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We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull
distribution in practice, and also for the fact that the generalization provides a continuous crossover towards
cases with different shapes. The new distribution is important since it contains as special sub-models some
widely-known distributions, such as the generalized modifiedWeibull, betaWeibull, exponentiatedWeibull,
beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more
flexibility to analyse complex real data. Various mathematical properties of this distribution are derived,
including its moments and moment generating function. We examine the asymptotic distributions of the
extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz
curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and
maximum likelihood. We compare by simulation the performances of the estimates from these methods.
We obtain the expected information matrix. Two applications are presented to illustrate the proposed
distribution.

Keywords: beta distribution; exponentiated exponential; exponentiated Weibull; Fisher information
matrix; generalized modified Weibull; maximum likelihood; modified Weibull; Weibull distribution

1. Introduction

The Weibull distribution, having exponential and Rayleigh as special sub-models, is a very popular
distribution for modelling lifetime data and for modelling phenomenon with monotone failure
rates. When modelling monotone hazard rates, the Weibull distribution may be an initial choice
because of its negatively and positively skewed density shapes. However, the Weibull distribution
does not provide a reasonable parametric fit for modelling phenomenon with non-monotone
failure rates such as the bathtub-shaped and the unimodal failure rates which are common in
reliability and biological studies. Such bathtub hazard curves have nearly flat middle portions and
the corresponding densities have a positive anti-mode. An example of bathtub-shaped failure rate
is the human mortality experience with a high infant mortality rate which reduces rapidly to reach
a low level. It then remains at that level for quite a few years before picking up again. Unimodal
failure rates can be observed in course of a disease whose mortality reaches a peak after some
finite period and then declines gradually.
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2 S. Nadarajah et al.

The models that present bathtub-shaped failure rate are very useful in survival analysis. But,
according to Nelson [1], the distributions presented in shape literature with this type of data, such
as the distributions proposed by Hjorth [2], are sufficiently complex and, therefore, difficult to
model. Other, later works had introduced new distributions for modelling bathtub-shaped failure
rate. For example, Rajarshi and Rajarshi [3] presented a revision of these distributions and Haupt
and Schabe (1992) [4] considered a lifetime model with bathtub-shaped failure rates. But, these
models do not present much practicability to be used. However, in the last few years, new classes
of distributions were proposed based on the modifications of the Weibull distribution to cope
with bathtub-shaped failure rate. A good review of some of these models is presented in [5]. We
mention the models: the exponentiated Weibull (EW) [6,7], the additive Weibull [8], the extended
Weibull [9], the modified Weibull (MW) [10], the beta exponential (BE) [11] and the extended
flexible Weibull [12] distributions. Some more recent extensions are the generalized modified
Weibull (GMW) [13] and the beta Weibull (BW) [14] distributions.

In this paper, we introduce a new distribution with five parameters, referred to as the beta-
modified Weibull (BMW) distribution, with the hope it will attract wider application in reliability,
biology and other areas of research. This generalization contains as special sub-models several
distributions such as the EW [6,7], exponentiated exponential (EE) [15,16], MW [10], generalized
Rayleigh (GR) [17] and GMW distributions, among several others. The new distribution, due to
its flexibility in accommodating all the forms of the risk function, seems to be an important
distribution that can be used in a variety of problems in modelling survival data. The BMW
distribution is not only convenient for modelling comfortable bathtub-shaped failure rate data but
it is also suitable for testing goodness-of-fit of some special sub-models such as the EW, BW,
MW and GMW distributions.

The rest of the paper is organized as follows. In Section 2, we define the BMW distribution,
present some special sub-models and provide expansions for its cumulative distribution function
(cdf) and probability density function (pdf). Two methods for simulating BMW variates and an
expansion for the quantile function are provided in Section 3. General expansions for the moments
are given in Section 4. Expansions for the moment generating function (mgf) and characteristic
function (chf) are presented in Section 5. Section 6 is devoted to mean deviations about the mean
and the median. Bonferroni and Lorenz curves are given in Section 7. The asymptotic distributions
of the extreme values are discussed in Section 8. Estimation methods of moments and maximum
likelihood, including the case of censoring, and the Fisher information matrix are presented in
Section 9. The performances of the two estimation methods (moments and maximum likelihood)
are also compared in this section. Section 10 provides two applications to real data. Section 11
ends with some conclusions. The paper also contains three appendices giving technical details.

2. Model definition

The BMW distribution stems from the following general class: if G(x) denotes the cdf of a random
variable, then a generalized class of distributions can be defined for a > 0 and b > 0 by

F(x) = IG(x)(a, b) = 1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1 dw, (1)

where B(·, ·) and Iy(·, ·) are defined inAppendix 1. This class of generalized distributions has been
receiving increased attention over the last years, in particular after the works of Eugene et al. [18]
and Jones [19]. The beta normal distribution obtained by taking G(x) in Equation (1) to be the cdf
of the normal distribution was studied by Gupta and Nadarajah [20] and Nadarajah and Kotz [21].
Nadarajah and Kotz [21] and Barreto-Souza et al. [22] provided closed form expressions for the
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moments and discussed maximum-likelihood estimation for the beta Gumbel and beta Fréchet
distributions, respectively. Consider the cdf of the MW distribution

Gα,γ,λ(x) = 1 − exp {−αxγ exp(λx)}, (2)

due to Lai et al. [10]. Setting Equation (2) into Equation (1) yields the cdf of the BMW distribution
(with five positive parameters and x > 0)

F(x) = 1

B(a, b)

∫ 1−exp{−αxγ exp(λx)}

0
wa−1(1 − w)b−1 dw. (3)

The pdf and the hazard rate function (hrf) associated with Equation (3) since Ix(a, b) = I1−x(b, a)

are

f (x) = αxγ−1(γ + λx) exp(λx)

B(a, b)
[1 − exp{−αxγ exp(λx)}]a−1 exp{−bαxγ exp(λx)}, (4)

and

h(x) = αxγ−1(γ + λx) exp(λx)

B(a, b)Iexp{−αxγ exp(λx)}(b, a)
[1 − exp{−αxγ exp(λx)}]a−1 exp{−bαxγ exp(λx)}, (5)

respectively.
If X is a random variable with pdf (4), we write X ∼ BMW(a, b, α, γ, λ). Plots of the BMW

pdf (4) are shown in Figure 1(a)–(c). Figure 2 illustrates some of the possible shapes of the hazard
function (5).

The BMW pdf is important since it includes as special sub-models several well-known dis-
tributions [23]. For λ = 0, it reduces to the BW distribution. If γ = 1 in addition to λ = 0, it
simplifies further to the BE distribution. The GMW distribution is also a special case when b = 1.
If a = 1 in addition to b = 1, it yields the MW distribution. For b = 1 and λ = 0, the BMW
distribution reduces to the EW distribution. If γ = 1 in addition to b = 1 and λ = 0, the BMW
distribution becomes the EE distribution. For γ = 2, λ = 0 and b = 1, the BMW distribution
reduces to the GR distribution. The Weibull distribution is clearly the simple special case for
a = b = 1 and λ = 0. Other special sub-models of the BMW distribution are: the beta-modified
Rayleigh (BMR), beta-modified exponential (BME), generalized modified Rayleigh (GMR), gen-
eralized modified exponential (GME), beta Rayleigh (BR), modified Rayleigh (MR) and modified
exponential (ME), all sub-models reported in Silva et al. [23].

The asymptotes of Equations (3)–(5) as x → 0, ∞ are given by

F(x) ∼ αa

aB(a, b)
xγa

as x → 0,

F(x) ∼ 1 − 1

bB(a, b)
exp{−bαxγ exp(λx)}

as x → ∞,

f (x) ∼ γαa

B(a, b)
xγa−1

as x → 0,

f (x) ∼ α

B(a, b)
xγ−1(γ + λx) exp{λx − bαxγ exp(λx)}
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Figure 1. (Available in colour online). Plots of the BMW pdf for some parameter values. (a) Parameter values α = 1,
γ = 0.5 and λ = 0.5. (b) Parameter values α = 0.1, γ = 0.5 and λ = 1.
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Figure 2. (Available in colour online). Plots of the hazard rate function (5) (increasing, decreasing, unimodal, bathtub
shaped) for some parameter values.
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as x → ∞,

τ(x) ∼ γαa

B(a, b)
xγa−1

as x → 0, and

τ(x) ∼ αbxγ−1(γ + λx) exp(λx)

as x → ∞. Note that the lower tails of the pdf are polynomials. The hazard rate always increases
as x → ∞. The initial hazard rate can be increasing or decreasing depending on whether γ a > 1
or γ a < 1.

Throughout this paper, we use the following representations for Equations (3) and (4) due to
Silva et al. [23]:

F(x) = 1 −
∞∑

j=0

wj {1 − Gα(b+j),γ,λ(x)},

and

f (x) =
∞∑

j=0

wjgα(b+j),γ,λ(x), (6)

where gα(b+j),γ,λ(x) = dGα(b+j),γ,λ(x)/dx and

wj = (−1)j�(a)

B(a, b)�(a − j)(b + j)j ! , (7)

where �(·) is defined in Appendix 1. Clearly, expansion (6) reveals that the BMW pdf is a mixture
of MW densities (holding for any parameter values). It is very useful to derive the ordinary, central,
inverse and factorial moments of the BMW distribution from a weighted infinite (or finite if a is
an integer) linear combination of those quantities for MW distributions.

We shall also use the following result due to Carrasco et al. [13, Section 4, Equations (5)–(7)]:

∫
A

κ(x)dGα,γ,λ(x) = α

∫
A

κ

⎛
⎝ ∞∑

j=1

ajx
j/γ

⎞
⎠ exp(−αx) dx, (8)

for an integrable function κ(·) and for an integrable set A, where

aj = (−1)j+1j j−2λj−1

(j − 1)!γ j−1
. (9)

In fact, using the Lambert W(·) function defined in Appendix 1, which is exactly equal to the
F(·) function given in Carrasco et al. [13, Section 4], we can rewrite Equation (8) as∫

A

κ(x) dGα,γ,λ(x) = α

∫
A

κ

(
γ

λ
W

(
λx1/γ

γ

))
exp(−αx) dx. (10)

The shape of the pdf (4) can be described analytically. The critical points of the pdf are the
solutions of the equation:

λ + γ − 1

x
+ λ

γ + λx
= αxγ−1(γ + λx) exp(λx)

[
b − a − 1

exp{αxγ exp(λx)} − 1

]
. (11)

There may be more than one solution to Equation (11). If x = x0 is a root of Equation (11)
then it corresponds to a local maximum, a local minimum or a point of inflexion depending on
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6 S. Nadarajah et al.

whether λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where

λ(x) = λ + 1 − γ

x2
− λ2

(γ + λx)2

+ (a − 1)αxγ−2 exp(λx)

[
(λx + γ − 1)(γ + λx) + λx

exp{αxγ exp(λx)} − 1
− αxγ (γ + λx)2 exp(λx)

{exp{αxγ exp(λx)} − 1}2

]

− bαxγ−2 exp(λx){(γ + λx − 1)(γ + λx) + λx}.

3. Simulation and quantile function

We present two methods for simulation from the BMW distribution in Equation (3). The first uses
the inversion method. Let U be a uniform variate on the unit interval [0, 1]. Setting

I1−exp{−αXγ exp(λX)}(a, b) = U

and solving, we see that BMW variates X can be obtained as roots of the equation

log X + λX + log α − log[− log{1 − I−1
U (a, b)}] = 0,

where I−1
u (a, b) denotes the inverse of the incomplete beta function ratio.

Our second method for simulation from the BMW distribution is based on the rejection method.
Take h to be the pdf of a gamma random variable with shape parameter γ and scale parameter λ.
Define a constant M by

M = α�(γ )

λγ
exp(M∗),

where

M∗ = sup
x>0

{log(γ + λx) + 2λx − αxγ exp(λx)}.
Then, the following scheme holds for simulating BMW variates:

1. Simulate X = x from the pdf h;
2. Simulate Y = V Mg(x), where V is a beta random variable with shape parameters a and b;
3. Accept X = x as a BMW variate if Y < f (x). If Y ≥ f (x) return to step 2.

Note that routines are widely available for simulation from the gamma distribution.
We now give an expansion for the quantile function q = F−1(p). First, we have p = F(q) =

Is(a, b), where s = Gα,γ,λ(q) = 1 − exp{−αqγ exp(λq)}. From the W(·) function, we can
express q in terms of s as

q = γ

λ
W

(
λ[−α−1 log(1 + s)]1/γ

γ

)
. (12)

The W(·) function can be calculated easily using Mathematica, for example,

W(z) = z − z2 + 3z3

2
− 8z4

3
+ 125z5

24
− 54z6

5
+ 16807z7

720
− 16384z8

315
+ 531441z9

4480

− 156250z10

567
+ O(z11).

Further, it is possible to obtain s as a function of p from some expansions for the inverse of the
incomplete beta function ratio s = I−1

p (a, b). One of them can be found on the Wolfram website
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(http://functions.wolfram.com/06.23.06.0004.01) as

s = I−1
p (a, b)

= w + b − 1

a + 1
w2 + (b − 1)(a2 + 3ba − a + 5b − 4)

2(a + 1)2(a + 2)
w3

+
(b − 1)[a4 + (6b − 1)a3 + (b + 2)(8b − 5)a2 + (33b2 − 30b + 4)

a + b(31b − 47) + 18]
3(a + 1)3(a + 2)(a + 3)

w4 + O(p5/a),

where w = [apB(a, b)]1/a for a > 0. Inserting the last expansion in Equation (12), q is expressed
in terms of p.

4. Moments

Let X ∼ BMW(a, b, c, α, γ, λ). Combining Equations (6) and (8), the kth moment of X follows as

E(Xk) =
∞∑

j=0

wjI1(j, k), (13)

where

I1(j, k) = α(b + j)

∫ ∞

0

( ∞∑
m=1

amxm/γ

)k

exp{−α(b + j)x} dx

= α(b + j)

∞∑
m1=1

· · ·
∞∑

mk=1

am1 · · · amk
×

∫ ∞

0
x(m1+···+mk)/γ exp{−α(b + j)x} dx,

and thus

I1(j, k) =
∞∑

m1=1

· · ·
∞∑

mk=1

am1 · · · amk
× {α(b + j)}−(m1+···+mk)/γ �

(
m1 + · · · + mk

γ
+ 1

)
, (14)

where wj and aj are defined by Equations (7) and (9), respectively.
A much simpler representation for the kth moment, using Equation (10) and Equation (11) in

Corless et al. [24], can be obtained as

I1(j, k) = α(b + j)

∫ ∞

0

(
γW

(
x1/γ

γ

))k

exp{−α(b + j)x} dx

= α(b + j)k(−γ )k
∞∑

n=1

(−1)nnn−k(n − 1) · · · (n − k + 1)

n!γ n

×
∫ ∞

0
xn/γ exp{−α(b + j)x} dx

= k(−γ )k
∞∑

n=1

(−1)nnn−k(n − 1) · · · (n − k + 1)

n!γ n{α(b + j)}n/γ
�

(
n

γ
+ 1

)
. (15)

Equation (15) gives a representation for E(Xk) involving only a doubly infinite series.
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8 S. Nadarajah et al.

For lifetime models, it is also of interest to know what E(Xk | X > x) is. Using Equations (6)
and (8), one can show that

E(Xk | X > x) = 1

Iexp{−αxγ exp(λx)}(b, a)

∞∑
j=0

wjI2(j, k),

where

I2(j, k) =
∞∑

m1=1

· · ·
∞∑

mk=1

am1 · · · amk
{α(b + j)}−(m1+···+mk)/γ �

(
m1 + · · · + mk

γ
+ 1, α(b + j)x

)
,

where wj and aj are defined by Equations (7) and (9), respectively, and �(·, ·) is defined in
Appendix 1.

A much simpler representation for E(Xk | X > x), using Equation (10) and Equation (11) in
Corless et al. [24], can be obtained as

I2(j, k) = k(−γ )kλ−k

∞∑
n=1

(−λ)nnn−k(n − 1) · · · (n − k + 1)

n!γ n{α(b + j)}n/γ
�

(
n

γ
+ 1, α(b + j)x

)
. (16)
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Figure 3. Skewness and kurtosis of the BMW distribution as a function of the parameter a for some values of b.
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Figure 4. Skewness and kurtosis of the BMW distribution as a function of the parameter b for some values of a.
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Again Equation (16) gives a representation for E(Xk | X > x) involving only a doubly infinite
series. The mean residual lifetime function is E(X | X > x) − x.

The skewness and kurtosis measures can now be calculated from the ordinary moments using
well-known relationships. Plots of the skewness and kurtosis for some choices of the parameter
b as a function of the parameter a, and for some choices of the parameter a as a function of the
parameter b, for α = 0.7, γ = 0.8 and λ = 0.2, are shown in Figures 3 and 4, respectively. These
figures immediately reveal that the skewness and kurtosis curves, respectively, as a function of a

and b first decrease and then increase, whereas as functions of b and a they always decrease, in
all cases the other parameter being fixed.

5. Moment generating function and characteristic function

Let X ∼ BMW(a, b, c, α, γ, λ). The mgf of X, M(t) = E[exp(tX)], and the chf of X, φ(t) =
E[exp(itX)], where i = √−1, can be expressed as

M(t) =
∞∑

k=0

tk

k!E(Xk) and φ(t) =
∞∑

k=0

(it)k

k! E(Xk),

where E(Xk) is given by Equation (13). We now give another representation for M(t) which can
be expressed from Equation (6) as an infinite weighted sum

M(t) =
∞∑

j=0

wjMj(t), (17)

where Mj(t) is the mgf of the MW(α(b + j), γ, λ) distribution and wj is defined by Equation
(7). By combining Equation (10) and Equation (16) in Corless et al. [24], a simple representation
for Mj(t) can be written as

Mj(t) = α(b + j)

∫ ∞

0
exp

{
tγ

λ
W

(
λx1/γ

γ

)
− α(b + j)x

}
dx

= −α(b + j)tγ

∞∑
n=0

(−1)n(nλ − tγ )n−1

n!γ n

∫ ∞

0
xn/γ exp{−α(b + j)x} dx,

and then

Mj(t) = −tγ

∞∑
n=0

(−1)n(nλ − tγ )n−1

n!γ n{α(b + j)}n/γ
�

(
n

γ
+ 1

)
.

The corresponding chf is

φ(t) =
∞∑

j=0

wjφj (t), (18)

where

φj (t) = −itγ
∞∑

n=0

(−1)n(nλ − itγ )n−1

n!γ n{α(b + j)}n/γ
�

(
n

γ
+ 1

)
.

Equations (17) and (18) are representations for M(t) and φ(t), respectively, involving only doubly
infinite series.
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10 S. Nadarajah et al.

6. Mean deviations

Let X ∼ BMW(a, b, c, α, γ, λ). The amount of scatter in X is evidently measured to some extent
by the totality of deviations from the mean and median. These are known as the mean deviation
about the mean and the mean deviation about the median – defined by

δ1(X) =
∫ ∞

0
|x − μ|f (x) dx and δ2(X) =

∫ ∞

0
|x − M|f (x) dx,

respectively, where μ = E(X) and M = Median(X) denotes the median. The measures δ1(X)

and δ2(X) can be calculated using the relationships

δ1(X) =
∫ μ

0
(μ − x)f (x) dx +

∫ ∞

μ

(x − μ)f (x) dx

= 2μF(μ) − 2μ + 2
∫ ∞

μ

xf (x) dx,

and

δ2(X) =
∫ M

0
(M − x)f (x) dx +

∫ ∞

M

(x − M)f (x) dx

= 2
∫ ∞

M

xf (x) dx − μ.

Using Equations (6) and (8), one can show that

∫ ∞

μ

xf (x) dx =
∞∑

j=0

wjI3(j) and
∫ ∞

M

xf (x) dx =
∞∑

j=0

wjI4(j).

Here,

I3(j) =
∞∑

m=1

am{α(b + j)}−m/γ �

(
m

γ
+ 1, α(b + j)μ

)
,

and

I4(j) =
∞∑

m=1

am{α(b + j)}−m/γ �

(
m

γ
+ 1, α(b + j)M

)
,

where wj and aj are defined by Equations (7) and (9), respectively. So, it follows that

δ1(X) = 2μF(μ) − 2μ + 2
∞∑

j=0

wjI3(j),

and

δ2(X) = 2
∞∑

j=0

wjI4(j) − μ.
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7. Bonferroni and Lorenz curves

Bonferroni and Lorenz curves have applications not only in economics to study income and
poverty, but also in other fields like reliability, demography, insurance and medicine. For X ∼
BMW(a, b, c, α, γ, λ), they are defined by

B(p) = 1

pμ

∫ q

0
xf (x) dx and L(p) = 1

μ

∫ q

0
xf (x) dx, (19)

respectively, where μ = E(X) and q = F−1(p) is calculated using Equation (12). Using
Equations (6) and (8), we can show that∫ q

0
xf (x) dx =

∞∑
j=0

wjI5(j),

where

I5(j) =
∞∑

m=1

am{α(b + j)}−m/γ γ

(
m

γ
+ 1, α(b + j)q

)
,

and the constants wj and aj are defined by Equations (7) and (9), respectively, and γ (·, ·) is
defined in Appendix 1. So, we can reduce the curves in Equation (19) to

B(p) = 1

pμ

∞∑
j=0

wjI5(j) and L(p) = 1

μ

∞∑
j=0

wjI5(j),

respectively.

8. Extreme values

If X = (X1 + · · · + Xn)/n denotes the sample mean then by the usual central limit theorem√
n(X − E(X))/

√
Var(X) approaches the standard normal distribution as n → ∞ under suitable

conditions. Sometimes one would be interested in the asymptotics of the extreme values Mn =
max(X1, . . . , Xn) and mn = min(X1, . . . , Xn).

Let g(t) = t−γ exp(−λt)/(λαb), a strictly positive function. Take the cdf and the pdf as
specified by Equations (3) and (4), respectively. It can be seen that

1 − F(t + xg(t))

1 − F(t)
= exp[αbtγ exp(λt) − αb{t + xg(t)} exp[λ{t + xg(t)}]]

= exp

[
αbtγ exp(λt)

{
1 −

(
1 + xg(t)

t

)γ

exp (λxg(t))

}]

= exp

[
αbtγ exp(λt)

{
1 −

(
1 + γ xg(t)

t
+ · · ·

)
(1 + λxg(t) + · · · )

}]

= exp[−λαbxtγ exp(λt)g(t) + o(1)]
= exp{−x + o(1)},

as t → ∞. It can also be seen using L’Hospital’s rule that

lim
t→0

F(tx)

F (t)
= lim

t→0

xf (tx)

f (t)
= xγa.
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12 S. Nadarajah et al.

Hence, it follows from Theorem 1.6.2 in Leadbetter et al. [25] that there must be norming
constants an, bn, cn > 0 and dn such that

Pr{an(Mn − bn) ≤ x} → exp{− exp(−x)},
and

Pr{cn(mn − dn) ≤ x} → 1 − exp(−xγa),

as n → ∞. The form of the norming constants can also be determined. For instance, using
Corollary 1.6.3 in Leadbetter et al. [25], one can see that bn = F−1(1 − 1/n) and an = 1/g(bn),
where F−1(·) denotes the inverse function of F(·).

9. Estimation

Here, we consider estimation by the methods of moments and maximum likelihood and provide
expressions for the associated Fisher information matrix. We also consider estimation issues for
censored data.

Suppose that x1, . . . , xn is a random sample from the BMW distribution (4). For the moment
estimation, let mk = (1/n)

∑n
j=1 xk

j for k = 1, . . . , 5. By equating the theoretical moments of
Equation (4) with the sample moments, one obtains the equations:

∞∑
j=0

wjI1(j, k) = mk, (20)

for k = 1, . . . , 5, where wj and I1(j, k) are given by Equations (7) and (14), respectively. The
method of moment estimators (MMEs) are the simultaneous solutions of Equations (20) for
k = 1, . . . , 5.

Now consider estimation by the method of maximum likelihood. The log-likelihood (LL)
function log L = log L(a, b, α, λ, γ ) of the five parameters is:

log L = n log α − n log B(a, b) + (γ − 1)

n∑
j=1

log xj +
n∑

j=1

log(γ + λxj ) + λ

n∑
j=1

xj

+ (a − 1)

n∑
j=1

log[1 − exp{−αx
γ

j exp(λxj )}] − bα

n∑
j=1

x
γ

j exp(λxj ). (21)

It follows that the maximum-likelihood estimators (MLEs) are the simultaneous solutions of the
equations:

n∑
j=1

log[1 − exp{−αx
γ

j exp(λxj )}] = nψ(a) − nψ(a + b),

α

n∑
j=1

x
γ

j exp(λxj ) = nψ(a + b) − nψ(b),

n

α
+ (a − 1)

n∑
j=1

x
γ

j exp(λxj )

exp{αx
γ

j exp(λxj )} − 1
= b

n∑
j=1

x
γ

j exp(λxj ),

n∑
j=1

xk

γ + λxk

+ α(a − 1)

n∑
j=1

x
γ+1
j exp(λxj )

exp{αx
γ

j exp(λxj )} − 1
= bα

n∑
j=1

x
γ+1
j exp(λxj )
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and

n∑
j=1

log xj +
n∑

j=1

1

γ + λxk

+ α(a − 1)

n∑
j=1

log xjx
γ

j exp(λxj )

exp{αx
γ

j exp(λxj )} − 1
= bα

n∑
j=1

log xjx
γ

j exp(λxj ),

where ψ(·) is defined in Appendix 1. For interval estimation of (a, b, α, λ, γ ) and tests of
hypotheses, one requires the Fisher information matrix. The elements of this matrix for Equation
(21) are given in Appendix 2.

Often with lifetime data, one encounters censored data. There are different forms of censoring:
type I censoring, type II censoring, etc. Here, we consider the general case of multi-censored data:
there are n subjects of which

• n0 are known to have failed at the times x1, . . . , xn0 .
• n1 are known to have failed in the interval [sj−1, sj ], j = 1, . . . , n1.
• n2 survived to a time rj , j = 1, . . . , n2 but not observed any longer.

Table 1. Comparison of MLE versus MME.

MLE MME

a b AE(â) AE(b̂) MSE(â) MSE(b̂) AE(â) AE(b̂) MSE(â) MSE(b̂)

1 1 1.153 1.176 0.160 0.183 1.323 1.279 0.188 0.184
1 2 1.145 2.428 0.136 0.901 1.415 2.725 0.155 1.083
1 3 1.171 3.626 0.254 2.588 1.184 4.155 0.290 2.941
1 4 1.133 4.735 0.169 4.571 1.179 5.075 0.187 4.702
1 5 1.069 5.659 0.107 4.639 1.218 5.811 0.114 5.098
1 6 1.169 7.400 0.143 9.206 1.286 8.028 0.151 11.346
2 1 2.251 1.160 0.638 0.155 2.716 1.297 0.725 0.179
2 2 2.288 2.221 0.647 0.591 2.714 2.486 0.726 0.609
2 3 2.384 3.507 0.893 1.721 2.405 3.534 1.088 2.021
2 4 2.359 4.733 0.924 4.415 2.429 4.997 1.058 5.118
2 5 2.416 6.192 0.906 6.626 2.465 7.049 1.056 7.560
2 6 2.349 7.191 0.727 8.410 2.839 7.451 0.880 8.588
3 1 3.498 1.157 1.882 0.184 3.628 1.223 1.890 0.187
3 2 3.563 2.282 1.940 0.673 4.200 2.667 2.228 0.724
3 3 3.791 3.860 3.112 3.339 4.029 4.124 3.222 3.539
3 4 3.662 4.918 2.191 4.337 3.886 5.138 2.510 4.424
3 5 3.398 5.668 1.485 4.088 3.642 5.899 1.518 4.355
3 6 3.557 7.251 1.642 9.438 4.191 8.253 1.667 9.461
4 1 4.567 1.098 2.792 0.129 5.119 1.287 3.027 0.159
4 2 5.018 2.423 5.577 0.966 6.258 2.913 6.366 0.994
4 3 4.523 3.350 2.632 1.240 4.966 3.664 3.007 1.402
4 4 4.660 4.679 3.496 3.556 4.915 5.783 3.814 4.200
4 5 4.443 5.639 1.978 3.220 5.062 6.926 2.205 3.524
4 6 4.688 7.258 3.379 8.353 5.466 8.888 3.770 8.949
5 1 5.665 1.091 5.085 0.094 6.853 1.279 5.665 0.096
5 2 5.655 2.264 4.997 0.729 6.697 2.531 5.300 0.883
5 3 6.422 3.699 11.912 3.118 7.762 4.554 14.488 3.157
5 4 5.753 4.625 5.192 2.907 6.468 5.152 5.645 3.301
5 5 5.546 5.654 4.699 4.232 6.406 7.048 5.439 4.901
5 6 5.995 6.964 4.289 5.064 7.164 8.530 4.803 5.358
6 1 7.081 1.122 6.199 0.099 7.885 1.167 7.588 0.122
6 2 7.096 2.349 5.842 0.619 8.070 2.781 6.301 0.720
6 3 6.750 3.407 4.688 1.251 8.432 3.665 5.003 1.425
6 4 7.322 4.888 8.134 3.520 7.663 5.937 8.737 3.582
6 5 7.291 6.085 10.064 8.308 9.008 7.043 10.470 9.896
6 6 7.039 6.820 6.703 6.015 7.734 8.353 8.099 7.098
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14 S. Nadarajah et al.

Here, n = n0 + n1 + n2. Note too that type I censoring and type II censoring are contained
as particular cases of multi-censoring. The LL function log L = log L(a, b, α, λ, γ ) of the five
parameters for this multi-censoring data is:

log L = n0 log α − n0 log B(a, b) + (γ − 1)

n0∑
j=1

log xj +
n0∑

j=1

log(γ + λxj ) + λ

n0∑
j=1

xj

+ (a − 1)

n0∑
j=1

log[1 − exp{−αx
γ

j exp(λxj )}] − bα

n0∑
j=1

x
γ

j exp(λxj )

+
n1∑

j=1

log[I1−exp{−αs
γ

j exp(λsj )}(a, b) − I1−exp{−αs
γ

j−1 exp(λsj−1)}(a, b)]

+
n2∑

j=1

log Iexp{−αr
γ

j exp(λrj )}(b, a). (22)

It follows that the MLEs are the simultaneous solutions of the five equations given in Appendix 3.
The Fisher information matrix corresponding to Equation (22) is too complicated to be
presented here.

We now compare the performances of the two estimation methods. For this purpose, we gen-
erated samples of size n = 20 from Equation (4) for a, b = 1, 2, . . . , 6 and α, γ , λ fixed as
α = λ = 1 and γ = 1. For each sample, we computed the MLEs and the MMEs, following the
procedures described before. We repeated this process 100 times and computed the average of the
estimates (AE) and the mean-squared error (MSE). The results are reported in Table 1. It is clear
that the MLE performs consistently better than the MME for all values of a, b and with respect
to the AE and MSE. This is expected of course.

10. Applications

10.1. Voltage data

Here, we compare the results of the fits of the BMW, BW, GMW, MW and EW distributions
with the data set studied by Meeker and Escobar [26, p. 383], which gives the times of failure
and running times for a sample of devices from a field-tracking study of a larger system. At a
certain point in time, 30 units were installed in normal service conditions. Two causes of failure
were observed for each unit that failed: the failure caused by accumulation of randomly occurring
damage from power-line voltage spikes during electric storms and failure caused by normal
product wear.

In many applications, there is a qualitative information about the failure rate function shape,
which can help in selecting a particular model. In this context, a device called the total time on
test (TTT) plot [27] is useful. The TTT plot is obtained by plotting G(r/n) = [(∑r

i=1 Ti:n) +
(n − r)Tr:n]/(∑n

i=1 Ti:n), where r = 1, . . . , n and Ti:n, i = 1, . . . , n are the order statistics of the
sample, against r/n [6]. Figure 5(a) shows that the TTT-plot for the data set has first a convex
shape and then a concave shape. It indicates a bathtub-shaped hrf. Hence, the BMW distribution
could be an appropriate model for the fitting of these data. Table 2 gives the MLEs (and the
corresponding standard errors in parentheses) of the parameters and the values of the following
statistics for some models: Akaike information criterion (AIC) due to Akaike [28], Bayesian
information criterion (BIC) due to Schwarz [29] and consistent Akaike information criterion

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
D
e
 
S
a
o
 
P
a
u
l
o
]
 
A
t
:
 
1
1
:
3
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



Journal of Statistical Computation and Simulation 15

i/n

TT
T−

pl
ot

x

S
(x

)

Kaplan−Meier
BMW
BW
GMW
MW
EW

x

f(x
)

BMW
BW
GMW
MW
EW

0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200 250 300

0 50 100 150 200 250 300 0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x

h(
x)

(a) (b)

(c) (d)

Figure 5. (Available in colour online). (a) TTT-plot on voltage data. (b) Estimated survival functions and the empirical
survival for voltage data. (c) Estimated pdfs of the BMW, BW, GMW, MW and EW models for voltage data. (d) Estimated
hazard rate function for the voltage data.

Table 2. MLEs of the model parameters for the voltage data, the corresponding SE (given in parentheses) and the
measures AIC, BIC and CAIC.

Model a b α γ λ AIC BIC CAIC

Beta-modified 0.068 0.099 4.9e − 17 4.266 0.0528 345.1 347.6 352.2
Weibull (0.016) (0.049) (0.000) (0.011) (0.002)
Beta 0.203 0.083 8.9e − 7 2.967 0 363.1 368.7 364.7
Weibull (0) (0) (0) (0) –
Generalized modified 0.099 1 3.7e − 16 3.597 0.048 353.0 358.6 354.6
Weibull (0.019) – (0.000) (0.233) (0.006)
Modified 1 1 0.018 0.4536 0.007 362.1 366.3 363.1
Weibull – – (0.018) (0.220) (0.002)
Exponentiated 0.139 1 3.9e − 17 6.540 0 360.5 364.7 361.4
Weibull (0.025) – (0.000) (0.0001) –

(CAIC) due to Bozdogan [30]. The computations were done using the NLMixed procedure in
SAS. These results indicate that the BMW model has the lowest AIC, BIC and CAIC values
among all fitted models, and hence it could be chosen as the best model.

In order to assess if the model is appropriate, Figure 5(b) gives the empirical and estimated
survival functions of the BMW, BW, GMW, MW and EW distributions. Plots of the histogram of
the data and the fitted BMW, BW, GMW, MW and EW distributions are given in Figure 5(c). We
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16 S. Nadarajah et al.

conclude that the BMW distribution provides a good fit for these data. In addition, the estimated
hrf in Figure 5(d) is a bathtub-shaped curve.

The conclusion based on the fitted pdfs, the histogram of the data and survival functions can
also be verified by means of the probability plots given in Figures 6(a)–(e). A probability plot (as
recommended by Chambers et al. [31]), consists of plots of the observed probabilities against the
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Figure 6. Probability plots of the fitted models to the voltage data. (a) BMW distribution. (b) BW distribution. (c) GMW
distribution. (d) MW distribution. (e) EW distribution.
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probabilities predicted by the fitted model. For example, for the BMW model,

F(x(j)) = 1

B(â, b̂)

∫ 1−exp{−α̂x
γ̂

(j) exp(λ̂x(j))}

0
wâ−1(1 − w)b̂−1 dw

was plotted versus (j − 0.375)/(n + 0.25), j = 1, . . . , n, where x(j) are the sorted values of the
observed fracture toughness. For each plot, we calculate the sum of squares

SS =
n∑

j=1

{
F(x(j)) − (j − 0.375)

(n + 0.25)

}2

,

which is a measure of the closeness of the plot to the diagonal line. It is clear that the BMW model
has the points closer to the diagonal line corresponding to the smallest SS.

10.2. Serum reversal data

The data set refers to the serum-reversal time (days) of 148 children contaminated with HIV
from vertical transmission at the university hospital of the Ribeirào Preto School of Medicine
(Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto) from 1986 to 2001 [32]. For
more details, see, for example, Perdoná [33] and Carrasco et al. [13]. We assume that the lifetime
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Figure 7. (Available in colour online). (a) TTT-plot on serum-reversal data. (b) Estimated survival function and the
empirical survival for serum-reversal data. (c) Estimated hazard rate function for the serum-reversal data.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
D
e
 
S
a
o
 
P
a
u
l
o
]
 
A
t
:
 
1
1
:
3
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



18 S. Nadarajah et al.

Table 3. MLEs of the model parameters for the serum-reversal data, the corresponding SE (given in parentheses)
and the measures AIC, BIC and CAIC.

Model a b α γ λ AIC BIC CAIC

Beta-modified 0.147 0.184 1.8e − 15 0.057 2.636 769.9 784.9 770.4
Weibull (0.020) (0.072) (0.000) (0.001) (0.014)
Beta 0.508 0.117 9.8e − 10 3.960 0 801.7 813.7 802.0
Weibull (0.091) (0.021) (0.000) (0.012) –
Generalized modified 0.491 1 7.4e − 06 0.649 0.023 779.8 795.7 795.8
Weibull (0.116) – (1.5-07) (0.471) (0.006)
Modified 1 1 0.002 0.356 0.014 781.4 790.4 781.6
Weibull – – (0.000) (0.297) (0.002)
Exponentiated 0.385 1 5.5e − 17 6.361 0 808.2 820.1 820.2
Weibull (0.046) – (0.000) (0.022) –

is independently distributed, and also independent from the censoring mechanism. Considering
right-censored lifetime data (censoring random). Figure 7(a) shows that the TTT-plot for the data
set has first a convex shape and then a concave shape. It indicates a bathtub-shaped hrf. Hence,
the BMW distribution could be an appropriate model for the fitting of such data. Table 3 gives the
MLEs (and the corresponding standard errors in parentheses) of the parameters and the values of
the AIC, BIC and CAIC statistics. These results indicate that the BMW model has the lowest AIC,
BIC and CAIC values among all fitted models, and hence it could be chosen as the best model.

In order to assess if the model is appropriate, plots of the empirical and estimated survival
functions of the BMW, BW, GMW, MW and EW distributions are given in Figure 7(b). We
conclude that the BMW distribution provides a good fit for these data. Additionally, the estimated
hrf in Figure 7(c) is a bathtub-shaped curve.

11. Conclusions

In this paper, we study some mathematical properties of the BMW distribution which is quite
flexible in analysing positive data. It is an important alternative model to several models discussed
in the literature since it contains the Weibull, EE, EW, BE, MW, GMW and BW distributions,
among others, as special sub-models. We demonstrate that the pdf of the BMW distribution can be
expressed as a mixture of MW pdfs. We provide their moments and two closed form expressions
for its mgf. We examine the asymptotic distributions of the extreme values. Explicit expressions
are also derived for the chf, mean deviations and Bonferroni and Lorenz curves. The pdf of the
order statistics can also be expressed in terms of an infinite mixture of MW pdfs. We obtain a
closed form expression for their moments and for the L moments. The estimation of parameters is
approached by two methods: moments and maximum likelihood. We compare by simulation the
performances of the estimates from these methods. The expected information matrix is derived.
The usefulness of the BMW distribution is illustrated in two analyses of real data.
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Appendix 1

The calculations in this paper involve the following special functions: the gamma function defined by

�(α) =
∫ ∞

0
wα−1 exp(−w) dw,
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the digamma function defined by

ψ(α) = d log �(α)

dα
,

the incomplete gamma function defined by

γ (α, x) =
∫ x

0
wα−1 exp(−w) dw,

the complementary incomplete gamma function defined by

�(α, x) =
∫ ∞

x

wα−1 exp(−w) dw,

the beta function defined by

B(a, b) =
∫ 1

0
wa−1(1 − w)b−1 dw,

the incomplete beta function ratio defined by

Iy(a, b) = 1

B(a, b)

∫ y

0
wa−1(1 − w)b−1 dw,

and the 3F2 hypergeometric function defined by

3F2(a, b, c; d, e; x) = �(d)�(e)

�(a)�(b)�(c)

∞∑
j=0

�(a + j)�(b + j)�(c + j)

�(d + j)�(e + j)

xj

j ! .

We shall also need the Lambert W(z) function defined as the inverse of z = x exp(x), say x = W(z). The properties of
these special functions can be found in Prudnikov et al. [34] and Gradshteyn and Ryzhik [35]. The Lambert W(z) function
is the series expansion F(z) = Product Log[z] provided by the software Mathematica.

Appendix 2

The elements of the Fisher information matrix corresponding to the LL function in Equation (21) are:

E

(
− ∂2 log L

∂a2

)
= nψ ′(a) − nψ ′(a + b), E

(
− ∂2 log L

∂a∂b

)
= −nψ ′(a + b),

E

(
− ∂2 log L

∂a∂α

)
= −nT (γ, 0, 1, 0, 1), E

(
− ∂2 log L

∂a∂λ

)
= −nαT (γ + 1, 0, 1, 0, 1),

E

(
− ∂2 log L

∂a∂γ

)
= −nαT (γ, 1, 1, 0, 1), E

(
− ∂2 log L

∂b2

)
= nψ ′(b) − nψ ′(a + b),

E

(
− ∂2 log L

∂b∂α

)
= nT (γ, 0, 1, 0, 0), E

(
− ∂2 log L

∂b∂λ

)
= nαT (γ + 1, 0, 1, 0, 0),

E

(
− ∂2 log L

∂b∂γ

)
= nαT (γ, 1, 1, 0, 0), E

(
− ∂2 log L

∂α2

)
= n

α2
+ n(a − 1)T (2γ, 0, 2, 1, 2),

E

(
− ∂2 log L

∂α∂λ

)
= nbT (γ + 1, 0, 1, 0, 0) − n(a − 1){T (γ + 1, 0, 1, 0, 1) − αT (2γ + 1, 0, 2, 1, 2)},

E

(
− ∂2 log L

∂α∂γ

)
= nbT (γ, 1, 1, 0, 0) − n(a − 1){T (γ, 1, 1, 0, 1) − αT (2γ, 1, 2, 1, 2)},

E

(
− ∂2 log L

∂λ2

)
= nαbT (γ + 2, 0, 1, 0, 0) − nα(a − 1){T (γ + 2, 0, 1, 0, 1) − αT (2γ + 2, 0, 2, 1, 2)},

E

(
− ∂2 log L

∂λ∂γ

)
= nS(1, 2) + nαbT (γ + 1, 1, 1, 0, 0)

− nα(a − 1){T (γ + 1, 1, 1, 0, 1) − αT (2γ + 1, 1, 2, 1, 2)}
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and

E

(
− ∂2 log L

∂γ 2

)
= nS(0, 2) + nαbT (γ, 2, 1, 0, 0) − nα(a − 1){T (γ, 1, 1, 0, 1) − αT (2γ, 1, 2, 1, 2)},

where

T (i, j, k, l, m) = E

[
Xi(log X)j exp(kλX) exp{lαXγ exp(λX)}

[exp{αXγ exp(λX)} − 1]m
]

and

S(i, j) = E

[
Xi

(γ + λX)j

]
.

The expectations in T (i, j, k, l, m) and S(i, j) can be computed numerically.

Appendix 3

The following five equations can be solved simultaneously to obtain the MLEs of the parameters of the LL function given
by Equation (22):

n0∑
j=1

log[1 − exp{−αx
γ

j exp(λxj )}] +
n1∑

j=1

∂I1−exp{−αs
γ
j

exp(λsj )}(a, b)/∂a − ∂I1−exp{−αs
γ
j−1 exp(λsj−1)}(a, b)/∂a

I1−exp{−αs
γ
j

exp(λsj )}(a, b) − I1−exp{−αs
γ
j−1 exp(λsj−1)}(a, b)

+
n2∑

j=1

∂Iexp{−αr
γ
j

exp(λrj )}(b, a)/∂a

Iexp{−αr
γ
j

exp(λrj )}(b, a)
= n0ψ(a) − n0ψ(a + b),

α

n0∑
j=1

x
γ

j exp(λxj ) −
n1∑

j=1

∂I1−exp{−αs
γ
j

exp(λsj )}(a, b)/∂b − ∂I1−exp{−αs
γ
j−1 exp(λsj−1)}(a, b)/∂b

I1−exp{−αs
γ
j

exp(λsj )}(a, b) − I1−exp{−αs
γ
j−1 exp(λsj−1)}(a, b)

−
n2∑

j=1

∂Iexp{−αr
γ
j

exp(λrj )}(b, a)/∂b

Iexp{−αr
γ
j

exp(λrj )}(b, a)
= n0ψ(a + b) − n0ψ(b),

n0

α
+ (a − 1)

n0∑
j=1

x
γ

j exp(λxj )

exp{αx
γ

j exp(λxj )} − 1
− b

n0∑
j=1

x
γ

j exp(λxj )

+ α

B(a, b)

n1∑
j=1

U(sj ) − U(sj−1)

I1−exp{−αs
γ
j

exp(λsj )}(a, b) − I1−exp{−αs
γ
j−1 exp(λsj−1)}(a, b)

= α

B(a, b)

n2∑
j=1

U(rj )

Iexp{−αr
γ
j

exp(λrj )}(b, a)
,

n0∑
j=1

xk

γ + λxk

+ α(a − 1)

n0∑
j=1

x
γ+1
j exp(λxj )

exp{αx
γ

j exp(λxj )} − 1
− bα

n0∑
j=1

x
γ+1
j exp(λxj )

+ 1

B(a, b)

n1∑
j=1

V (sj ) − V (sj−1)

I1−exp{−αs
γ
j

exp(λsj )}(a, b) − I1−exp{−αs
γ
j−1 exp(λsj−1)}(a, b)

= 1

B(a, b)

n2∑
j=1

V (rj )

Iexp{−αr
γ
j

exp(λrj )}(b, a)
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and

n0∑
j=1

log xj +
n0∑

j=1

1

γ + λxk

+ α(a − 1)

n0∑
j=1

log xj x
γ

j exp(λxj )

exp{αx
γ

j exp(λxj )} − 1

+ α

B(a, b)

n1∑
j=1

Z(sj ) − Z(sj−1)

I1−exp{−αs
γ
j

exp(λsj )}(a, b) − I1−exp{−αs
γ
j−1 exp(λsj−1)}(a, b)

= α

B(a, b)

n2∑
j=1

Z(rj )

Iexp{−αr
γ
j

exp(λrj )}(b, a)
+ bα

n0∑
j=1

log xj x
γ

j exp(λxj ),

whereU(s) = sγ+1 exp(λs) exp{−αbsγ exp(λs)}[1 − exp{−αsγ exp(λs)}]a−1,V (s) = sγ exp(λs) exp{−αbsγ exp(λs)}
[1 − exp{−αsγ exp(λs)}]a−1 and Z(s)= sγ log s exp(λs) exp{−αbsγ exp(λs)} [1 − exp{−αsγ exp(λs)}]a−1. The partial
derivatives of the incomplete beta function ratio can be computed using the facts

Ix(a, b)

∂a
= {log x − ψ(a) + ψ(a + b)}Ix(a, b) − �(a)�(a + b)

�(b)
xa

3F2(a, a, 1 − b; a + 1, a + 1; x)

and

Ix(a, b)

∂b
= �(b)�(a + b)

�(a)
(1 − x)b3F2(b, b, 1 − a; b + 1, b + 1; 1 − x)

+ {ψ(b) − ψ(a + b) − log(1 − x)}I1−x(b, a),

where 3F2(·, ·, ·; ·, ·) is defined in Appendix 1. See, for example, http://functions.wolfram.com/GammaBetaErf/
BetaRegularized/20/01/02/0001/ and http://functions.wolfram.com/GammaBetaErf/BetaRegularized/20/01/03/0001/.
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