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Statistical geometry applies probabilistic methods to geometric forms. In the early days

of the quantitative revolution statistical geometry appeared to provide a useful frame-

work for geographic research, but its value appeared to decline in the 1970s and

1980s. Geographic information science (GIScience) addresses the fundamental issues

underlying the geographic information technologies, and statistical geometry has

proven valuable in a number of respects. Several classical results from statistical ge-

ometry are useful in the design of geographic information systems, and in understand-

ing and modeling uncertainty in geographic information, and several statistical

principles are observed to be generally applicable to geographic information. Mod-

eling uncertainty in area-class maps has proven particularly difficult, and seven pos-

sible models are discussed. Statistical geometry provides an important link between

the early work of the quantitative revolution in geography and modern research in

GIScience.

Introduction

In the history of quantitative geography there have been many instances of tech-

niques and theoretical frameworks being discovered in other disciplines, and

adapted, expanded, and enhanced to support the analysis of phenomena distrib-

uted on the Earth’s surface. This process peaked during the 1960s, in the heyday of

the quantitative revolution, but has never been entirely absent. Multidimensional

scaling, for example, was developed largely in mathematical psychology; its ap-

plications to geographic space were recognized by some of the early behavioral

geographers (Bunge 1966); and it is now an important part of the toolkit of spatial

analysis. More recently, geostatistics, developed initially in France in the 1960s
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(Matheron 1971; Goovaerts 1997), is now an important part of our understanding of

accuracy in geographic data (Zhang and Goodchild 2002).

In this article I hope to demonstrate that the goals that motivated the quanti-

tative geographers of the 1960s—the legends of this special issue—are alive and

well in at least one branch of modern geography. I focus on statistical geometry, or

the application of probabilistic methods to geometric forms. The roots of the field

go back at least as far as the 18th Century, and later major contributions were made

by the likes of M.G. Kendall (1961), W.W. Rouse Ball and H.S.M. Coxeter (1987).

Bunge (1966) clearly saw many geographic forms as resulting from stochastic pro-

cesses, and believed that similar forms would arise in very different areas of geog-

raphy as a result of similarity of process. For example, similarity of form between

river meanders and alpine roads suggested some degree of isomorphism in their

generating processes that might be uncovered by trying to identify their underlying

stochastic processes. In the late 1960s and early 1970s an extensive literature de-

veloped along these lines, with geographers examining the spatial distributions of

phenomena as diverse as settlements, businesses, trees, and instances of disease

against simple stochastic models. That literature is now increasingly relevant to the

field of geographic information science (GIScience), which studies the fundamental

scientific issues behind the use of geographic information technologies (Goodchild

1992).

Later, of course, this line of research lost much of its momentum, for two

compelling reasons. First, the same spatial distribution will often arise from several

distinct processes, and while the principle of Occam’s Razor might allow one to

pick the simplest of the alternatives, it is hard to argue in many cases that one

process is any simpler than the others. Variation in the density of a point pattern, for

example, can always arise from either a first-order process in which density re-

sponds to some other spatial variable, or from a second-order process in which the

presence of one point makes others more likely in the immediate vicinity; thus

concluding that a pattern is clustered, and rejecting the null hypothesis of complete

spatial randomness, does very little to advance understanding. Second, researchers

grew frustrated with the broader quality of explanation provided by such models.

Sack (1980) argued that geometric theories of pattern could never be truly satisfy-

ing, and with others led geography’s long retreat from the summit of the quanti-

tative revolution.

But in one area of geography statistical geometry remains a very significant

framework, and it continues to dominate much of my own work. Geographic in-

formation systems (GIS) arose in the 1960s in response to several overlapping

needs. In Canada, Roger Tomlinson and others confronted the massive demands for

numerical analysis created by the Canada Land Inventory, and recognized that by

far the most cost-effective means of measuring vast numbers of irregularly shaped

areas on maps was to digitize them into computers, despite the enormous cost of

computing at the time. At Harvard, the Laboratory for Computer Graphics founded

by Howard Fisher was developing some of the first software for computer-based
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mapping, and later evolved under the direction of William Warntz and Brian Berry

into one of the most influential centers of GIS development as the Laboratory for

Computer Graphics and Spatial Analysis (Chrisman 2006). In Chicago, Duane

Marble needed to organize the numerous large data sets being assembled for stud-

ies of metropolitan transportation; while in Washington, DC, the Bureau of the

Census was anxious to employ computers to manage and analyze the geographic

dimensions of the 1970 census. All of these efforts and others eventually converged

into the software products of the late 1970s, and into the GIS software industry that

we know today (Coppock and Rhind 1991; Foresman 1998).

The Canada Geographic Information System (CGIS) built by Tomlinson and

others was vector-based, recording the boundaries between adjacent areas as se-

quences of vertices connected by straight lines. In order to estimate the amounts of

land that were both classified as suitable for agriculture on the map of Soil Capa-

bility for Agriculture and classified as currently not used for agriculture on the map

of Current Land Use it was necessary to compute the intersection of the respective

areas, a task that turned out to be quite daunting from an algorithmic perspective.

Moreover, it was inevitable that some boundaries should coincide on both maps,

because they followed identical features on the Earth’s surface; but equally inev-

itable that the two digital versions would not coincide. The result was an enormous

number of small slivers, and when many maps were overlaid the numbers of slivers

could easily swamp the software. Table 1 shows an example drawn from CGIS.

Various combinations of five layers have been overlaid, and the resulting areas

tabulated by their area measure in acres. The largest numbers of slivers are gen-

erated by overlaying maps of land use at different times, because of the frequency

with which the same lines on the ground appear repeatedly.

Table 1 Numbers of Polygons by Area for Five Canada Geographic Information System

(CGIS) Layers and Overlays

Acres 1 2 3 4 5 11215 1121315 112131415

0–1 0 0 0 1 2 2,640 27,566 77,346

1–5 0 165 182 131 31 2,195 7,521 7,330

5–10 5 498 515 408 10 1,421 2,108 2,201

10–25 1 784 775 688 38 1,590 2,106 2,129

25–50 4 353 373 382 61 801 853 827

50–100 9 238 249 232 64 462 462 413

100–200 12 155 152 158 72 248 208 197

200–500 21 71 83 89 92 133 105 99

500–1,000 9 32 31 33 56 39 34 34

1,000–5,000 19 25 27 21 50 27 24 22

45000 8 6 7 6 11 2 1 1

Totals 88 2,327 2,394 2,149 487 9,558 39,188 90,599

Layer 1: soil capability for agriculture; Layers 2–4: land use at three different dates; Layer 5:

recreational capability.
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This problem is clearly amenable to statistical analysis, and in 1977 I published

the first of the many articles I have written on statistical aspects of GIS (Goodchild

1977). I was able to fit mixtures of stochastic models to the distributions of polygon

measures, and thus to estimate the probability that a given polygon was a sliver.

Polygon area for real polygons tends to follow a lognormal distribution, while for

slivers its square root tends to follow an exponential distribution. I was much in-

fluenced by the work of D. H. Maling, a cartographer interested in statistical ap-

plications and author of a text on the accuracy of measurements from maps (Maling

1989). In order to avoid some of the bottlenecks of the vector approach, a former

student J. H. Ross and I had argued that rasterizing the digital maps of CGIS would

permit a much more user-friendly and personalized approach to analysis, but the

all-important question of the amount of information loss by rasterizing at a given

spatial resolution needed to be addressed. Frolov and Maling (1969) had obtained

results regarding the accuracy of area estimates from rasterized maps, and I was

able to extend these (Goodchild 1980a) using Mandelbrot’s recently developed

theory of fractals (Mandelbrot 1977).

Since the 1970s many useful results have been obtained that help us to un-

derstand the nature of uncertainty in geographic data. In the next section I briefly

review some applications of classic problems in statistical geometry that have re-

cently found interesting new applications in GIScience. This is followed by a dis-

cussion of some general principles, and then by a final section that examines the

problem of uncertainty in area-class maps, which is in many ways the outstanding

problem of this area of GIScience.

Classic problems in statistical geometry

The problem now known as Buffon’s Needle was first posed by Georges-Louis Le-

clerc, Compte de Buffon, in 1777. Given a floor of parallel strips of wood of equal

width, what is the probability that a needle dropped on the floor will lie across

the boundary between two adjacent strips (or conversely, will fall entirely within

one strip)? It is easy to show that if the needle length is equal to the strip width, the

probability is 2/p or 0.6366—or more generally, that if the needle is of length l and

the strips of width s, the probability is 2l/ps. Part of the interest in the problem stems

from the fact that it provides the basis for an empirical determination of p, if the

needle is dropped a sufficient number of times. The experiment is hardly efficient,

however—to determine p to five decimal places, for example, and using the vari-

ance of the binomial distribution, it would be necessary to drop the needle on the

order of 1010 times.

The relevance of this problem to GIScience becomes clear when it is gener-

alized from linear strips to a raster (Shortridge and Goodchild 2002; and see earlier

work by Okabe and Sadahiro 1997). Let b represent the linear dimension of each

square cell in the raster, and as before let l represent the length of the needle. When

l � s
p

2 the needle must intersect more than one square, and the expected number
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of squares intersected is given by 4l/ps. On the other hand for short needles and los

one might be interested in the probability that the two ends fall in different cells,

which is given by

4ls � l2
� �

=ps2:

Both of these results have several interesting applications in the design and eval-

uation of software. The long-needle case provides useful results for several tasks in

raster GIS, for example in determining the expected number of operations in com-

puting whether one cell is visible to an observer located in another cell, based on

the distance between them. This is the fundamental operation of the so-called in-

tervisibility or viewshed problem, which is frequently used in siting cellphone

transmitters, or in evaluating the visual impact of new developments.

Two examples illustrate the applications of the short-needle result. In managing

large spatial databases it is common to invoke systems of tiling, dividing the da-

tabase into smaller partitions in order to increase efficiency in data creation, man-

agement, and use. For example, the U.S. Geological Survey’s 1:24,000 series of

national topographic maps, covering the 48 coterminous states, is tiled into over

50,000 separate map sheets based on 7.5-min intervals of latitude and longitude. A

tiled database is clearly efficient for operations that are confined to a single tile, but

becomes much less efficient for operations that must access data in more than one

tile. For example, a query about the distance between two points will be handled

much faster if both points are located on the same tile. The short-needle case of

Buffon’s Needle provides the result needed to determine the probability that two

points a distance l apart will lie in different tiles, and thus incur this access penalty.

The second example concerns the design of rasters, and particularly the design of

quadrat sampling schemes in ecology. Experiments based on quadrats typically con-

fine their observations to single quadrats, and tend to miss interactions that occur

across quadrat boundaries. The Buffon’s Needle result can be used to determine the

probability that interactions over a distance l will cross at least one quadrat boundary,

and thus can provide useful guidance in the selection of the quadrat dimensions.

Another interesting application of classical results concerns the statistics of

features on various types of map. Consider a county boundary map, such as that

shown in Fig. 1. It partitions the space into irregular areas, forming a network of

faces, edges, and nodes. In the figure, which is part of the boundary network of the

counties of Georgia, there are 12 faces, 32 edges, and 21 nodes (the boundary of

the area is included in the count of edges). Area-class maps, which show land

classified by such properties as soil class, land-cover class, or land-use class, are

similar in dividing the world into an irregular tesselation of faces. We observe that

virtually all nodes in such maps are 3-valent, with the occasional exception on

maps of political boundaries (there is one possible such node in the figure, and one

in the U.S. state boundary network).

This result has value in the design of databases, particularly those that use the

coverage data model and include linked tables of faces, edges, and nodes. A the-
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orem of Euler states that the numbers of faces F, edges E, and nodes N in such a map

must obey the relationship:

F � E þN ¼ 1

and one can readily confirm this with the figure. If all nodes are 3-valent, it follows

that the ratio E/F must be slightly o3 (the deficit is due to the fact that edges on the

perimeter of the map are counted only once; Okabe et al. 2000), and that each face

will have slightly o6 neighbors (the respective values for Fig. 1 are 2.67 and 4.33).

This result also provides an interesting illustration of the difficulty of inferring

process from the study of geographic pattern or form. In classical Central Place

Theory (Christaller 1966) it is predicted that settlements on a landscape that is

uniform with respect to agricultural productivity will adopt a hexagonal pattern,

and similarly that the hinterlands of each settlement will be hexagonal. Experiments

in the 1960s (Haggett and Chorley 1969) showed that the average number of

neighbors of each settlement’s hinterland was very close to six, which appears to

lend empirical weight to the theory. But we know from the previous analysis that

the average number will be very close to six whatever the formative processes op-

erating on the landscape (Getis and Boots 1978). Okabe and Sadahiro (1996) show

the implications of this point for Christaller’s settlement hierarchy.

Uncertainty in geographic information

Early interest in the accuracy of geographic data and of the analytic methods of GIS

focused on the issue of error, based on the normal scientific model of error in

measurement. For example, several studies focused on the errors introduced when

Figure 1. Part of the county boundary network of the state of Georgia, USA. One possible 4-

valent node is highlighted with a circle.
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points, lines, or areas are digitized as vector point, polyline, or polygon objects.

Goodchild and Gopal (1989) published an edited collection of articles from this

era, almost all of them using the terms accuracy and error, and implying that the

contents of a GIS database were versions of some true set of contents, distorted by

various measurement mechanisms. The recorded position x� of a point, for exam-

ple, might be distorted from the true position x by a simple additive error dx.

During the 1990s it became clear that the differences between the contents of a

GIS database and the real world that the database purported to represent were

much more complex than this simple model suggested. In some cases the concept

of a true real world was problematic, because mapping involved some degree of

subjectivity; or because the definitions of key terms were themselves uncertain.

These ideas were particularly applicable to data sets that arose as a result of clas-

sification, of phenomena such as soil, land use, or land cover, where the definitions

of classes were open to different interpretations, and where it was expected that two

observers mapping the same area would produce maps that differed in virtually all

aspects: positions of boundaries between areas of homogeneous class, the numbers

of such areas, and the numbers of associated edges and nodes. One might still

believe that the combined maps of two observers were more reliable than each

individual’s map, but it was not at all clear how such maps should be combined.

Moreover the role of scale was not defined, except to the extent that classification

schemes varied with scale.

Because of these arguments the preferred term shifted from error to uncertainty

(Zhang and Goodchild 2002), and the literature grew by leaps and bounds. We

now have models of most of the more obvious cases of uncertainty in geographic

data, and of the processes by which uncertainty in data propagates into uncertain-

ties in the results of spatial analysis (Heuvelink 1998). Monte Carlo simulation has

proven to be a very general, powerful, and accessible approach, and several au-

thors have described extensive applications (Aerts, Goodchild, and Heuvelink

2003).

Some general principles can be distilled from this work, and in the next few

paragraphs I outline some of them. All derive from the notion that maps and geo-

graphic data can be regarded as the outcomes of stochastic processes: that a map is

a realization of a stochastic process. In this framework uncertainty leads to a pop-

ulation of possible maps, any of which might be the truth, with the variation be-

tween realizations representing uncertainty. This is similar to the traditional theory

of measurement error, in which a stochastic process leads to a population of pos-

sible measurements. For reasons to be discussed below, however, it is essential that

the entire map be treated as a realization, because parts of the map, including in-

dividual point, line, or area features, are rarely if ever statistically independent.

First, all geographic data leave the user uncertain to some degree about the

exact nature of the real world. Whether one believes in a truth or not, no repre-

sentation of the real world can be exact, because all representations involve some

combination of approximation, measurement error, or generalization. The real
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world is infinitely complex, but the capacity of any digital system is strictly limited,

so some amount of detail must be lost in the creation of any GIS database.

One of the most general principles of geographic data is spatial dependence,

which is often expressed in the form of Tobler’s First Law (TFL; Tobler 1970; Sui

2004), that ‘‘all things are related, but nearby things are more related than distant

things.’’ This is a statement about spatial autocorrelation, and an informal version of

the theory that underlies the fields of geostatistics and spatial statistics. We observe

that TFL applies also to uncertainty in geographic data; that differences between

database and real world tend to persist over substantial distances, or in other words

that differences exhibit positive spatial autocorrelation. There are many reasons for

this in the processes of geographic data production—for example, databases cre-

ated from aerial photography will inherit the positional errors of each photograph,

leading to positional errors that persist over the footprint of each image. It follows

that relative errors over short distances will be much less than absolute errors. In

other words, while the positions of objects in a GIS may be distorted in absolute

terms, the shapes of objects will by and large be preserved. In the case of elevation

data, while elevations may be in error in absolute terms by substantial amounts, the

presence of strong spatial autocorrelation of errors ensures that slopes can be es-

timated with acceptable accuracy (Hunter and Goodchild 1997).

In the final section I focus on one particular type of geographic data, the area-

class map, and on the problems of modeling uncertainty in this case. Both of the

principles identified above turn out to be of critical importance to what in many

ways remains an unsolved problem in GIScience, but one that clearly falls within

the broad context of statistical geometry.

Uncertainty in area-class maps

An area-class map can be defined as a mapping c 5 f(x) where x denotes a location

in the plane and c denotes a class. Area-class maps might be termed nominal fields,

in that location maps to a nominal variable, and arise in numerous contexts: as the

outcomes of the classification of remotely sensed images; and in the mapping of

soils, land cover, or land use. Figure 2 shows a section of a typical area-class map.

Area-class maps are typically made by a long and complex process that in-

volves many stages. Soil maps may be made by characterizing soils at carefully

chosen sample sites, and then using aerial photographs and other sources to par-

tition the plane into areas of homogeneous class; other maps may be made by su-

pervised or unsupervised classification of remotely sensed images. Some of the

stages are undoubtedly subjective, and as a result maps of the same theme for the

same area will not generally be the same. Maps may differ by level of detail and

degree of generalization; as a result of vagueness in the definitions of classes; be-

cause of variations between observers; and in the case of remote sensing because of

errors in measuring instruments, differences in classifiers and training sites, or

differences in sensors. Typically, any information that might shed light on the un-
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certainties involved in the mapping process is lost, though the detailed descriptions

of each class may imply vagueness of definition.

When represented in the traditional form of a coverage, area-class maps are

collections of faces, edges, and nodes, as discussed earlier. In repeated mappings,

perhaps by different individuals, the positions of the edges will vary, depending on

the clarity with which these boundaries between classes are apparent on the

ground. The numbers of objects will also vary, because different observers may

perceive different arrangements of faces and their boundary networks. Some con-

cept of a minimum mapping unit will have been employed, and faces that are

smaller than the minimum area will have been merged into larger faces. Thus the

assumption that each face is in reality homogeneous is unlikely to be true.

Any stochastic model of uncertainty for such maps should satisfy a series of

requirements, as follows:

1. It should address confusion at every point, between the class c� recorded on

one map, and the classes recorded at the same point on other maps, or where

appropriate the true class c at that point.

2. The variation between realizations of the model should emulate the variation

between repeated mappings, particularly with respect to variation in the num-

bers of faces, edges, and nodes.

3. Outcomes at nearby points should exhibit positive spatial autocorrelation, in

accordance with TFL.

4. The model should emulate the effects of generalization, both cartographically

through changes in the minimum mapping unit or the smoothness of edges

and thematically through aggregation of classes.

5. Realizations should be invariant under changes in the underlying spatial rep-

resentation. For example, if the map is rasterized then realizations should be

invariant under changes in the raster cell size, provided that cell area is much

less than the minimum mapping unit.

Figure 2. An example area-class map: part of a SSURGO soil map of Osage County, KS.
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6. Results should be invariant under a re-ordering of the classes, because the

recorded class c� and the true class c are nominal variables.

In the remainder of this section I review several possible models against these

criteria, and then provide a brief summary.

The confusion matrix

A common way of assessing the accuracy of area-class maps is to compare the

recorded class c� with some reference source that is believed to be of greater ac-

curacy. For example, classified scenes from remote sensing are often compared

with the results of field survey, or ground truth. The comparisons are conducted at a

sample of locations, and tabulated in a matrix, often termed the confusion matrix.

Thus p(c�|c) might denote the probability that the map records class c� at a location

where field survey indicates class c. The kappa index provides a convenient mea-

sure of accuracy, scaling from 0 (agreement is what would be expected by chance)

to 1 (perfect agreement) (Longley et al. 2005).

The confusion matrix can be applied in two ways. In the per-polygon case

entire faces are checked against ground truth, but this provides no opportunity to

record within-face variation, violating Requirement 1. No variation in the numbers

of faces, edges, and nodes is possible, violating Requirement 2. In the per-point

case individual points are checked, satisfying both of these objections to the per-

polygon approach. But as a stochastic model of uncertainty the confusion matrix

provides no information on spatial autocorrelation of nearby outcomes, so simu-

lations based on it will not satisfy Requirement 3. Moreover when applied on a

raster basis the outcomes in individual cells will be independent, violating Re-

quirement 5. Thus while the confusion matrix provides a useful descriptive measure

of accuracy, it fails as a basis for a stochastic model of uncertainty.

The epsilon band

If the transitions across edges are not instantaneous, then one might think instead of

transition zones of finite width (Mark and Csillag 1989). Perkal (1966) described a

band of width epsilon that represented this zone of uncertainty, and more recently

Cohn and Gotts (1996) and others have discussed an egg-yolk model in which a

band of uncertainty exists around the perimeter of a face, rather like the white

of an egg. In terms of the requirements above, the epsilon band addresses only

the issue of positional accuracy in a fixed boundary network, and moreover as-

sumes a uniform degree of positional accuracy. Thus it fails to meet Requirements

1 and 2. The epsilon band does not address the process of generalization, violating

Requirement 4.

Convolution

Suppose that at every point x a vector of probabilities P exists, giving the probability

that the point belongs in each of the n classes:

P xð Þ ¼ p1 xð Þ; p2 xð Þ; . . . ; pn xð Þf g;

Statistical Perspectives on Geographic Information ScienceMichael F. Goodchild

319



where pi(x) denotes the probability that point x belongs to class i. We adopt a raster

representation to render the number of locations finite, and assume that P is con-

stant over each raster cell.

If cells were assigned randomly based on these probabilities the map would

show no spatial autocorrelation in outcomes, and its ‘‘salt and pepper’’ appearance

would immediately distinguish it from any real map. Requirement 3 would be vi-

olated, and also Requirement 5 because the individual cells would be evident in

the outcomes.

A simple way to induce spatial dependence is through a convolution operation,

in which a filter is passed over the map. A modal filter that replaces each cell by the

commonest class in its neighborhood would be suitable, with the neighborhood

size set by some notion of the range of spatial autocorrelation. The results would

now satisfy Requirements 3 and 5. However the proportions of outcomes of each

class would not equal the prior probabilities, because modal convolution tends to

favor the more probable classes at the expense of the less probable ones.

Sequential assignment

Goodchild, Sun, and Yang (1992) propose a model that addresses this problem. A

random field z(x) is generated with a controlled pattern of spatial autocorrelation,

and rescaled to a uniform distribution in the range f0, 1g. The value of z(x) is then

compared with the vector of probabilities P(x) in every cell, and the class c assigned

for which:

Xc�1

i¼0

pi xð Þ < z xð Þ <
Xc

i¼0

pi xð Þ;

where p0(x) 5 0. For example, given probabilities f0.2, 0.3, 0.5g Class 1 will be

assigned for z(x) in the interval f0.0, 0.2g, Class 2 for z(x) in the interval f0.2, 0.5g,
and Class 3 for z(x) in the interval f0.5, 1.0g.

The outcomes of this model satisfy Requirement 1 (within-face variation is

modeled), Requirement 2 (realizations vary in the counts of faces, edges, and

nodes), Requirement 3 (outcomes exhibit spatial autocorrelation), and Requirement

5 (results are invariant under changes of cell size, given an appropriate resampling

mechanism to derive P for each new raster cell). The model also satisfies Require-

ment 4 concerning generalization, because this can be handled by changes in cell

size, smoothing of z(x), or smoothing of P(x). However, the results are not invariant

under reordering of the classes, and thus Requirement 6 is violated. Class

boundaries will follow the isolines of the z(x) surface, and 3-valent nodes will

occur only at the map boundary. Thus the kind of map shown in Fig. 2 will be

impossible as an outcome of this process. The problem is moot, of course, in the

case of n 5 2.
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Indicator kriging

Indicator kriging (Goovaerts 1997) is used to address problems in which fields have

been reduced to binary through the application of some threshold z�. For example,

one might assign c 5 0, where z(x) � z�, and c 5 1, where z(x)4z�. Area-class

maps might be simulated by first assigning cells to Class 1 and not Class 1, then

among the not Class 1 cells assigning Class 2 and not Class2, and so on. All cells

assigned not Class n� 1 would be assigned Class n. Because n� 1 random fields

would be used, the results would not be subject to the previous objection.

Nevertheless the resulting map would be distinct. Figure 3 shows a simple example

for n 5 3. The faces of Class 1 are bounded by isolines of the first random field, but

the faces of all subsequent classes are confined to the remaining area. Thus the

angles of incidence at the two 3-valent nodes shown in Fig. 3 have unequal

probability distributions.

Despite this objection, outcomes such as Fig. 3 make sense in some situations,

particularly when ordering relationships exist between some pairs of classes.

Suppose that Class i is historically antecedent to Class i� 1, as it would be for

example if it represents agriculture being invaded by urban land use, or grassland

being invaded by forest land cover. In such cases the shape of the boundary

between Class i and Class i� 1 is determined by Class i. Thus for some applications

the set of classes constitutes a partially or completely ordered set.

Shuffling across realizations

Goodchild (1980b) describes a method of generating maps with specified patterns

of spatial autocorrelation. Each face is first independently assigned a random value

from a specified distribution. Pairs of faces are then considered at random, and their

values swapped if by doing so the map as a whole moves closer to the target spatial

autocorrelation.

Figure 3. An example area-class map for n 5 3, showing the effects of sequential assignment

on the incidence angles of edges at nodes.
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Methods such as this would be unacceptable as models of area-class map

uncertainty because they assume homogeneity over the map. But consider a variant

in which N realizations are first generated over a raster based on the probabilities

P(x). Now pick a random cell and a random pair of realizations, and swap the

values in the realizations if both realizations move closer to the target spatial

autocorrelation. The process is repeated until no further improvement occurs. It has

no justifying interpretation, as the process has no analogs in the real world.

Nevertheless all requirements are satisfied, with one exception. Requirement 4,

which addresses generalization, could be satisfied if spatial autocorrelation were

defined based on distance rather than cell size, and if suitable methods were

employed for generalizing P(x) to different cell sizes. Fohl (1998) has implemented

the method successfully.

A phase-space model

Goodchild and Dubuc (1987) describe a method for simulating area-class maps

(see also Goodchild, Yuan, and Cova 2007). A set of m interval/ratio variables

fz1(x), z2(x), . . ., zm(x)g is first defined, and random fields generated for each

variable covering the area of the map. An m-dimensional ‘‘phase’’ space is defined

with axes representing each of the variables, and partitioned into n regions, each

associated with one of the n classes. Finally, every point x in the plane is mapped

into the phase space, and the corresponding region identified as the class c(x). The

entire process is analogous to that used in classifying multiple spectral bands into

classes in remote sensing.

This model does not require the specification of P, because the probabilities of

each class are established by the regions of phase space and by the random fields.

As a model of uncertainty, one might employ it by fixing initial random fields, and

then distorting them differently for each realization. The amount of distortion would

determine the amount of variation between realizations, and distortions would

have to be spatially autocorrelated.

The model has the interesting property that only classes adjacent in phase

space can be adjacent geographically, because of the spatial autocorrelation

induced in the random fields. This matches experience, in that edges between

certain pairs of classes are observed to be much more common than between other

pairs.

The model satisfies all of the criteria listed earlier. Requirement 4 can be

satisfied in a spatial sense by smoothing the random fields, and in a thematic sense

by coarsening the partitioning of phase space. It bears a strong relationship to

ecological models of land cover and habitat (e.g., Holdridge 1971). However it is

clear that the model is greatly over-specified. It would be very difficult if not

impossible in practice to calibrate the variances and correlations of the random

fields, or the partitioning of phase space.
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Summary

This section has focused on one particularly problematic but nevertheless very

common form of geographic data, the area-class map. Such maps clearly defy the

normal theories of measurement in science, because they are in part subjective and

based on definitions that are necessarily vague. As a result, we have as yet no

generally accepted theory of how uncertainty in such data can be modeled, or of

the nature of scale effects and generalization. Of the models presented in the

previous seven sections, only one, the phase-space model, satisfies all of the

specified requirements. Yet unlike such simple models as the Gaussian, it contains

far too many parameters to be practical. The shuffling model presented in ‘‘Shuf-

fling across realizations’’ satisfies almost all of the requirements, yet lacks any

satisfactory empirical basis. At this point, then, one must conclude that the problem

of modeling uncertainty in area-class maps remains largely unsolved.

Conclusions

My intent in writing this article was to draw parallels between the contemporary

science of geographic information and the work of the early leaders of geography’s

quantitative revolution, and to argue that the spirit of the 1960s was in many ways

alive and well. Much of that early work focused on reasoning from spatial form to

spatial process, and thus matches GIScience’s traditional focus on spatial form.

Much of it focused on stochastic models, and again has proven useful in under-

standing many aspects of the nature of geographic data, particularly the nature of

spatial uncertainty.

Currently, GIScience is experiencing something of a paradigm shift as it places

increasing emphasis on time, and the dynamic nature of geographic data. This is

driven in part by a new abundance of spatiotemporal data, in part by the

development of improved methods of analysis and improved software tools, and

in part by the realization that the dynamic aspects of the Earth’s surface are in many

ways more interesting and important than the static aspects. Fundamental princi-

ples, such as TFL, need to be reexamined in this light, as do our models of

uncertainty. The comments made in ‘‘Sequential assignment’’ and ‘‘Indicator

kriging’’ about the need for models of uncertainty to be process-based become

even more compelling from this perspective.

Many comments have been made over the years about the ability of GIS and

GIScience to remotivate interest in quantitative geography. There is no doubt that

current interest in TFL is at least in part due to the growth of GIS and GIScience, and

to its importance as an underlying principle of these fields. Taylor (1990) has called

GIS the ‘‘positivists’ revenge’’, but the notion that it represents the last resort of the

early geographic quantifiers is hardly consistent with the very broad interest that

has developed during the past decade or so in almost all scientific disciplines, in

public policy and private corporations, and in society at large.
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