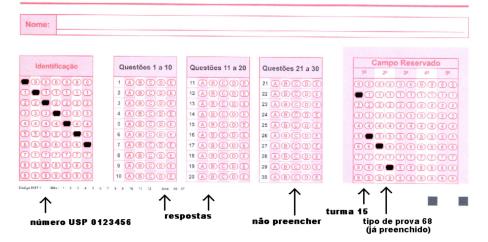
MAT2458 - Álgebra Linear para Engenharia II

Prova 2 - 16/10/2013

Nome:	NUSP:
Professor: _	_ Turma:

Instruções

- (1) A prova tem início às 7:30 e duração de 2 horas.
- (2) Não é permitido deixar a sala sem entregar a prova.
- (3) Todo material não necessário à prova (mochilas, bolsas, calculadoras, agasalhos, bonés, celulares, livros, etc.) deve ficar na frente da sala.
- (4) Sobre a carteira devem permanecer apenas lápis, caneta, borracha e documento de identidade com foto.
- (5) É permitida a entrada na sala até as 8:00 e não é permitida a saída da sala antes das 8:40.
- (6) As respostas devem ser transferidas para a folha óptica durante as 2 horas de prova (não há tempo extra para o preenchimento da folha óptica).
- (7) Só destaque o gabarito do aluno (última folha) quando for entregar a prova. Não esqueça de anotar o tipo de prova no gabarito do aluno (para que você possa depois conferir suas respostas com o gabarito oficial).
- (8) A folha óptica deve ser preenchida com caneta esferográfica azul ou preta.
- (9) Para o correto preenchimento da folha óptica siga o exemplo abaixo.



Notações: Nesta prova, se V é um espaço vetorial e $v_1, \ldots, v_n \in V$, então $[v_1, \ldots, v_n]$ denota o subespaço vetorial de V gerado por $\{v_1, \ldots, v_n\}$.

O espaço vetorial de todos os polinômios de grau $\leq n$, incluindo o polinômio nulo, é denotado por $P_n(\mathbb{R})$. E se $p \in P_n(\mathbb{R})$, então p' é a sua derivada.

O operador linear identidade em um espaço vetorial é denotado por ${\it I.}$

Se T é um operador linear em um espaço vetorial e n é um inteiro positivo, então T^n denota o operador linear composto $T \circ T \circ \cdots \circ T$, em que T ocorre n vezes.

Se λ é um autovalor de um operador linear T, o subespaço formado por todos os autovetores de T associados a λ , mais o vetor nulo, é denominado auto-espaço de T associado a λ .

Questão 1. Seja $T: M_2(\mathbb{R}) \to P_1(\mathbb{R})$ a transformação linear tal que

$$[T]_{\mathcal{BC}} = egin{bmatrix} 2 & 0 & 1 & 0 \ 0 & 1 & 1 & -1 \end{bmatrix},$$

em que \mathcal{B} e \mathcal{C} são as bases de $M_2(\mathbb{R})$ e de $P_1(\mathbb{R})$, respectivamente, dadas por

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\} \quad \mathbf{e} \quad \mathcal{C} = \{1 + x, 2 + 3x\}.$$

Então,
$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)$$
 é igual a

a.
$$(2a+c)+(b-c-d)x$$

b.
$$(2a-c-2d)+(2a+3b-3d)x$$

c.
$$(2b-2c+d)+(-a+3b-3c+d)x$$

d.
$$(2a+b-2c)+(3a+3c-d)x$$

e.
$$(2a+d)+(-a+b-c)x$$

Questão 2. Assinale a afirmação **FALSA** acerca de um operador linear T em um espaço vetorial de dimensão 2.

- **a.** Se T é diagonalizável, então T^2 também é.
- **b.** Se T^2 é diagonalizável, então T também é.
- **c.** Se $T^2 = T$, então T é diagonalizável.
- **d.** Se T não é nulo e $T^2 = T$, então T possui pelo menos um autovalordistinto de zero.
- **e.** Se T^2 não possui autovalor, então T também não possui autovalor.

Questão 3. Seja n um inteiro maior do que 1. Considere as seguintes afirmações sobre uma matriz $A \in M_n(\mathbb{R})$:

- (I) Se $x \in \mathbb{R}^n$ é tal que $Ax = \lambda x$ para algum escalar não nulo λ , então x é um autovetor de A.
- (II) Se 0 for um autovalor de A, então as colunas de A formam um conjunto linearmente dependente em \mathbb{R}^n .
- (III) Se n=2 e o polinômio característico de A for t^2-1 , então A será diagonalizável e invertível.

Está correto o que se afirma em

- a. (II), apenas.
- **b.** (I) e (III), apenas.
- **c.** (I) e (II), apenas.
- **d.** (I), (II) e (III).
- e. (II) e (III), apenas.

Questão 4. Considere a transformação linear $T \colon P_2(\mathbb{R}) \to P_3(\mathbb{R})$ definida por

$$T(p)(x) = xp'(x) + 6 \int_0^x p(t)dt$$

e a base $\mathcal{B}=\{1,x,x^2\}$ de $P_2(\mathbb{R})$. Se $\mathcal{C}=\{p_1,p_2,p_3,p_4\}$ é uma base de $P_3(\mathbb{R})$ tal que

$$[T]_{\mathcal{BC}} = egin{bmatrix} 2 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 4 \ 0 & 0 & 0 \end{bmatrix},$$

então

a.
$$p_1(x) = 3x$$
, $p_2(x) = x/3 + x^2/3$ e $p_3(x) = x^2 + x^3/2$

b.
$$p_1(x) = 3x$$
, $p_2(x) = x/3 + x^2$ e $p_3(x) = x^2/2 + x^3/2$

c.
$$p_1(x) = 3x$$
, $p_2(x) = x + 3x^2$ e $p_3(x) = x^2/2 + x^3$

d.
$$p_1(x) = 6x$$
, $p_2(x) = x + 3x^2$ e $p_3(x) = 2x^2 + 2x^3/2$

e.
$$p_1(x) = 2x$$
, $p_2(x) = 3x + 3x^2$ e $p_3(x) = 4x^2 + 4x^3$

Questão 5. Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ um operador linear tal que

$$Ker(T) = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z - w = 0 \text{ e } y - w = 0\}.$$

Sabendo que T é diagonalizável, que 3 é um autovalor de T e que $\dim (\operatorname{Ker}(T-3I))=1$, é correto afirmar que o polinômio característico de T é igual a

a.
$$t(t^2+1)(t-3)$$
.

- **b.** $t(t-3)(t-\lambda)(t-\mu)$, para algum $\lambda \in \mathbb{R}$ e algum $\mu \in \mathbb{R}$ tais que $\lambda \neq 3$, $\lambda \neq 0$, $\mu \neq 3$ e $\mu \neq 0$.
- **c.** $t(t-3)^2(t-\lambda)$, para algum $\lambda \in \mathbb{R}$ tal que $\lambda \neq 3e$ $\lambda \neq 0$.
- **d.** $t^2(t-3)(t-\lambda)$, para algum $\lambda \in \mathbb{R}$ tal que $\lambda \neq 3e$ $\lambda \neq 0$.
- **e.** $t^2(t-3)^2$.

Questão 6. Em um espaço vetorial de dimensão finita, considere um operador linear invertível T com autovetores u e v associados, respectivamente, a autovalores distintos λ e μ . Considere as seguintes afirmações:

- (I) $\lambda \neq 0$ e u é um autovetor do operador linear T^{-1} associado ao autovalor λ^{-1} .
- (II) u + v é um autovetor de T associado ao autovalor $\lambda + \mu$.
- (III) v é um autovetor do operador linear $T^3 + 2T^2$ associado ao autovalor $\mu^3 + 2\mu^2$.

Está correto o que ser afirma em

- a. (I) e (II), apenas.
- **b.** (I) e (III), apenas.
- **c.** (I), apenas.
- **d.** (II) e (III), apenas.
- **e.** (I), (II) e (III).

Questão 7. Sobre duas matrizes A e B quadradas, do mesmo tamanho, e semelhantes, **NÃO** é correto afirmar que

- **a.** *A* é invertível, se e somente se, *B* for invertível.
- **b.** *A* e *B* têm os mesmos autovetores.
- **c.** $\det A = \det B$.
- **d.** *A* e *B* têm os mesmos autovalores.
- **e.** existe alguma matriz invertível S tal que $B = SAS^{-1}$.

Questão 8. Considere \mathbb{R}^3 munido do produto interno usual e seja $S = \{(x,y,z) \in \mathbb{R}^3 : x+y-2z=0\}$. Se $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ denota a projeção ortogonal sobre S, então **NÃO** é correto afirmar que

- **a.** a matriz de T em relação à base canônica de \mathbb{R}^3 é invertível.
- **b.** *T* é diagonalizável.
- **c.** S é um auto-espaço de T.
- **d.** *T* possui exatamente dois auto-espaços.
- **e.** o polinômio característico de T é $p(t) = -t(t-1)^2$.

Questão 9. Seja $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear que satisfaz

$$T(3,2) = 2(3,2)$$
 e $T(1,1) = 3(1,2)$.

Se A denota a matriz de T com respeito à base canônica de \mathbb{R}^2 , então o determinante de A é igual a

- **a.** 6
- **b.** 12
- **c.** −18
- **d.** 24
- **e.** −14

Questão 10. Sabendo que a matriz do operador linear $T\colon \mathbb{R}^2 \to \mathbb{R}^2$ em relação a uma base de \mathbb{R}^2 é

$$\begin{bmatrix} 4 & b \\ -4 & 8 \end{bmatrix},$$

em que $b \in \mathbb{R}$, é correto afirmar que

- **a.** existe um valor de b para o qual T possui um auto-espaço de dimensão 2.
- **b.** não existe valor de b para o qual 0 seja autovalor de T.
- **c.** se b = 1, então T(u) = 6u, para todo $u \in \mathbb{R}^2$.
- **d.** existe um valor de b para o qual T possui um único autovalor.
- **e.** se b=-8, então T não é diagonalizável.

Questão 11. Seja $F: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ uma transformação linear satisfazendo $\operatorname{Ker}(F) = \{ p \in P_2(\mathbb{R}) \mid p'' = 0 \text{ e } p(-1) = 0 \}$. Se $1 + x^2$ e $-x + 2x^2$ são autovetores de F associados aos autovalores 1 e 2, respectivamente, então $F(1-x^2)$ é igual a

- **a.** $3 + 2x x^2$
- **b.** $1 2x + 5x^2$
- **c.** $3 + 4x 5x^2$
- **d.** $1 x + 3x^2$
- **e.** $2 2x^2$

Questão 12. Suponha que \mathbb{R}^2 tenha um produto interno \langle , \rangle com respeito ao qual a base $B = \{(1,1),(1,2)\}$ seja ortonormal. Sejam $\alpha,\beta \in \mathbb{R}$ e seja $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ o operador linear definido por

$$T(x,y) = (\alpha x + \beta y, \beta y),$$

para todo $(x,y) \in \mathbb{R}^2$. Então, T é simétrico com relação ao produto interno $\langle \ , \ \rangle$ se, e somente se,

- **a.** $3\alpha + 2\beta = 0$
- **b.** $2\alpha + 3\beta = 0$
- **c.** $\alpha + 2\beta = 0$
- **d.** $\alpha + 3\beta = 0$
- **e.** $3\alpha + \beta = 0$

Questão 13. Seja $D: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ a transformação linear derivação, isto é, D é definida por D(p) = p', para todo $p \in P_2(\mathbb{R})$, e seja $F: \mathbb{R}^3 \to P_2(\mathbb{R})$ a transformação linear tal que

$$[F]_{\mathcal{BC}} = egin{bmatrix} 1 & 2 & 1 \ 0 & 1 & 0 \ 1 & 1 & 1 \end{bmatrix}$$
 ,

em que \mathcal{B} e \mathcal{C} são as bases de \mathbb{R}^3 e de $P_2(\mathbb{R})$ dadas por

$$\mathcal{B} = \{(1,0,1), (0,1,1), (1,1,0)\}\$$
e $\mathcal{C} = \{1+x, x, x+x^2\},$

respectivamente. Então, $Ker(D \circ F)$ é

- **a.** [(1,-1,0)].
- **b.** [(1,-1,1),(1,1,-1)].
- **c.** [(0, -1, 1)].
- **d.** [(1,1,-1)].
- **e.** $\{(0,0,0)\}.$

Questão 14. Considere as matrizes *A*, *B* e *C* abaixo:

$$A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -3 & 1 \\ 2 & 2 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} a & 1 & c \\ 1 & 0 & -1 \\ 0 & b & 1 \end{bmatrix},$$

em que $a,b,c\in\mathbb{R}$. Se C é invertível e satisfaz $C^{-1}AC=B$, então a+b+c é igual a

- **a.** 0
- **b.** 1
- **c.** 2
- **d.** −1
- **e.** −2

Questão 15. Dizemos que uma reta que passa pela origem de \mathbb{R}^2 é invariante pelo operador linear $S \colon \mathbb{R}^2 \to \mathbb{R}^2$ se S(x) estiver nessa reta sempre que x estiver. A respeito dos operadores lineares L, R, T de \mathbb{R}^2 que satisfazem

$$[L]_{\mathcal{B}} = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}, \quad [R]_{\mathcal{B}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \mathbf{e} \quad [T]_{\mathcal{B}} = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix},$$

em que ${\mathcal B}$ denota a base canônica de ${\mathbb R}^2$, é correto afirmar que

- **a.** há única reta invariante por L e uma única reta invariante por T.
- **b.** não há retas invariantes por *T* e há uma única reta invariante por *L*.
- **c.** há uma única reta invariante por R e uma única reta invariante por T.
- **d.** não há retas invariantes por *R* e exitem duas retas invariantes por *L*.
- **e.** não há retas invariantes por R e exitem duas retas invariantes por T.

Questão 16. Acerca de um operador linear T cujo polinômio característico é $p_T(t) = -t(t^2 - 1)(t^2 - 4)$, é correto afirmar que

- **a.** $p_{T^2}(t) = p_T(t)^2$.
- **b.** $T^3 T$ é diagonalizável e $p_{T^3 T}(t) = -t^3(t 6)(t + 6)$.
- **c.** $T^2 4I$ tem quatro autovalores distintos e não é diagonalizável.
- **d.** T^2 tem cinco autovalores distintos e é diagonalizável.
- **e.** T é invertível e $p_{T^{-1}}(t) = -t(t^2 1)(t^2 \frac{1}{4})$.

Gabarito do Aluno

Nome:	NUSP:	
Tipo de prova:		

	a	b	c	d	e
Questão					
1					
2					
3					
4					
5					
6					
7					
8				H	H
9				H	H
10					
11					
12					
13	\vdash		\vdash	H	\vdash
14					
15	H		\vdash	H	\vdash
	\vdash			H	
16					