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a b s t r a c t

In this paper, we formulate a flexible density function from the selection mechanism
viewpoint (see, for example, Bayarri and DeGroot (1992) and Arellano-Valle et al. (2006))
which possesses nice biological and physical interpretations. The new density function
contains as special cases many models that have been proposed recently in the literature.
In constructing this model, we assume that the number of competing causes of the event
of interest has a general discrete distribution characterized by its probability generating
function. This function has an important role in the selection procedure as well as in
computing the conditional personal cure rate. Finally, we illustrate how various models
can be deduced as special cases of the proposed model.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction 1

Recently, there has been a great interest among statisticians and applied researchers in constructing flexible families 2

of distributions to facilitate better modeling of data. Consequently, a significant progress has been made in developing 3

the generalizations of some well-known lifetime distributions and their successful application to problems in areas such 4

as engineering, environmetrics, economics and biomedical sciences. The purpose of this work is to formulate a unified 5

procedure with a biological and physical interpretation that includes as special cases many of these lifetime distributions. 6

For formulating this procedure, we choose the selection approach discussed by Bayarri and DeGroot (1992) and Arellano- 7

Valle et al. (2006). This selection approach is useful for obtaining flexible distributions from the original model based on the 8

occurrence of some related selection randomvariables.Moreover,we introduce a newnotion, called the conditional personal 9

non-cure rate, for which we give an interpretation in terms of selection or weight function. Another related measure is the 10

conditional personal cure rate which is of interest when, for example, successfully treated cancer patients may die from a 11

cause other than the diagnosed cancer. 12

The rest of this article is organized as follows. In Section 2, the unified model is developed from the selection mechanism 13

viewpoint and the idea of the conditional personal probability is introduced. In Section 3, many of the recently introduced 14

lifetime distributions are obtained as special cases from the proposed unified model, and some new interpretations from 15
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a biological viewpoint are given to them. Section 4 deals with some mathematical properties of the unified model. Two1

applications of some distributions, discussed in Section 3, are given in Section 5. Finally, Section 6 offers some concluding2

remarks.3

2. A unified selection distribution4

Selection mechanisms arise when a random sample from the entire population might be too difficult or too expensive5

to secure and so flexible models must be developed to incorporate this constraint on the observations. We formulate the6

selection distributions here within a biological context, where the population is restricted to patients not cured from an7

event of interest such as disease or tumor. In biological context, we mean that the damaged cells are competing to produce8

detectable tumors. The time for the jth damaged cell (clonogens) to transform into a detectable tumor (promotion time) is9

denoted by Xj, j = 1, . . . ,N , where N denotes the unobservable number of damaged cells that can produce the event of10

interest. In the sequel, we suppose that N has its probability mass function (pmf) given by11

pn = P(N = n), n = 0, 1, . . . . (1)12

Let AN(s) =


∞

n=0 pn s
n be the corresponding probability generating function (pgf) for 0 < s < 1, and p0 the cure rate. We13

assume that, conditional on N , that the Xj’s are i.i.d. having density function g(x) and survival function S(x) = 1 − G(x).14

Usually, exponential, piecewise exponential (Chen and Ibrahim, 2001) andWeibull distributions are used to represent g(x).15

GivenN = n and the lifetime T = t , let Zj, j = 1, . . . , n, be independent random variables, independently ofN , following16

a Bernoulli distribution with success probability G(t) indicating the presence of the jth competing cause (or clonogens) at17

time t . The discrete variable Nt , representing the total number of competing causes among the N initial competing causes18

that are present at time t , is then given by19

Nt =


Z1 + Z2 + · · · + ZN , if N > 0,
0, if N = 0. (2)20

It follows from the fundamental formula for conditional probabilities that21

P(Nt = j) =

∞
n=j

pn

Binomial(n,G(t))  
P(Nt = j|N = n),22

and its corresponding pgf (Feller, 1968) is23

ANt (s) = AN [1 − (1 − s)G(t)]. (3)24

The long-term survival function (Rodrigues et al., 2008) can be obtained from (3) as25

SPop(t) = P(T ≥ t) = P(Nt = 0) = ANt (0) = AN [S(t)], (4)26

where AN(.) is the pgf of the discrete random variable N .27

Motivated by the work of Arellano-Valle et al. (2006), we start with a definition of a selection distribution and its28

association with the pgf ANt (s) and density function g(x) of the promotion time random variable X . First, we assume that29

the population is divided into two sub-populations of cured and non-cured patients defined by the following binary random30

variable for any time t:31

Ut =


1, if Nt ≥ 1,
0, if Nt = 0, (5)32

where P(Ut = 1) = 1 − P(Nt = 0) = 1 − p0.33

Definition 2.1 (Selection Distribution). Let T be a non-negative lifetime random variable and X the promotion time with34

probability density function (pdf) g(x). We define the selection distribution of T as the conditional distribution of X , given35

Ut = 1.36

This definition simply states that the selection probability distribution of T is the probability distribution of X , truncated by37

non-cured patients. We show that this viewpoint is quite useful to obtain new classes of flexible lifetime distributions and38

also to unify many models proposed recently in the literature.39

Indeed, if X in Definition 2.1 has pdf g(x), then T has a pdf fT (t) given by40

fT (t) =
g(t) P(Ut = 1 | X ≤ t)

P(Ut = 1)
=

g(t) P(Ut = 1 | X ≤ t)
1 − p0

. (6)41

In fact, (6) can be expressed as a weighted distribution (Bayarri and DeGroot, 1992)42

fT (t) =
w(t) g(t)
E[w(X)]

, (7)43
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where the weight function w(t) is precisely 1

w(t) = P(Ut = 1 | X ≤ t), (8) 2

and E[w(X)] is the mean of w(X) with respect to g(t). 3

Definition 2.2. The lifetime T is under the first-activation at time t if Nt = 1 or T = min{X1, . . . , XN}. 4

Definition 2.3. The lifetime T is under the last-activation at time t if Nt = N or T = max{X1, . . . , XN}. 5

The first-activation at time t means that the cancer patient died from a specific clonogen in the presence of other clonogens 6

and P(Nt = 1) is called the crude cumulative probability or cumulative incidence function (CIF) (Yu et al., 2010). On the 7

other hand, the last-activation at time t means that all clonogens are activate at time t and P(Nt = N) is the so-called net 8

survival at time t (Yu et al., 2010) and it is a measure of survival if all causes of death other than the cancer of interest were 9

to be eliminated. As mentioned by Yu et al. (2010), the net survival is a desirable measure for evaluating the progress of 10

cancer treatment and control efforts since the interpretation of excess mortality due to cancer is not affected by changes in 11

mortality due to other diseases. 12

Theorem 2.4. The crude cumulative distribution and the net survival at time t are given by 13

P(Nt = 1) =
G(t)dAN(s)

ds


s=S(t)

, (9) 14

P(Nt = N) = AN [G(t)], 15

respectively. 16

Proof. The crude cumulative distribution simply follows from (3) and the net survival is obtained from the following result: 17

P(Nt = N) =

∞
n=0

pnP(Nt = n | N = n) =

∞
n=0

pnG(t)n. � 18

Definition 2.5 (Conditional Personal Non-Cure Rate Under the First-Activation). Let T be the lifetime of some treated cancer 19

patient under the first-activation process and X the promotion timewith pdf g(x). The conditional probability of the patient 20

dying from the damaged or initiated cells (clonogens), given that X ≤ t , called the ‘‘conditional personal non-cure rate’’, is 21

defined as 22

γnp(t) = P(Ut = 1 | X ≤ t). (10) 23

Indeed, we can show from (9) that 24

γnp(t) =
P(Nt = 1)

G(t)
=

dAN(s)
ds


s=S(t)

, (11) 25

and from (6) the selection distribution of T is then given by 26

fT (t) =
g(t)

1 − p0


dAN(s)

ds


s=S(t)


. (12) 27

The corresponding proportion of patients dying from causes other than the diagnosed cancer γp = 1 − γnp, given that 28

X ≤ t , is defined as the conditional personal cure rate. This measure will be of natural interest since it corresponds to 29

successfully treated cancer patients who may not die from cancer during the time t . Analogously, the selection distribution 30

of T under the last-activation at time t is given by 31

fT (t) =
g(t)

1 − p0


dAN(s)

ds


s=G(t)


. (13) 32

We had not chosen any r-activation that is between the first-activation and last-activation, since from Cooner et al. (2007), 33

r | N ∼ DiscreteUnif(1,N) and P(N = 0) = 0 jointly imply w(t) = 1, i.e., we do not select any distribution, or simply 34

fT (y) = g(t). 35

Eqs. (12) and (13) are important since they show how the pgf works as a selection mechanism and how it unifies in a 36

simple way many of the distributions recently proposed in the literature. It also enables the calculation of the personal cure 37

rate, which is a measure that is of interest in the treatment of cancer patients, for example. The weight function w(t) in (8) 38

is concerned with selected patients at risks, and this assists in obtaining the conditional personal cure rate. These results are 39

summarized in Table 1. 40
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Table 1
Selection mechanisms and personal cure rates.

Selection distribution First-activation Last-activation

fT (t)
g(t)
1−p0


dAN (s)

ds


s=S(t)


g(t)
1−p0


dAN (s)

ds


s=G(t)


ST (t)

AN [S(t)]−p0
1−p0

1−AN [G(t)]
1−p0

hT (t)
g(t)


dAN (s)

ds


s=S(t)


AN [S(t)]−p0

g(t)


dAN (s)
ds


s=G(t)


1−AN [G(t)]

γp(t) 1 −
dAN (s)

ds


s=S(t)

1 −
dAN (s)

ds


s=G(t)

3. Some special models1

In this section,we demonstrate howmany existingmodels can be deduced as special cases of the proposed unifiedmodel.2

In addition, this viewpoint also results in a biological interpretation for these cases.3

• Generalized exponential Poisson (GEP) distribution.4

Barreto-Souza and Cribari-Neto (2009) introduced the GEP distribution with two parameters α and λ, and they showed5

that it has a desirable physical interpretation. That is, if there are n components in a parallel system and the lifetimes of6

the components are independently and identically distributed as exponential Poisson (EP) (Kuş, 2007), then the system7

lifetime follows the GEP law. Here, we give a different characterization for the GEP distribution from our unified model.8

Consider a sequence of independent Bernoulli trials, where the kth trial has probability of success α/k, for k = 1, 2, . . .,9

0 < α < 1. The trial number X forwhich the first success occurs follows the so-called Sibuya distributionwith parameter10

α, say Sibuya(α) (Christoph and Schreiber, 2000; Devroye, 1993), given by P(X = r) = (−1)r−1α(α−1) . . . (α−r+1)/r!.11

The pgf of X (Pillai and Jayakumar, 1995) is12

AX (s) = 1 − (1 − s)α. (14)13

Now, defineM ∼ Sibuya(α) and Xi ∼ P(λ), and14

N =


X1 + · · · + XM : if M > 1
0 : if M = 0.15

Then, we have16

AN(s) = 1 − [1 − exp{−λ(1 − s)}]α. (15)17

From the first-activation mechanism in Eq. (15), by taking S(x) = exp(−βx), we obtain the GEP distribution18

fT (t; θ) =
αλβ

(1 − e−λ)α
{1 − e−λ+λ exp(−βt)

}
α−1e−λ−βt+λ exp(−βt), (16)19

where θ = (α, β, λ). Further, if α = 1, we have the EP distribution (Kuş, 2007). Various properties and inferential20

methods for this two-parameter distribution with decreasing failure rate are discussed by Kuş (2007).21

• Classical Lehmann alternative distributions.22

There has been several attempts at modeling failure time data by the classical Lehmann type I and II alternatives given23

by FT (t) = [G(t)]α and FT (t) = 1 − [1 − G(t)]α , respectively, where G(t) is the parent cumulative function and α is24

a positive real number. Recently, the first form has also been refereed to as the exponentiated-G (Exp-G) distributions.25

Some examples, discussed by Nadarajah and Kotz (2006), are the exponentiated exponential (EE), exponentiated gamma,26

exponentiated Weibull, exponentiated Gumbel and exponentiated Fréchet distributions, which extend the exponential,27

gamma, Weibull, Gumbel and Fréchet distributions, respectively. The advantage of this approach lies in its flexibility to28

model both monotonic as well as non-monotonic failure rates even though the baseline failure rate may be monotonic.29

Lehmann type I and II models are easily obtained from the Sibuya generating function (14) under the first-activation and30

last-activation mechanisms in Table 1 by setting p0 = 0.31

We give a simple example. Assuming S(x) = e−βx, from (14), we obtain, under the first-activationmechanism in Table 1,32

the EE (also called generalized exponential) distribution (Gupta and Kundu, 1999). Its density function is33

fT (t, θ) = αβe−βt(1 − e−βt)α−1, (17)34

where θ = (α, β). The EE cumulative function has closed form and so its inference based on censored data can be handled35

more easily than with the gamma distribution (Gupta and Kundu, 1999). Here, we have provided above a nice biological36

interpretation for it through the first-activation selection.37

• The Weibull-geometric (WG) distribution.38

Barreto-Souza et al. (2010) proposed the WG distribution (with decreasing failure rate), which generalizes the39

exponential geometric (EG) distribution due to Adamidis and Loukas (1998). Taking the pgf asA(s) =
1−p
1−ps , corresponding40
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to a geometric distribution with parameter p, and the Weibull survival function S(t) = exp{−(βt)α}, we obtain, under 1

first-activation mechanism in Table 1, the WG density function 2

fT (t, θ) = αβα(1 − p)tα−1 exp{−(βt)α}[1 − p exp{−(βt)α}]
−2, 3

where θ = (α, β). 4

• Exponential Conway–Maxwell Poisson (ECOMP) distribution. 5

The Conway–Maxwell Poisson distribution (COM-Poisson), first introduced by Conway andMaxwell (1961), was revived 6

recently by Shmueli et al. (2005). The COM-Poisson distribution generalizes the Poisson distribution in an elegant and 7

flexible way, allowing for under-dispersion as well as over-dispersion. This distribution was also discussed by Kadane 8

et al. (2006) from a Bayesian viewpoint, and an elicitation program to find the hyper-parameters from the predictive 9

distribution was discussed there as well; see also Kokonendji et al. (2008) for more details on the COM-Poisson 10

distribution. This distribution can be expressed in the exponential form and can then be viewed as a weighted Poisson 11

distribution with weight function w(m; φ) = (m!)1−φ (Kokonendji et al., 2008; Rodrigues et al., 2009). The pmf of the 12

COM-Poisson distribution for a discrete variableM is given by 13

P(M = m; η, φ) =
1

Z(η, φ)

ηm

(m!)φ
, m = 0, 1, 2, . . . , (18) 14

where Z(η, φ) =


∞

j=0
ηj

(j!)φ . Therefore, the cure fraction turns out to be 15

p0 = P(M = 0; η, φ) =
1

Z(η, φ)
. (19) 16

The corresponding pgf is 17

A(s) =
Z(ηs, φ)

Z(η, φ)
. (20) 18

Now, by applying the first-activation mechanism, we obtain the ECOMP distribution (Cordeiro et al., in press) with pdf 19

fT (t; θ) =
β

Z(λ, φ) − 1

∞
j=1

jλj

(j!)φ
exp(−jβt), y > 0, (21) 20

where θ = (β, λ, φ)T . 21

• The exponentiated Weibull (EW) distribution. 22

The EW distribution (Nassar and Eissa, 2004) is an extension of the well-known Weibull distribution. The EW family 23

contains distributions with non-monotone failure rates in addition to a broad class of monotone failure rates. In practice, 24

many lifetime data display bathtub shape or upside-downbathtub shape failure rates and so the EWdistribution provides 25

a more realistic model than those with monotone failure rates. Taking the Weibull survival function S(x) = exp(−xβ) 26

with a scalar parameter equal to one and a shape parameter β , we obtain from (14), for 0 < α ≤ 1 and under the 27

first-activation mechanism in Table 1, the EW density function given by 28

fT (t; θ) = αβtβ−1 exp(−tβ){1 − exp(−tβ)}α−1, (22) 29

where θ = (α, β). For this restricted parameter space, the selection mechanism gives a new biological interpretation for 30

the EW distribution. 31

• The Kumaraswamy G family of distributions. 32

Consider starting from a parent continuous distribution function G(t). A natural way of generating families of 33

distributions on some other support is to apply the quantile function to a family of distributions on the interval (0, 1). 34

Based on the Kumaraswamy distribution on this interval, Cordeiro and de Castro (2010) defined the Kumaraswamy G 35

(Kw-G) family of distributions by 36

FT (t) = 1 − {1 − [G(t)]a}b, (23) 37

where a > 0 and b > 0 are two additional parameters to control skewness through the relative tail weights. They 38

presented someexamples of (23) such as theKw-normal, Kw-gamma, Kw-Weibull, Kw-Gumbel andKw-inverseGaussian 39

distributions. Because of its tractable distribution function (23), the Kw-G family of distributions can be used quite 40

effectively for inferential purposes even if the data are censored. Eq. (23) is easily obtained (for b < 1) from the 41

Sibuya(b) pgf (14), under the last-activationmechanism in Table 1, by considering the Exp-G(a) distribution as the parent 42

distribution and p0 = 0. In a differentway, the Kw-Gdistribution can be derived by twomechanisms applied in sequence, 43

which hold only for a < 1 and b < 1: the Sibuya(a) pgf under the first-activation mechanism applied to G(t) gives 44

H(t) = [G(t)]a and then the Sibuya(b) pgf under the last-activation mechanism applied to H(t) yields (23), both cases 45

with p0 = 0. We have 46

G → Sibuya + first mechanism → Exp-G(a) → Sibuya + last mechanism → Kw-G. 47
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• The Kumaraswamy–Weibull (KwW) distribution.1

Cordeiro et al. (2010b) introduced the KwW distribution that contains as special sub-models the exponentiatedWeibull,2

exponentiated Rayleigh, exponentiated exponential, Kumaraswamy exponential (KwE) andWeibull distributions. Taking3

G(x) = [1 − exp{−(λx)c}]a, from (15) under the last-activation mechanism in Table 1, we obtain the KwW density4

function (for t > 0) given by5

fT (t; θ) = abcλc tc−1 exp{−(λt)c}[1 − exp{−(λt)c}]a−1
{1 − [1 − exp{−(λt)c}]a}b−1, (24)6

where θ = (a, b, c, λ) and 0 < b < 1.7

In view of the selection mechanism considered here, we have a new biological interpretation for the KwW distribution,8

which is quite different from the physical interpretation given by Cordeiro et al. (2010b).9

• A generalized modified Weibull (GMW) distribution.10

Carrasco et al. (2008) proposed a four-parameter generalization of theWeibull distribution, which is capable ofmodeling11

a bathtub shaped hazard rate function. This distribution has a number of well-known lifetime distributions as special12

cases includingWeibull, extreme value, exponentiatedWeibull, generalized Rayleigh andmodifiedWeibull distributions.13

Now, by taking S(x) = exp{−αyγ exp(λy)}, from (14) and under the first-activation mechanism in Table 1, we obtain14

the generalized modified Weibull density function given by15

fT (t; θ) = αβtγ−1(γ + λt) exp{λt − αytγ exp(λt)}[1 − exp{−αtγ exp(λt)}]β−1, (25)16

where θ = (α, β, γ , λ) and 0 < β < 1. The selection mechanism then provides a new biological interpretation for the17

GMW distribution from the first-activation viewpoint.18

• The exponential power series (EPS) distribution19

Chahkandi and Ganjali (2009) introduced a new lifetime family of distributions (with decreasing failure rate) by20

combining a truncated at zero power series with some exponential distributions. Consequently, we consider S(t) =21

exp(−βt) and the power series mass function22

pn(α) = P(N = n; α) =
anαn

A(α)
, n = 0, 1, . . . , (26)23

where an > 0, A(α) =


n anα
n and α > 0. The family (26) of distributions includes as special cases the binomial,24

Poisson, negative binomial and logarithmic distributions, among others. The corresponding pgf is AN(s; α) =
A(αs)
A(α)

and25

p0 =
a0

A(α)
. Under the first-activation mechanism given in Table 1, we obtain the density function26

fT (t; θ) =

αβ exp(−βt) dAN (s;α)

ds


s=exp(−βt)

A(α) − a0
, (27)27

where θ = (α, β). Estimation of these parameters by maximum likelihood procedure and its related EM algorithm can28

be found in Chahkandi and Ganjali (2009).29

• Beta generalized (BG) distribution.30

Given a parent distribution G(t; θ)with the parameter vector θ and the density function g(t; θ), the BG distributionmay31

be characterized by the density function32

fBG(t; θ, a, b) = B(a, b)−1g(t; θ)G(t; θ)a−1
[1 − G(t; θ)]b−1, (28)33

where B(a, b) = Γ (a)Γ (b)/Γ (a + b) denotes the beta function, Γ (·) the gamma function and a > 0 and b > 034

are additional shape parameters to those in θ . If T is a random variable with pdf (28), we write T ∼ BG(G; θ, a, b).35

The density function fBG(t; θ, a, b) will be most tractable when both functions G(t; θ) and g(t; θ) have simple analytic36

expressions. Except for some special choices of these functions, fBG(t; θ, a, b) could be complicated to deal with in full37

generality. Some BG distributions have been discussed in recent literature. For example, Eugene et al. (2002); Nadarajah38

and Kotz (2004) and Nadarajah and Gupta (2004) defined the beta normal, beta Gumbel and beta Fréchet distributions39

by taking G(t) to be the cdf of the normal, Gumbel and Fréchet distributions, respectively, and studied some of their40

properties.More than twenty BG distributions have been developed by several authors during the past ten years. It should41

be emphasized that for a and b positive integers, (28) reduces to the density function of the ath order statistic from the42

G distribution in a sample of size a + b − 1. Here, we provide a simple interpretation when b is real less than one and a43

is any positive real.44

The random variable T admits the simple stochastic representation T = G−1(V ), where V follows a beta distribution45

with parameters a and b. Using this transformation, the cdf corresponding to (28) can be expressed as46

FBG(t; θ, a, b) = IG(t;θ)(a, b) = [B(a, b)]−1
 G(t;θ)

0
ωa−1(1 − ω)b−1dω, (29)47

where Ix(a, b) denotes the incomplete beta ratio function.48
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For 0 < s ≤ 1, the well-known power series expansion for the incomplete beta ratio function holds and is given by 1

Is(a, b) =

∞
n=0

dnsa+n, 2

where the coefficients dn are positive for b < 1. They are given by 3

dn =
Γ (1 − b + n)

(a + n)n!Γ (1 − b)B(a, b)
. 4

Clearly,


∞

n=0 dn = 1 since I1(a, b) = 1. From the above expansion, let a discrete random variable M be defined by 5

the probabilities dn for n = 0, 1, . . . The generating function of M is then given by AM(s) =


∞

n=0 dns
n. We define the 6

constant random variable K such that P(K = a) = 1 and the random variable N = K + M , where K andM are assumed 7

to be independent. Exploring the combination of the pgf of N with the last-activation mechanism in Table 1 yields the 8

BG distribution by setting p0 = 0, i.e., AN(G(t)) = AK (G(t))AM(G(t)) =


∞

n=0 dnG(t)a+n
= FBG(t; θ, a, b). 9

4. Some properties 10

For an arbitrary baseline cdf G(t) and a discrete random variable N defined by the pgf AN(s), the unified cumulative 11

distribution of T under the first-activation and last-activation mechanisms can be expressed from Table 1 as 12

FT (t) =
1 − AN [1 − G(t)]

1 − p0
and FT (t) =

AN [G(t)] − p0
1 − p0

, 13

respectively. From now on, a random variable Za is said to have the exponentiated-G distribution with parameter a > 0, say 14

Za ∼ Exp-G(a), if its pdf and cdf are given by 15

ha(x) = ag(x)Ga−1(x) and Ha(x) = Ga(x), 16

respectively. Here, we demonstrate that fT (t) can be written as a mixture of exponentiated-G densities under the last- 17

activation mechanism and a linear combination of exponentiated-G densities under the first-activation mechanism. In both 18

cases, the weighted coefficients depend only on the probabilities of N . Under the last-activation mechanism, we have 19

FT (t) =
AN [G(t)] − p0

1 − p0
=

∞
r=1

pr
1 − p0

[G(t)]r 20

and then 21

fT (t) =

∞
r=0

vrhr(t), (30) 22

where v0 = 0 and vr = rpr/(1 − p0) for r = 1, 2, . . . . 23

By expanding the binomial term in the first-activation mechanism, we obtain 24

FT (t) =
1 − AN [1 − G(t)]

1 − p0
=

1
1 − p0

−

∞
i=0

i
r=0

(−1)r


i
r


pi

1 − p0
G(t)r . 25

Now, by interchanging the orders of summation, we can write 26

FT (t) =

∞
r=1

qrG(t)r , 27

where qr =


∞

i=r

(−1)r+1


i
r


pi

1−p0
for r = 1, 2, . . . . Hence, 28

fT (t) =

∞
r=0

wrhr(t), (31) 29

where wr = (r + 1)qr+1 for r = 0, 1, . . . . Eq. (31) has the same form as (30), but with different weight coefficients. 30

So, some mathematical quantities (such as ordinary and incomplete moments, generating function and mean deviation) 31

of the unified distribution of T in both mechanisms can be obtained by knowing those quantities for the exponentiated-G 32

distribution. The mathematical properties of the exponentiated distributions have been studied by many authors in recent 33

years (Nadarajah and Kotz, 2006). Now,we obtain themoments and generating function of T from (31) since they are similar 34

to (30). The sth moment of T is given by 35

E(T s) =

∞
r=0

wrE(Z s
r ), 36
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Table 2
Parameter estimates and goodness-of-fit statistics for the fitted distributions (ordered according to A∗).

Data set Distribution Estimates W ∗ A∗

Boeing data ECOMP (7.37 × 10−3, 1.37, 0.983) 0.068 0.449
(n = 213) EG (7.99 × 10−3, 0.429) 0.074 0.484

EP (7.49 × 10−3, 1.34) 0.070 0.461
Exponential 1.07 × 10−2 0.165 1.018

Disasters data ECOMP (1.55 × 10−3, 3.90, 1.08) 0.067 0.432
(n = 109) EP (1.65 × 10−3, 3.26) 0.068 0.439

EG (2.36 × 10−3, 0.619) 0.068 0.480
Exponential 4.15 × 10−3 0.070 0.658

a b

Fig. 1. Empirical survival function and some fitted distributions. (a) Boeing data. (b) Coal-mining disasters data.

where Zr ∼ Exp-G(r). The moments of Zr can be derived from the quantile function of G, say Q (u) = G−1(u), as E(Z s
r ) =1

r
 1
0 Q (u)sur−1du. Similarly, the generating function of T can be expressed as2

MT (w) =

∞
r=0

wrMZr (w),3

whereMZr (w) = r
 1
0 exp{wQ (u)}ur−1du is the generating function of Zr .4

5. Illustrative examples5

In this section, we present two illustrative examples. The first data set was presented by Proschan (1963) which consists6

of the interval in hours between successive failures of the air conditioning system in a fleet of Boeing 720 airplanes. The data7

set contains 213 observations and was also analyzed by Adamidis and Loukas (1998), Kuş (2007) and Chahkandi and Ganjali8

(2009), among others. The second data set, presented by Cox and Lewis (1966) and used by Adamidis and Loukas (1998),9

comprises 109 observations on the number of days between successive coal-mining disasters. The required computations10

were performed in R language (R Development Core Team, 2011). Computational code is available from the first author on11

request.12

Table 2 lists the parameter estimates and the results of the formal goodness-of-fit tests. We apply the modified13

Cramér–von Mises (W ∗) and Anderson–Darling (A∗) statistics proposed by Chen and Balakrishnan (1995). In general, the14

smaller the values of these statistics, the better the fit to the data. For both data sets, Table 2 presents the values of W ∗
15

and A∗, which indicate that the ECOMP, EG and EP distributions yield very similar fits. The fitted survival functions of these16

distributions superimposed on the empirical survival function in Fig. 1 and reinforce this claim. For the GEP distribution, the17

estimates of the parameter α in both examples are close to one, supporting the EP distribution.18



J. Rodrigues et al. / Computational Statistics and Data Analysis xx (xxxx) xxx–xxx 9

6. Concluding remarks 1

In this work, we have used the selection mechanism proposed by Arellano-Valle et al. (2006) to formulate a very flexible 2

family of distributions, where some structural properties are presented in detail. This unified distribution includes many of 3

the recently proposed lifetimemodels as special cases, andmoreover facilitates in giving a biological interpretation for them. 4

Also, the idea of personal probability presented gives an important interpretation for theweight function, whichwe feel will 5

be of interest in survival analysis. However, muchmore research needs to be done in order to investigate unexplored aspects 6

of this mechanism, especially in inferential problems. We hope to motivate many important applications of this selection 7

lifetime distribution in the future. 8
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