima.

An intermediate strategy is to base the penalty function on the �1 norm,

‖β‖1 =
p∑

j=1

|βj |,

leading to the following equivalent formulations:

(i) β̂L = arg minβ{‖y − Xβ‖2
2 + λ1‖β‖1}, for some λ1,

(ii) β̂L minimizes ‖y − Xβ‖2
2 subject to ‖β‖1 ≤ c1(λ1), and

(iii) β̂L minimizes ‖β‖1 subject to ‖y − Xβ‖2
2 ≤ b1(λ1).

The subscript L is chosen because this method is called the Lasso (Tibshirani
1996). The method has the dual advantages that it is computationally feasible,
fitting the paradigm of quadratic programming, and generally leads to sparse
solutions. The latter can be explained informally in the context of the second
formulation. The solution β̂L will be at the point of contact of a ‘smooth’ residual
sum of squares function and a convex, piecewise-flat constraint surface. The point
of contact is very likely to be at a vertex of the constraint surface and therefore
at a point where elements of β are zero. As with �2 regularization, the Lasso has
a Bayesian interpretation; see §7.

Some strong support for the Lasso strategy comes from considering noise-free
versions of the problem: minimize ‖β‖0 or ‖β‖1 subject to the equality constraint
y = Xβ. If the solution to the �0 problem is sufficiently sparse—having at
most a sufficiently small number k non-zero entries, say—then the solutions
to the �1 and �0 problems coincide; see, for example, Candès & Tao (2005)
and Donoho (2006).

The main aims of any investigation of sparsity in the linear model can be
described informally as follows:

(i) to identify exactly which components of β are non-zero, i.e. the support
of β,

(ii) to estimate reliably the true values of the non-zero components, assuming
that the model is correct, and

(iii) to do this ‘as well’ as one could be expected to do if the identities of the
non-zero components were known from the beginning, the so-called oracle
property.

We now describe briefly, at a very informal level, a few particular results along
these lines and we give pointers to relevant papers later in this issue.

In their Dantzig Selector, Candès & Tao (2007) choose β = β̂D to minimize
‖β‖1 subject to supi|{XT(y − Xβ)}i| ≤ cDσ

√
(2 loge p) in which vi denotes the ith

element of a vector v. Note that the residuals, y − Xβ, enter into the formulation
Phil. Trans. R. Soc. A (2009)
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directly rather than being squared. Let the number of non-zero elements of the
true β be k. Then, if k < n/2, a version of the oracle property is obtained with
overwhelming probability. The problem is amenable to algorithms based on linear
programming, and the method was named in honour of the inventor of the simplex
method for solving linear programmes.

Bickel et al. (2009) show that, under a sparsity scenario, the Lasso and Dantzig
selector exhibits similar behaviour in both linear and non-parametric regression
models, and satisfy parallel sparsity oracle inequalities.

For the Lasso itself, Wainwright (2006) investigates the probability,
Prob(success), that the Lasso successfully identifies the correct support set of
β, as a function of n, p and k, under certain assumptions about X . In the limit,
the results are, informally, as follows:

(i) if n > 2k log(p − k), then Prob(success) tends to 1,
(ii) if n < (1/2)k log(p − k), then Prob(success) tends to 0, and
(iii) as n increases from (1/2)k log(p − k) to 2k log(p − k), the limiting value of

Prob(success) increases from 0 to 1.

Donoho & Tanner (in press) show that sparse linear models can exhibit a
transition in behaviour illustrated by a phase diagram. As one example, consider
a noise-free setting, in which y = Xβ, and the matrix X is chosen at random, for
example with independent Gaussian rows, or from the rows of a discrete Fourier
transform matrix. Let ρ = k/n, the ratio of the cardinality of the support of β
and the sample size, and let δ = n/p. Then, for a given value of δ < 1, there is a
threshold, ρ∗(δ), such that, for ρ < ρ∗(δ), one is virtually certain to be able to
identify the non-zero elements of β and otherwise such identification will almost
never occur. As δ increases, then so does the threshold, d(δ), resulting in an
intriguing phase diagram in the ρ − δ plane.

A fascinating property of such diagrams is that closely related versions of
them appear in apparently unconnected settings. In geometrical probability,
one can look at the convex hull of n points in d-dimensional space. In
high-dimensional regression of the form (3.1), one can study the performance
of traditional stepwise regression methods for entering variables. In high-
dimensional geometry, one can ask what happens to the faces of a simplex
under random projections A on to lower dimensional subspaces. Donoho &
Tanner (in press) review the deep connections between these and yet other
settings in which a phase transition occurs. They use a large-scale computational
experiment to support a conjectured ‘universality’ result that would establish
such transition behaviour for a variety of sampling models for the random
projection A.

4. More general subspace selection and dimension reduction

The identification of sparse βs in effect allows us to discard variables, leaving an
informative k-dimensional linear subspace of the space of predictors, although of a
rather special nature; if there are two predictors, p = 2, and if k = 1, the reduced
space would be one of the coordinate axes. (Other modern approaches to the
selection of variables, especially from a very large number of candidates, are
Phil. Trans. R. Soc. A (2009)
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described in the text and discussion of Fan & Lv (2008).) However, there are
plenty of other one-dimensional linear subspaces of the plane, i.e. all straight
lines are candidates. Why not, therefore, seek different types of informative
k-dimensional linear subspace? The so-called sufficient dimension reductions
reduce the effective dimension of the data space without loss of information
about the distribution of y|X , in some sense, in which ‘|’ indicates conditioning.
There are various ways of defining a sufficent reduction, R(X ). The first approach
has the property that the distribution of y|R(X ) is the same as that of y|X ; in
other words, no information is lost from the (forward) regression of Y on X by
restricting oneself to conditioning on R(X ). In the second approach, related to
the idea of inverse regression, the aim is to choose R(X ) so that the distribution
of X |R(X ) is the same as that of X |{y, R(X )}. Finally, in a ‘joint’ approach, R(X )
is sought such that y is independent of X given R(X ). These options are identified
by Cook (2007), the leading figure in this area, who takes the inverse-regression
approach, proposing a model of the form

Xy = μ + Γ zy + ε,

with Γ a p × k matrix, with the goal that Xy has the same distribution as that
of X given y. Here, the vector zy contains so-called ‘latent’ or ‘factor’ variables.
In the present issue, Adragni & Cook (in press) rehearse and expand on these
concepts in detail, as well as announcing new methodology for prediction.

All the discussion hitherto has been about the linear model (3.1) in which
the part of the model that defines the means of the responses is linear in the
parameters β. There is a vast array of other regression models that generalize the
linear case, including nonlinear parametric models in which the mean function
is defined explicitly as a nonlinear function of parameters, and various types
of semiparametric or nonparametric approach. The so-called ‘errors’, like ε in
equation (3.1), need not be normally distributed and need not enter the model
additively. Traditionally, as with the linear model, these other approaches have
been applied in contexts where the number of experimental units has comfortably
exceeded the number of explanatory variables, i.e. n > p, but the complementary
scenario has increasingly attracted attention. Here we limit consideration to two
particular manifestations.

Ravikumar et al.’s (2007) SpAM method, an abbreviation of ‘Sparse Additive
Models’, aims to estimate a function rather than a vector, using so-called general
additive models (Hastie & Tibshirani 1990). For the ith observational unit, the
model for the response is

yi =
p∑

j=1

βj fj(xij) + εi ,

in which xij is the value of the jth explanatory variable for the ith observational
unit. The {fj} are rather arbitrary functions, chosen to minimize the residual sum
of squares but subject to constraints that both encourage sparsity and render the
optimization problem convex. When p is very large but it is assumed that only
a small subset of the explanatory variables truly contribute to the model, i.e.
sparsity obtains, the objective is to identify those variables as well as possible.
Phil. Trans. R. Soc. A (2009)
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Chipman et al. (2009) propose Bayesian additive regression trees, in which the
regression function is the sum of ‘trees’,

yi =
m∑

j=1

fj(xi ; Tj , βj) + εi ,

each Tj representing a tree structure involving a number, usually very small, of
the explanatory variables.

We leave the regression setting and turn to some other traditional areas
of multi-variate statistical analysis. We describe briefly two active areas of
development: investigation of the properties of classical methods when the number
of variables is large, and development of new, typically nonlinear variants of these
methods that respond to high dimension.

In the first direction, it is a striking fact that most of the standard techniques
of classical multi-variate analysis—principal components analysis, canonical
correlation analysis, multi-variate analysis of variance, discriminant analysis
and so forth—are based on the eigenanalysis of sample covariance matrices.
Under Gaussian assumptions for the distributions of the sampled data, and
under the symmetry assumptions characteristic of null hypotheses, the sampling
densities of the eigenvalues of these matrices have precisely the laws arising in
the classical orthogonal polynomial ensembles of random matrix theory. The
natural asymptotics in random matrix theory—reflecting its origins in the many-
particle models of statistical and nuclear physics—allow the number of variables
to become large. This leads to limiting distributions (Marčenko–Pastur, Tracy–
Widom) that are new for multi-variate statistics and to approximations for the
distributions of extreme eigenvalues that can work well even when the number of
variables is small; see Johnstone (2007, 2008) and the references therein.

Ideas from random matrix theory are also exerting active influence on a variety
of other problems connected with large covariance matrices. A rich set of examples
may be found in a recent special issue of the Annals of Statistics devoted to the
topic (Bickel 2008). For example, an unknown covariance matrix for observations
on p variables in principle has p(p + 1)/2 unknown parameters and the sample
covariance matrix is a poor estimate when p is large. Strategies to exploit sparsity
are essential, for example by direct thresholding (Bickel & Levina 2008) or by
exploiting sparse covariance models (El Karoui 2008). Estimation of the leading
eigenvectors associated with large covariance matrices can encounter problems
with consistency unless sparsity is assumed, and is attracting attention both
in statistics, see, for example, Nadler (2008) and Johnstone & Lu (2009), and
in econometrics (Onatski 2009).

We now focus on the second direction, methods of dimension reduction: given
data x1, . . . , xn in R

p, find representations y1, . . . , yn in R
m for m � p that preserve

as much of the relevant information as possible. Of course, if m is 3 or less, one
can then visualize the reduced data. The traditional approach to this problem is
via principal components analysis, or its close relation, multi-dimensional scaling,
which uses the leading eigenvectors of the sample covariance matrix of (xi) (e.g.
Jolliffe 2002). Geometrically, this corresponds to finding the m-dimensional linear
subspace into which the projections of xi have the largest variance.

In recent years, attention has been directed at settings in which a nonlinear
manifold of low dimension might provide a better representation. For example,
a collection of images of similar objects is nominally very high-dimensional
Phil. Trans. R. Soc. A (2009)
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(corresponding to the number of pixels in each image), but in fact potentially
described by the variation of a much smaller number of parameters. Some
influential approaches to this problem include ISOMAP (Tenenbaum et al. 2000),
local linear embedding (Roweis & Saul 2000), Laplacian eigenmaps (Belkin &
Niyogi 2003) and Hessian eigenmaps (Donoho & Grimes 2003).

These nonlinear representations can also be described as spectral methods for
dimension reduction, because each involves finding a small number of extreme
eigenvalue/vector pairs for a suitable matrix derived from the local characteristics
of the data (xi). These and other methods are reviewed by Belabbas & Wolfe
(in press) in this volume.

The computational burden of solving an eigenproblem can be significant
if min(n, p) is large. As one approach to reducing this burden, Belabbas &
Wolfe (in press) compare algorithms for selecting a subset of the n data points
(‘landmark selection’), and performing an approximate spectral analysis known
as the Nyström extension.

5. Classification

A variation of the regression problem is that of ‘classification’, also known as
‘discriminant analysis’ or ‘statistical pattern recognition’, in which the class label
yi is categorical or in particular binary: it might denote an image type or a
disease category. Here, the main objective is to estimate a classification rule for
a future ‘patient’ on the basis of their xi , which represents the patient’s medical
history, given ‘training data’ from people whose disease categories and medical
histories are known. This scenario is known as ‘supervised learning’, whereas
any situation in which the disease categories of even the training set are not
available corresponds to ‘unsupervised learning’. There are many approaches to
the classification problem, from both statistics and machine learning, the latter
including the so-called ‘support vector machine’ (SVM); see, for example, Hastie
et al. (2009). The large p, small n problem arises here too, and the method can
also be described in terms of constrained optimization. In the simplest version
of the problem, there are two disease categories and the training data consist,
geometrically, of two clouds of points that can be separated by at least one
hyperplane. The SVM simply identifies a hyperplane such that the resulting
degree of separation is, informally speaking, as large as possible. Many variations
of the method have been developed, to cope with non-planar separating surfaces,
cases in which the two point clouds overlap, and so on.

So far as probabilistic modelling in classification is concerned, there are two
approaches, corresponding to two possible factorizations of p(x , y),

p(x , y) = p(x |y, θ1)p(y|θ2)

and
p(x , y) = p(x |φ1)p(y|x , φ2),

where (θ1, θ2) and (φ1, φ2) denote two parametrizations, with θ1 distinct
from θ2 and φ1 distinct from φ2. In the modern machine-learning literature,
these approaches are called the ‘generative’ and ‘discriminative’ approaches,
respectively. Much earlier, Dawid (1976) called them the ‘sampling’ and
‘diagnostic’ paradigms. Which approach is selected is crucial in so-called
‘semisupervised’ situations in which the available database contains both
Phil. Trans. R. Soc. A (2009)
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diagnosed and undiagnosed cases. From the point of view of diagnosing new
patients, the conditional distribution p(y|x) is the key tool. If the θ version is
adopted, then the undiagnosed cases do contribute information about p(y|x), but
if one uses the φ version they do not. There is much current work revisiting
this issue in the machine-learning literature, under key words such as ‘domain
adaptation’ as well as ‘semisupervised learning’.

The selection of good class predictors from among many raises problems
incurred in ‘multiple testing’. In microarray analysis, for example, we could be
comparing expression levels of p = 20 000 genes obtained from people from two
populations, e.g. diseased and healthy, and wish to decide which genes respond
differently in the two populations. It is natural to examine |X̄1j − X̄2j |, the
difference in the average values of the expression levels of the jth gene, in the
members of the two disease classes in the available database, for j = 1, . . . , 20 000,
and to select those genes for which there is a ‘significant difference’. The following
problems arise: first, with a conventional significance level of 5 per cent we
should expect about 1000 significant results even when there is no real difference;
secondly, results for different genes may well be correlated. There is much recent
work under this banner of multiple testing on the same dataset, including methods
for controlling the so-called ‘false discovery rate’ (Benjamini & Hochberg 1995).
The actual false discovery rate is the number of ‘null hypotheses’ wrongly rejected
divided by the total number of null hypotheses rejected. In practice, of course, this
proportion is not knowable, so one aims to control its expectation. As mentioned
in §2, this topic is the subject, in this issue, of Benjamini et al. (in press).

The problem of distinguishing between two classes on the basis of noise-filled,
high-dimensional data is one that lends itself to the theoretical challenge described
earlier of delimiting the limits of the possible. Perhaps the simplest idealization
runs as follows. The n labels yi are either −1 or +1 and the feature vectors
xi have p components xij . The components xij are assumed to be independently
normally distributed, with means yiδj and variance 1. The coordinate separations
δj are mostly zero, that is for all but a small number of components j whose
identities are unknown—more precisely, a proportion p−β for 0 < β < 1. In those
rare separated coordinates, the dependence on n and p is assumed to be given by
δj = √{(2r log p)/n}.

Two papers in this volume (Donoho & Jin in press; Ingster et al. in press)
independently study this problem asymptotically. Whether or not successful
classification is possible at all in this model turns out to depend in a precise way
on the sparsity β and separation constant r . Both papers show that there is a
‘detection boundary’ r = r(β), or phase diagram, such that above the boundary—
corresponding to greater separation r and less sparsity β—correct classification is
possible, while below the boundary it is impossible, whatever be the method used.

Donoho & Jin (in press) in this volume, and Jin (2009) elsewhere, focus on a
particular method for feature selection, based on the higher criticism approach to
simultaneous inference associated with J. W. Tukey, while Ingster et al. (in press)
consider a somewhat more general setting.

While this theoretical setting is certainly highly idealized, it is worth noting
that a simple classifier based on higher criticism feature selection turns out to
be completely competitive, if not superior, to standard classification methods
including SVMs and random forests (Breiman 2001), at least on some standard
test datasets as reported in Dettling (2004) and Donoho & Jin (2008).
Phil. Trans. R. Soc. A (2009)
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6. Visualization and informal inference

The facility to look at data is vital, partly with a view to exploring the
data and suggesting questions to be followed up more formally and partly
as a way of checking assumptions that underlie a formal procedure being
implemented, often after that procedure has been carried out and a model
fitted; Buja et al. (in press) regard these two activities, respectively, as cases
of ‘exploratory data analysis’ and ‘model diagnostics’. At a trivial level, in
the context of the simple linear regression model of §3, a two-dimensional
plot of responses against predictors will give an immediate warning if the
straight-line model is implausible. It is hard to achieve such a direct look
in high dimensions. However, the power of modern computers is there to
be exploited. Dynamic graphics allow the display of a multitude of two-
dimensional projections of three-dimensional data clouds by spinning the clouds,
with the axis of rotation being chosen by the user. The so-called ‘grand
tour’ generalizes this notion to the exploration of p-dimensional data clouds
for larger values of p. The idea is to generate a space-filling tour of low-
dimensional projections of the data, to be visualized as a movie-like presentation.
Modifications of the grand tour allow the user to interact with the tour, for
example, concentrating on classes of projections of particular interest. A different
medium for the two-dimensional display of high-dimensional data is that of
‘parallel coordinates’. In the most basic form of this procedure for p-dimensional
data, the p typically orthogonal axes are replaced by a set of p parallel axes,
displayed in two dimensions. For a given observational unit, the values of
the variables are marked off on the axes and joined up in a piecewise-linear
way. This allows, for instance, ‘similar’ points to be recognized through their
similar piecewise-linear plots. There are many refinements and variations of the
basic idea.

For algorithmic and practical discussion of these and other visualization
techniques, see Buja et al. (2005) and Wegman (2003), and, for treatments of the
underlying mathematics, see Wegman & Solka (2002). These papers also provide
links to the relevant software.

In most statistical practice, the consequence of data visualization, be it
for exploratory analysis or model diagnostics, is typically an informal, non-
quantitative assessment of the plausibility of some ‘hypothesis’, to be followed up
by the performance of an appropriate formal test or construction of a confidence
interval. In this Theme Issue, Buja et al. (in press) pursue the goal of adding
quantification of the level of statistical significance of the sort of ‘visual discovery’
that plots and diagrams may provide.

It is in the spirit of data exploration that Banks et al. (in press) develop
their data-analytic approach designed to exploit what they call mixture sparsity.
For example, in the context of cluster analysis, they envisage that a dataset
comprises a number of clusters, but that cluster membership indicators are
missing, and that the different clusters may be best characterized by possibly
different (small) subsets of variables. By ‘cherry-picking’ small numbers of
variables in a way designed to identify mutually similar data points, they
construct clusters one-by-one. Similarly, they tease out mixtures of regression
models where, again, the different (sparse) regression models may involve different
(small) sets of predictors.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/


4250 I. M. Johnstone and D. M. Titterington

 on May 6, 2010rsta.royalsocietypublishing.orgDownloaded from 
7. A brief encounter with Bayesian statistics

We return to §3b and the discussion of the linear model as expressed in
equation (3.1). Frequentist distributional results for estimators of β were given
in equation (3.2) for the least-squares estimators and in equation (3.3) for the
ridge-regression estimators. In addition, the ridge-regression estimators could be
interpreted as penalized maximum-likelihood estimators. Here we provide another
interpretation in the context of so-called Bayesian inference, in which probability
distributions are developed for unknown parameters. Bayes’ theorem is used to
relate the distribution p(β), assumed for β ‘prior’ to the data-gathering process,
to the distribution p(β|y) ‘posterior’ to that process. To be specific,

p(β|y)p(y) = p(β, y) = p(y|β)p(β),

so that, as a function of β,

p(β|y) ∝ p(y|β)p(β);

that is,

posterior for β ∝ likelihood × prior for β. (7.1)

In the Bayesian approach, inference about β is based on p(β|y), historically a great
source of controversy, essentially because of the combination within equation (7.1)
of probability distributions of quite different natures, the likelihood term being
frequentist-based and the prior not so. In addition, adoption of the approach often
led to practical (computational) difficulties, to which we allude later. However,
these problems do not arise in the context of the linear model in equation (3.1),
if we are prepared to act as if, a priori,

β ∼ Np(0, σ 2λ2
−1I ),

and σ 2 is known, for then the posterior distribution for β is a Gaussian
distribution with mean, and indeed mode, given by β̂R. Thus, the ridge-regression
estimator has the Bayesian interpretation of being a maximum a posteriori
(MAP) estimator of β. Similarly, the Lasso has an MAP interpretation provided
that the prior for β is

p(β) ∝ exp
{
−λ1‖β‖1

2σ 2

}
.

In other contexts, the analysis is not so straightforward, especially if there are
missing or latent (unobservable) variables, z , as well as observed data y. Often
(not always), analysis would be comparatively easy were z known, in that simple
formulae would exist for p(y, z |β) and p(β|y, z). With z unknown, the key quantity
of interest is p(z , β|y), the distribution of everything that is unknown given what
is known, but this distribution is typically complicated. We briefly indicate two
popular ways of handling this problem.

Stochastic method. Generate a large number of realizations from p(z , β|y),
where

p(z , β|y) ∝ p(y, z , β) = p(y, z |β)p(β).
Phil. Trans. R. Soc. A (2009)
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The corresponding realizations of β are a sample from p(β|y) and, for instance,
their average would be a good estimator of the true posterior mean of β. During
the last 25 years or so, a large repertoire of so-called Markov chain Monte Carlo
methods, some based on antecedents from the statistical physics literature, has
been developed for simulating the required realizations.

Variational method. Here the approach is to choose a deterministic
approximation qy(z , β) that is as close as possible to p(z , β|y), but that is of
a more manageable structure than p(z , β|y). Here ‘closeness’ is measured by the
Kullback–Leibler directed divergence, KL(qy , p), where p denotes p(z , β|y),

KL(qy , p) =
∫
z

∫
β

qy(z , β) log
(

qy(z , β)

p(z , β|y)

)
dβ dz .

Key properties are that KL(qy , p) ≥ 0, with equality essentially if and only if qy
and p are the same. The typical way of choosing a ‘more manageable structure’
is to assume a factorized form for qy , that is,

qy(z , β) = q(z)
y (z) × q(β)

y (β),

choose the factors so as to minimize KL(qy , p) and use the resulting q(β)
y (β) to

approximate p(β|y).
This variational approach also has links to statistical physics, including

concepts such as mean-field approximations. Its recent application to many
implementations of the Bayesian approach has mainly developed in machine
learning, see Bishop (2006) and references therein, rather than in the mainstream
statistics literature, although not exclusively so (Titterington 2004; Beal &
Ghahramani 2006).

In theory, the stochastic method is superior in that, if enough realizations
are generated, one can get arbitrarily close to the target distribution. However,
especially in problems on a very large scale, practical considerations render the
stochastic approach non-viable and the variational method is a good pragmatic
alternative.

Among the papers in this issue, Barber (in press) describes a particular
application to the identification of clusters of books about US politics. In general,
variational approximations have proved to be extremely useful in the analysis of
graphical models, which involve structures of nodes and connecting edges with
a wide range of architectures. As Barber (in press) indicates, such models are
essential in contexts such as social networks, web analysis and bioinformatics,
the models often necessarily display a high degree of complexity and efficient
approximate methodology is essential; roughly speaking, the more connectivity
there is in the graphical model, the more intractable the analysis thereof becomes.

This research was supported in part by the Isaac Newton Institute for Mathematical Sciences,
Cambridge, UK, and by grants NSF DMS 0505303 and NIH RO1 EB 001988.
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