Tópicos abordados nesta aula Introdução Gambling with the Devil Matematicamente... Sem riscos Na Prática

TEORIA MODERNA DE PORTFOLIOS UM PONTO DE VISTA MATEMÁTICO

Prof. Alexandre Lymberopoulos

Instituto de Matemática e Estatística Universidade de São Paulo

- INTRODUÇÃO
- RISCO E RETORNO
 - Um pouco de Estatística
- 3 MODELAGEM MATEMÁTICA DO PROBLEMA
- INVESTIMENTOS DE RISCO ZERO
- **5** ESTATÍSTICA E ÁLGEBRA LINEAR

 A idéia é modelar como um investidor racional diversificaria seus investimentos para otimizar seu portfolio.

- A idéia é modelar como um investidor racional diversificaria seus investimentos para otimizar seu portfolio.
- E também como precificar um investimento de alto risco.

- A idéia é modelar como um investidor racional diversificaria seus investimentos para otimizar seu portfolio.
- E também como precificar um investimento de alto risco.
- Este modelo trata o retorno de um investimento como uma variável aleatória e um portfolio como uma combinação linear convexa de um número dado de investimentos e é, então, uma variável aleatória.

- A idéia é modelar como um investidor racional diversificaria seus investimentos para otimizar seu portfolio.
- E também como precificar um investimento de alto risco.
- Este modelo trata o retorno de um investimento como uma variável aleatória e um portfolio como uma combinação linear convexa de um número dado de investimentos e é, então, uma variável aleatória.
- Portanto possui esperança e variância.

- A idéia é modelar como um investidor racional diversificaria seus investimentos para otimizar seu portfolio.
- E também como precificar um investimento de alto risco.
- Este modelo trata o retorno de um investimento como uma variável aleatória e um portfolio como uma combinação linear convexa de um número dado de investimentos e é, então, uma variável aleatória.
- Portanto possui esperança e variância.
- O risco, neste modelo, é o desvio padrão desta variável aleatória.

O modelo assume que o investidor é averso à riscos.

- O modelo assume que o investidor é averso à riscos.
- Mas ele também quer um bom retorno, e, para tanto, precisa assumir algum risco (que gere uma expectativa alta de um bom retorno, obviamente).

- O modelo assume que o investidor é averso à riscos.
- Mas ele também quer um bom retorno, e, para tanto, precisa assumir algum risco (que gere uma expectativa alta de um bom retorno, obviamente).
- Um investidor racional não investe num portfolio se existir um segundo portfolio com um perfil de risco-retorno mais favorável às suas expectativas.

- O modelo assume que o investidor é averso à riscos.
- Mas ele também quer um bom retorno, e, para tanto, precisa assumir algum risco (que gere uma expectativa alta de um bom retorno, obviamente).
- Um investidor racional não investe num portfolio se existir um segundo portfolio com um perfil de risco-retorno mais favorável às suas expectativas.
- O modelo usa um dado histórico, a volatilidade, como uma medida para o risco.

- O modelo assume que o investidor é averso à riscos.
- Mas ele também quer um bom retorno, e, para tanto, precisa assumir algum risco (que gere uma expectativa alta de um bom retorno, obviamente).
- Um investidor racional não investe num portfolio se existir um segundo portfolio com um perfil de risco-retorno mais favorável às suas expectativas.
- O modelo usa um dado histórico, a volatilidade, como uma medida para o risco.
- O modelo assume que o investidor é indiferente a outras informações (isso nem sempre é verdade).

- O modelo assume que o investidor é averso à riscos.
- Mas ele também quer um bom retorno, e, para tanto, precisa assumir algum risco (que gere uma expectativa alta de um bom retorno, obviamente).
- Um investidor racional não investe num portfolio se existir um segundo portfolio com um perfil de risco-retorno mais favorável às suas expectativas.
- O modelo usa um dado histórico, a volatilidade, como uma medida para o risco.
- O modelo assume que o investidor é indiferente a outras informações (isso nem sempre é verdade).
- O retorno do portfolio é a combinação linear convexa dos retornos de cada investimento do portfolio.

- O modelo assume que o investidor é averso à riscos.
- Mas ele também quer um bom retorno, e, para tanto, precisa assumir algum risco (que gere uma expectativa alta de um bom retorno, obviamente).
- Um investidor racional não investe num portfolio se existir um segundo portfolio com um perfil de risco-retorno mais favorável às suas expectativas.
- O modelo usa um dado histórico, a volatilidade, como uma medida para o risco.
- O modelo assume que o investidor é indiferente a outras informações (isso nem sempre é verdade).
- O retorno do portfolio é a combinação linear convexa dos retornos de cada investimento do portfolio.
- A volatilidade do portfolio é uma função que depende da correlação dos investimentos nele e é não linear nos "pesos".

• Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$
 - $\mathcal F$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$
 - ${\mathcal F}$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo
 - $\mathbf{0} \ \Omega \in \mathcal{F};$

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$
 - ${\mathcal F}$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo
 - $\Omega \in \mathcal{F}$;
 - ② Se E ⊂ Ω então E ∈ F \iff E^c ∈ F;

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$
 - ${\mathcal F}$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo
 - $\mathbf{0}$ $\Omega \in \mathcal{F}$;

 - \bullet \mathcal{F} é fechado por união enumerável de elementos em \mathcal{F} ;

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$
 - ${\mathcal F}$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo
 - $\mathbf{0}$ $\Omega \in \mathcal{F}$;

 - $lackbox{0}{}$ \mathcal{F} é fechado por união enumerável de elementos em \mathcal{F} ;
 - Os elementos de \mathcal{F} são chamados *eventos*;

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$
 - ${\mathcal F}$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo
 - $\mathbf{0}$ $\Omega \in \mathcal{F}$;
 - ② Se $E \subset \Omega$ então $E \in \mathcal{F} \iff E^c \in \mathcal{F}$;
 - $lackbox{0}{}$ \mathcal{F} é fechado por união enumerável de elementos em \mathcal{F} ;
 - Os elementos de F são chamados eventos;
 - P é uma medida (de probabilidade) em (Ω, \mathcal{F}) , ou seja, $P: \mathcal{F} \to [0,1]$ é uma função satisfazendo

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega = \mathbb{R}$;
 - ${\mathcal F}$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo
 - $\mathbf{0}$ $\Omega \in \mathcal{F}$;
 - $olimits_{C}$ Se $E \subset \Omega$ então $E \in \mathcal{F} \iff E^c \in \mathcal{F}$;
 - \bullet \bullet fechado por união enumerável de elementos em \mathcal{F} ;
 - Os elementos de F são chamados eventos;
 - P é uma medida (de probabilidade) em (Ω, \mathcal{F}) , ou seja, $P: \mathcal{F} \to [0,1]$ é uma função satisfazendo
 - **1** $P(\emptyset) = 0 e P(\Omega) = 1;$

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$
 - ${\mathcal F}$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo
 - $\mathbf{0}$ $\Omega \in \mathcal{F}$;
 - $olimits_{\bullet}$ Se $E \subset \Omega$ então $E \in \mathcal{F} \iff E^c \in \mathcal{F}$;
 - \bullet \bullet fechado por união enumerável de elementos em \mathcal{F} ;
 - Os elementos de F são chamados eventos;
 - P é uma medida (de probabilidade) em (Ω, \mathcal{F}) , ou seja, $P: \mathcal{F} \to [0, 1]$ é uma função satisfazendo
 - **1** $P(\emptyset) = 0 e P(\Omega) = 1;$
 - Se E_1, E_2, \dots são eventos disjuntos $(E_i \cap E_j = \emptyset)$ então $E_i \cap E_j = \emptyset$

$$P\left(\sum_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

- Espaço de Probabilidades: é uma tripla (Ω, \mathcal{F}, P) , onde
 - Ω é um conjunto qualquer, chamado espaço amostral. Para nossos propósitos podemos assumit $\Omega=\mathbb{R};$
 - ${\mathcal F}$ é uma σ -álgebra de Ω , ou seja, uma coleção de subconjuntos de Ω satisfazendo
 - $\Omega \in \mathcal{F}$;
 - ② Se $E \subset Ω$ então $E \in \mathcal{F} \iff E^c \in \mathcal{F}$;
 - $\begin{cases} \begin{cases} \begin{cases}$
 - Os elementos de F são chamados eventos;
 - P é uma medida (de probabilidade) em (Ω, \mathcal{F}) , ou seja, $P: \mathcal{F} \to [0, 1]$ é uma função satisfazendo

 - Se E_1, E_2, \ldots são eventos disjuntos $(E_i \cap E_j = \emptyset)$ então $P(\sum_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$
- Variável aleatória: se (Ω, \mathcal{F}, P) é um espaço de probabilidade então uma *variável aleatória* é uma função $X : \Omega \to \mathbb{R}$ integrável em todo elemento de \mathcal{F} .

• Esperança: se X é uma variável aleatória em (Ω, \mathcal{F}, P) então seu valor esperado ou esperança é

$$\mu_X = E(X) = \int_{\Omega} X dP.$$

• Esperança: se X é uma variável aleatória em (Ω, \mathcal{F}, P) então seu valor esperado ou esperança é

$$\mu_X = E(X) = \int_{\Omega} X dP.$$

• Nem sempre existe μ_X (ver distribuição de Cauchy).

• Esperança: se X é uma variável aleatória em (Ω, \mathcal{F}, P) então seu valor esperado ou esperança é

$$\mu_X = E(X) = \int_{\Omega} X dP.$$

- Nem sempre existe μ_X (ver distribuição de Cauchy).
- Se X é discreta com eventos x_i , $1 \le i \le n$ e probabilidade $p(x_i)$ então

$$E(X) = \sum x_i p(x_i).$$

• Esperança: se X é uma variável aleatória em (Ω, \mathcal{F}, P) então seu *valor esperado* ou *esperança* é

$$\mu_X = E(X) = \int_{\Omega} X dP.$$

- Nem sempre existe μ_X (ver distribuição de Cauchy).
- Se X é discreta com eventos x_i , $1 \le i \le n$ e probabilidade $p(x_i)$ então

$$E(X) = \sum x_i p(x_i).$$

Se X é contínua com densidade de probabilidade f(x) então

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

• Variância: se X é uma variável aleatória em (Ω, \mathcal{F}, P) com esperança μ então sua *variânçia* é

$$Var(X) = E[(X - \mu_X)^2].$$

• Variância: se X é uma variável aleatória em (Ω, \mathcal{F}, P) com esperança μ então sua *variânçia* é

$$Var(X) = E[(X - \mu_X)^2].$$

Nem sempre existe Var(X) (ver distribuição de Cauchy).

• Variância: se X é uma variável aleatória em (Ω, \mathcal{F}, P) com esperança μ então sua *variânçia* é

$$Var(X) = E[(X - \mu_X)^2].$$

- Nem sempre existe Var(X) (ver distribuição de Cauchy).
- Se X é variável aleatória discreta com cada evento x_i, 1 ≤ i ≤ n tendo probabilidade p(x_i) então

$$Var(X) = \sum p(x_i)(x_i - \mu)^2.$$

• Variância: se X é uma variável aleatória em (Ω, \mathcal{F}, P) com esperança μ então sua *variânçia* é

$$Var(X) = E[(X - \mu_X)^2].$$

- Nem sempre existe Var(X) (ver distribuição de Cauchy).
- Se X é variável aleatória discreta com cada evento x_i , $1 \le i \le n$ tendo probabilidade $p(x_i)$ então

$$Var(X) = \sum p(x_i)(x_i - \mu)^2.$$

 Se X é variável aleatória contínua com densidade de probabilidade f(x) então

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.$$

• Covariância: se X e Y são duas variáveis aleatórias em (Ω, \mathcal{F}, P) com esperanças μ e ν , respectivamente, então a covariância de X e Y é

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)].$$

• Covariância: se X e Y são duas variáveis aleatórias em (Ω, \mathcal{F}, P) com esperanças μ e ν , respectivamente, então a covariância de X e Y é

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)].$$

Usando somente as definições vemos que

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)] = E[XY - Y\mu - X\nu + \mu\nu]$$
$$= E(XY) - \mu\nu$$

 Covariância: se X e Y são duas variáveis aleatórias em (Ω, F, P) com esperanças μ e ν, respectivamente, então a covariância de X e Y é

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)].$$

Usando somente as definições vemos que

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)] = E[XY - Y\mu - X\nu + \mu\nu]$$
$$= E(XY) - \mu\nu$$

 Cov(X, Y) mede o quanto uma variação de X influencia a variação de Y.

"RECORDAÇÃO" DE ALGUNS CONCEITOS

 Covariância: se X e Y são duas variáveis aleatórias em (Ω, F, P) com esperanças μ e ν, respectivamente, então a covariância de X e Y é

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)].$$

Usando somente as definições vemos que

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)] = E[XY - Y\mu - X\nu + \mu\nu]$$
$$= E(XY) - \mu\nu$$

- Cov(X, Y) mede o quanto uma variação de X influencia a variação de Y.
- Se X e Y são independentes então E(XY) = E(X)E(Y) e portanto Cov(X, Y) = 0. Além disso, Cov(X, Y) = Cov(Y, X).

"RECORDAÇÃO" DE ALGUNS CONCEITOS

 Covariância: se X e Y são duas variáveis aleatórias em (Ω, F, P) com esperanças μ e ν, respectivamente, então a covariância de X e Y é

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)].$$

Usando somente as definições vemos que

$$Cov(X, Y) = E[(X - \mu)(Y - \nu)] = E[XY - Y\mu - X\nu + \mu\nu]$$
$$= E(XY) - \mu\nu$$

- Cov(X, Y) mede o quanto uma variação de X influencia a variação de Y.
- Se X e Y são independentes então E(XY) = E(X)E(Y) e portanto Cov(X,Y) = 0. Além disso, Cov(X,Y) = Cov(Y,X).
- A correlação de X e Y é dada por $\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$.

• Sejam R_1, \ldots, R_n os retornos de n investimentos diponíveis no mercado e $w = (w_1, \ldots, w_n)^T$ os percentuais do capital total que se deseja investir em cada um dos investimentos.

- Sejam $R_1, ..., R_n$ os retornos de n investimentos diponíveis no mercado e $w = (w_1, ..., w_n)^T$ os percentuais do capital total que se deseja investir em cada um dos investimentos.
- O retorno de um tal investimento é

$$R = \sum_{i=1}^{n} w_i R_i \tag{1}$$

- Sejam $R_1, ..., R_n$ os retornos de n investimentos diponíveis no mercado e $w = (w_1, ..., w_n)^T$ os percentuais do capital total que se deseja investir em cada um dos investimentos.
- O retorno de um tal investimento é

$$R = \sum_{i=1}^{n} w_i R_i \tag{1}$$

R é variável aleatória pois, por hipótese, cada R_i o é, e

$$\mu_R := E(R) = E\left(\sum_{i=1}^n w_i R_i\right) = \sum_{i=1}^n w_i E(R_i) = \sum_{i=1}^n w_i \mu_i$$
 (2)

$$\sigma_R^2 := Var(R) = \sum_{i,j=1}^n w_i w_j cov(R_i, R_j) = \sum_{i,j=1}^n w^T C w, \qquad (3)$$

onde C é a matriz de covariâncias de R_i e R_i .

• O risco de R é $\sigma_R = \sqrt{Var(R)}$.

- O risco de R é $\sigma_R = \sqrt{Var(R)}$.
- Os *vetores atingíveis* ou *viáveis* são aqueles tais que $\sum w_i = 1$ (os percentuais de investimento devem somar 100%).

- O risco de R é $\sigma_R = \sqrt{Var(R)}$.
- Os *vetores atingíveis* ou *viáveis* são aqueles tais que $\sum w_i = 1$ (os percentuais de investimento devem somar 100%).
- O problema então resume-se a encontrar um vetor de percentuais de investimentos, w, que minimize o risco σ_R para um dado retorno fixado $\mu_0 = \mu(w)$, ou seja, procuramos um vetor atingível w que minimize $\sigma(w)$ para um dado valor de $\mu(w)$.

- O risco de R é $\sigma_R = \sqrt{Var(R)}$.
- Os vetores atingíveis ou viáveis são aqueles tais que $\sum w_i = 1$ (os percentuais de investimento devem somar 100%).
- O problema então resume-se a encontrar um vetor de percentuais de investimentos, w, que minimize o risco σ_R para um dado retorno fixado $\mu_0 = \mu(w)$, ou seja, procuramos um vetor atingível w que minimize $\sigma(w)$ para um dado valor de $\mu(w)$.
- O espaço dos vetores atingíveis é um hiperplano em \mathbb{R}^n e queremos encontrar um ponto desse hiperplano que minimiza a função quadrática $\sigma(w)$.

- O risco de R é $\sigma_R = \sqrt{Var(R)}$.
- Os *vetores atingíveis* ou *viáveis* são aqueles tais que $\sum w_i = 1$ (os percentuais de investimento devem somar 100%).
- O problema então resume-se a encontrar um vetor de percentuais de investimentos, w, que minimize o risco σ_R para um dado retorno fixado $\mu_0 = \mu(w)$, ou seja, procuramos um vetor atingível w que minimize $\sigma(w)$ para um dado valor de $\mu(w)$.
- O espaço dos vetores atingíveis é um hiperplano em \mathbb{R}^n e queremos encontrar um ponto desse hiperplano que minimiza a função quadrática $\sigma(w)$.
- Da equação (3) vemos que σ(w) pode ser pensada como o "comprimento" de w relativo ao produto interno dado pela matriz C na base canônica.

 Este é um problema típico de multiplicadores de Lagrange, que é estudado em Cálculo II (MAT-2454).

- Este é um problema típico de multiplicadores de Lagrange, que é estudado em Cálculo II (MAT-2454).
- O sistema de Lagrange é

$$\begin{cases}
\nabla \sigma(\mathbf{w}) = \lambda \nabla \mu(\mathbf{w}) \\
\mu(\mathbf{w}) = \sum \mathbf{w}_i = 1
\end{cases},$$
(4)

onde σ e μ são funções de \mathbb{R}^n a valores reais.

- Este é um problema típico de multiplicadores de Lagrange, que é estudado em Cálculo II (MAT-2454).
- O sistema de Lagrange é

$$\begin{cases}
\nabla \sigma(\mathbf{w}) = \lambda \nabla \mu(\mathbf{w}) \\
\mu(\mathbf{w}) = \sum \mathbf{w}_i = 1
\end{cases},$$
(4)

onde σ e μ são funções de \mathbb{R}^n a valores reais.

TEOREMA

Se w é uma solução do sistema (4) então existem a, b, $c \in \mathbb{R}$ tais que

$$\sigma(\mu) = \sqrt{a\mu^2 + b\mu + c}.$$
 (5)

A curva descrita pela equação (5) é chamada "Markowitz Bullet"

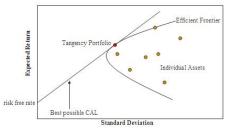


FIGURA: Markowitz Bullet

A curva descrita pela equação (5) é chamada "Markowitz Bullet"

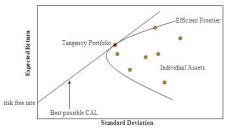


FIGURA: Markowitz Bullet

• Para cada retorno fixado μ_0 , o risco mínimo é dado por σ tal que (σ, μ_0) esteja sobre a curva.

A curva descrita pela equação (5) é chamada "Markowitz Bullet"

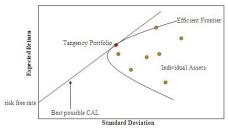


FIGURA: Markowitz Bullet

- Para cada retorno fixado μ_0 , o risco mínimo é dado por σ tal que (σ, μ_0) esteja sobre a curva.
- Ou ainda, para cada risco fixado σ_0 , o retorno máximo é obtido, μ é dado pelo ponto (σ_0, μ) (parte superior da curva).

 Um investimento livre de risco é tipicamente um investimento com garantias, como uma poupança ou papéis de curto prazo de um país confiável.

- Um investimento livre de risco é tipicamente um investimento com garantias, como uma poupança ou papéis de curto prazo de um país confiável.
- Sua correlação com os demais investimentos é nula, uma vez que seu risco (ou seja, a variância) é zero.

- Um investimento livre de risco é tipicamente um investimento com garantias, como uma poupança ou papéis de curto prazo de um país confiável.
- Sua correlação com os demais investimentos é nula, uma vez que seu risco (ou seja, a variância) é zero.
- Por este motivo, como veremos adiante, não só seu retorno (esperança), mas também seu risco (variância) são lineares em função do percentual investido.

- Um investimento livre de risco é tipicamente um investimento com garantias, como uma poupança ou papéis de curto prazo de um país confiável.
- Sua correlação com os demais investimentos é nula, uma vez que seu risco (ou seja, a variância) é zero.
- Por este motivo, como veremos adiante, não só seu retorno (esperança), mas também seu risco (variância) são lineares em função do percentual investido.
- Por este motivo, no plano risco x retorno, o gráfico de um investimento livre de riscos é uma reta.

- Um investimento livre de risco é tipicamente um investimento com garantias, como uma poupança ou papéis de curto prazo de um país confiável.
- Sua correlação com os demais investimentos é nula, uma vez que seu risco (ou seja, a variância) é zero.
- Por este motivo, como veremos adiante, não só seu retorno (esperança), mas também seu risco (variância) são lineares em função do percentual investido.
- Por este motivo, no plano risco x retorno, o gráfico de um investimento livre de riscos é uma reta.
- Esta reta começa quando temos o total do capital aplicado sem riscos e vai caminhando pelo portfolio até o ponto onde temos todo o capital aplicado no portfolio com risco. Veja a figura 1.

Mais um pouco de Matemática

 Queremos combinar o investimento livre de riscos com o portfolio com risco.

MAIS UM POUCO DE MATEMÁTICA

- Queremos combinar o investimento livre de riscos com o portfolio com risco.
- Se R_{rf} é o retorno desse investimento e R é o retorno do portfolio de risco temos

$$\tilde{R} = (1 - t)R_{rf} + tR, \tag{6}$$

onde t é o percentual do capital que desejamos investir no portfolio de risco.

MAIS UM POUCO DE MATEMÁTICA

- Queremos combinar o investimento livre de riscos com o portfolio com risco.
- Se R_{rf} é o retorno desse investimento e R é o retorno do portfolio de risco temos

$$\tilde{R} = (1 - t)R_{rf} + tR, \tag{6}$$

onde *t* é o percentual do capital que desejamos investir no portfolio de risco.

Assim,

$$\mu_{\tilde{R}} = (1 - t)E(R_{rf}) + tE(R)$$

$$\sigma_{\tilde{R}}^{2} = t^{2}\sigma_{R}^{2} + 2t(1 - t)\sigma_{R}^{2}\sigma_{R_{rf}}^{2} + (1 - t)^{2}\sigma_{R_{rf}}^{2}$$

$$= t^{2}\sigma_{R}^{2}$$
(8)

Mais um pouco de Matemática

ullet Logo, $\sigma_{ ilde{R}}=\sqrt{\sigma_{ ilde{R}}^2}=t\sigma_R$ e, das equações (7) e (8), temos

$$\mu_{\tilde{R}} = \mu_{ff} + \left(\frac{\mu_R - \mu_{ff}}{\sigma_R}\right) \sigma_{\tilde{R}},\tag{9}$$

que dá uma relação afim entre $\mu_{\tilde{R}}$ e $\sigma_{\tilde{R}}$.

MAIS UM POUCO DE MATEMÁTICA

• Logo, $\sigma_{\tilde{R}}=\sqrt{\sigma_{\tilde{R}}^2}=t\sigma_R$ e, das equações (7) e (8), temos

$$\mu_{\tilde{R}} = \mu_{ff} + \left(\frac{\mu_R - \mu_{ff}}{\sigma_R}\right) \sigma_{\tilde{R}},\tag{9}$$

que dá uma relação afim entre $\mu_{\tilde{R}}$ e $\sigma_{\tilde{R}}$.

 A melhor escolha para um portfolio combinando investimentos com e sem riscos está sobre esta reta, pois assim podemos obter, para um mesmo risco fixado, retornos maiores que usando somente o portfolio com risco (estamos acima da fronteira de eficiência nesse caso).

MAIS UM POUCO DE MATEMÁTICA

• Logo, $\sigma_{\tilde{R}}=\sqrt{\sigma_{\tilde{R}}^2}=t\sigma_R$ e, das equações (7) e (8), temos

$$\mu_{\tilde{R}} = \mu_{ff} + \left(\frac{\mu_R - \mu_{ff}}{\sigma_R}\right) \sigma_{\tilde{R}},\tag{9}$$

que dá uma relação afim entre $\mu_{\tilde{R}}$ e $\sigma_{\tilde{R}}$.

- A melhor escolha para um portfolio combinando investimentos com e sem riscos está sobre esta reta, pois assim podemos obter, para um mesmo risco fixado, retornos maiores que usando somente o portfolio com risco (estamos acima da fronteira de eficiência nesse caso).
- Se explicitamos as constantes a, b e c em (5) podemos mostrar que essa reta é exatamente a tangente à curva de Markowitz que passa pelo ponto $(0, \mu_{rf})$, onde lembramos que μ_{rf} é a média da variável aleatória R_{rf} . Ver figura 1.

 Numa situação prática não conhecemos os verdadeiros valores de retorno e risco de cada investimento.

- Numa situação prática não conhecemos os verdadeiros valores de retorno e risco de cada investimento.
- Eles devem ser estimados a partir de dados concretos do mercado.

- Numa situação prática não conhecemos os verdadeiros valores de retorno e risco de cada investimento.
- Eles devem ser estimados a partir de dados concretos do mercado.
- Se temos n opções de investimento, R_1, \ldots, R_n , uma possibilidade é olhar para o passado recente.

- Numa situação prática não conhecemos os verdadeiros valores de retorno e risco de cada investimento.
- Eles devem ser estimados a partir de dados concretos do mercado.
- Se temos n opções de investimento, R_1, \ldots, R_n , uma possibilidade é olhar para o passado recente.
- Observando os valores de retorno de cada R_i nos últimos m dias podemos construir vetores $A_1, \ldots, A_n \in \mathbb{R}^m$ com os m valores observados de R_i no vetor A_i .

- Numa situação prática não conhecemos os verdadeiros valores de retorno e risco de cada investimento.
- Eles devem ser estimados a partir de dados concretos do mercado.
- Se temos n opções de investimento, R_1, \ldots, R_n , uma possibilidade é olhar para o passado recente.
- Observando os valores de retorno de cada R_i nos últimos m dias podemos construir vetores $A_1, \ldots, A_n \in \mathbb{R}^m$ com os m valores observados de R_i no vetor A_i .
- Com esses vetores formamos uma matriz $m \times n$, $A = [A_1 \cdots A_n]$.

- Numa situação prática não conhecemos os verdadeiros valores de retorno e risco de cada investimento.
- Eles devem ser estimados a partir de dados concretos do mercado.
- Se temos n opções de investimento, R_1, \ldots, R_n , uma possibilidade é olhar para o passado recente.
- Observando os valores de retorno de cada R_i nos últimos m dias podemos construir vetores $A_1, \ldots, A_n \in \mathbb{R}^m$ com os m valores observados de R_i no vetor A_i .
- Com esses vetores formamos uma matriz $m \times n$, $A = [A_1 \cdots A_n]$.
- Em seguida construimos a matriz $C = A^T A$ que contém em cada posição i, j o número $\langle A_i, A_j \rangle$, que representa um tipo de ângulo entre os vetores envolvido e portanto o quanto cada um deles é dependente dos outros.

 Essa matriz C pode funcionar como matriz de covariâncias para o portfolio considerado.

- Essa matriz C pode funcionar como matriz de covariâncias para o portfolio considerado.
- Ela é simétrica e positiva definida como toda matriz de covariâncias (e de um produto interno) devem ser.

- Essa matriz C pode funcionar como matriz de covariâncias para o portfolio considerado.
- Ela é simétrica e positiva definida como toda matriz de covariâncias (e de um produto interno) devem ser.
- Isto garante que C tem todos os autovalores positivos.

- Essa matriz C pode funcionar como matriz de covariâncias para o portfolio considerado.
- Ela é simétrica e positiva definida como toda matriz de covariâncias (e de um produto interno) devem ser.
- Isto garante que C tem todos os autovalores positivos.
- E?

- Essa matriz C pode funcionar como matriz de covariâncias para o portfolio considerado.
- Ela é simétrica e positiva definida como toda matriz de covariâncias (e de um produto interno) devem ser.
- Isto garante que C tem todos os autovalores positivos.
- E?
- Como C é simétrica, ela tem uma base ortonormal de autovalores.

- Essa matriz C pode funcionar como matriz de covariâncias para o portfolio considerado.
- Ela é simétrica e positiva definida como toda matriz de covariâncias (e de um produto interno) devem ser.
- Isto garante que C tem todos os autovalores positivos.
- E?
- Como C é simétrica, ela tem uma base ortonormal de autovalores.
- E?

- Essa matriz C pode funcionar como matriz de covariâncias para o portfolio considerado.
- Ela é simétrica e positiva definida como toda matriz de covariâncias (e de um produto interno) devem ser.
- Isto garante que C tem todos os autovalores positivos.
- E?
- Como C é simétrica, ela tem uma base ortonormal de autovalores.
- E?
- Os autovetores associados aos maiores autovalores representam as combinações lineares dos investimentos R_i, 1 ≤ n ≤ n de maior risco.