Q1. Sejam V um espaço vetorial e $T:V\to V$ uma transformação linear tal que -1, 1, 2 e 3 sejam autovalores de T. Denote por I o operador identidade de V. Assinale a alternativa contendo números reais que necessariamente são autovalores de $3I-2T+4(T\circ T)$:

- (a) -9, 5, 15 e 33;
- (b) -5, 5, 9 e 33;
- (c) -5, 5, 9 e 15;
- (d) 5, 9, 15 e 33;
- (e) -5, 5, 15 e 33.

Q2. Seja $A \in M_3(\mathbb{R})$ e suponha que

$$(0,1,1), (0,1,-1)$$
 e $(1,0,-1)$

sejam autovetores de A associados, respectivamente, aos autovalores 1, -1 e 0. Temos que A é igual a:

- (a) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$;
- (b) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$;
- (c) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$;
- $(d) \ \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix};$
- (e) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

Q3. Considere a base

$$\mathcal{B} = \{(1,1), (0,1)\}$$

de \mathbb{R}^2 , a base

$$C = \{(1,0,0), (0,1,1), (0,0,1)\}$$

de \mathbb{R}^3 e a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que:

$$[T]_{\mathcal{BC}} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Dados $a, b \in \mathbb{R}$, temos que T(a, b) é igual a:

- (a) (2b-a, b, 2a-b);
- (b) (a+2b,b,0);
- (c) (2b-a, b-2a, 0);
- (d) (2b-a, b-2a, 2a-b);
- (e) (a+2b, b-a, a-b).

Q4. Seja

$$A = \begin{pmatrix} 3 & 0 & i \\ 0 & 1 & 0 \\ i & 0 & 1 \end{pmatrix} \in M_3(\mathbb{C})$$

e considere as seguintes afirmações:

- (I) A é simétrica e não é diagonalizável sobre \mathbb{C} ;
- (II) A possui um autovalor com multiplicidade algébrica igual a 2;
- (III) A é inversível.

Assinale a alternativa correta:

- (a) apenas as afirmações (I) e (III) são verdadeiras;
- (b) apenas as afirmações (I) e (II) são verdadeiras;
- (c) apenas as afirmações (II) e (III) são verdadeiras;
- (d) nenhuma das afirmações é verdadeira;
- (e) todas as afirmações são verdadeiras.

Q5. Sejam $a, b \in \mathbb{R}$ e $T: P_2(\mathbb{R}) \to M_2(\mathbb{R})$ a transformação linear tal que:

$$T(1) = \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix}, \quad T(1-t) = \begin{pmatrix} 1 & 1 \\ 3 & 0 \end{pmatrix} \quad \text{e} \quad T(1-t+2t^2) = \begin{pmatrix} 1 & a \\ b & 0 \end{pmatrix}.$$

Temos que T será injetora se, e somente se:

- (a) $a b \neq 2$;
- (b) a b = 2;
- (c) $a \neq b$;
- (d) a + b = 4;
- (e) $a + b \neq 4$.

Q6. Considere o espaço vetorial $P_5(\mathbb{R})$ munido do produto interno definido por

$$\langle p, q \rangle = \int_0^1 p(t)q(t) dt,$$

para quaisquer $p, q \in P_5(\mathbb{R})$. Se $a, b \in \mathbb{R}$ forem tais que a+bt seja o elemento de $P_1(\mathbb{R})$ mais próximo de t^5 , então a+b será igual a:

- (a) $\frac{5}{7}$;
- (b) $\frac{11}{21}$;
- (c) $\frac{6}{7}$;
- (d) $-\frac{4}{21}$;
- (e) $\frac{19}{21}$.

Q7. Considere a matriz:

$$A = \begin{pmatrix} 3 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{pmatrix} \in M_3(\mathbb{R}).$$

Sabe-se que (1,1,0) e (0,1,1) são autovetores de A associados ao autovalor 2 e que (1,1,1) é um autovetor de A associado ao autovalor 3. Seja X a solução do sistema de equações diferenciais X'(t) = AX(t) satisfazendo a condição X(0) = (-1,2,1). Temos que X(1) é igual a:

- (a) $(3e^2 + e^3, -e^2 + e^3, 2e^2 + e^3);$
- (b) $(2e^2 + e^3, 6e^2 + e^3, 4e^2 + e^3);$
- (c) $(e^2 2e^3, 4e^2 2e^3, 3e^2 2e^3);$
- (d) $(e^2 e^3, 4e^2 e^3, 3e^2 e^3);$
- (e) $(2e^2 2e^3, 6e^2 2e^3, 4e^2 2e^3)$.

Q8. Considere o operador linear $T:\mathbb{C}^2 \to \mathbb{C}^2$ definido por

$$T(z, w) = (iz - iw, 2iz + 4iw),$$

para qualquer $(z, w) \in \mathbb{C}^2$. Assinale a alternativa correspondente a uma base \mathcal{B} de \mathbb{C}^2 tal que a matriz $[T]_{\mathcal{B}}$ seja diagonal:

- (a) $\mathcal{B} = \{(3,5), (1,2+3i)\};$
- (b) $\mathcal{B} = \{(2i, 3i), (0, 1+2i)\};$
- (c) $\mathcal{B} = \{(1, -3), (-4, 7)\};$
- (d) $\mathcal{B} = \{(1+i, -2-2i), (1, -1)\};$
- (e) $\mathcal{B} = \{(-1, 2), (4, i)\}.$

Q9. Seja fixado um sistema de coordenadas $\Sigma = (O, \mathcal{B})$ no plano, com \mathcal{B} uma base ortonormal. Dado $a \in \mathbb{R}$, considere a equação:

$$2axy + (a^2 - 1)y^2 + 2x - y - 1 = 0.$$

Assinale a alternativa correta:

- (a) se a = 1, então a equação representará um par de retas concorrentes;
- (b) se a < -1, então o conjunto solução da equação será vazio;
- (c) a equação representa uma hipérbole, para qualquer valor de a;
- (d) se a > 1, então a equação representará uma elipse;
- (e) se a=-1, então a equação representará uma parábola.

Q10. Considere o espaço vetorial $M_2(\mathbb{R})$ munido do produto interno definido por

$$\langle A, B \rangle = \operatorname{tr}(B^{\operatorname{t}}A),$$

para quaisquer $A, B \in M_2(\mathbb{R})$, em que B^t denota a transposta da matriz B e $\mathrm{tr}(C)$ denota o traço de uma matriz C, isto é, a soma das entradas na diagonal principal de C. Seja $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ um operador linear simétrico cujo polinômio característico seja dado por:

$$p_T(t) = (t+1)(t-1)(t-2)^2.$$

Sejam $a, b, c \in \mathbb{R}$ e denote por I o operador identidade de $M_2(\mathbb{R})$. Suponha que

$$Ker(T + I) = [A_1], \quad Ker(T - I) = [A_2] \quad e \quad Ker(T - 2I) = [A_3, A_4],$$
 em que:

$$A_1 = \begin{pmatrix} 1 & a \\ b & c \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \quad \text{e} \quad A_4 = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}.$$

Temos que a + b + c é igual a:

- (a) -8;
- (b) -11;
- (c) 7;
- (d) 6;
- (e) -13.

Q11. Seja fixado um sistema de coordenadas $\Sigma = (O, \mathcal{B})$ no espaço, com \mathcal{B} uma base ortonormal. Considere a quádrica de equação:

$$3x^2 - y^2 + 7z^2 - 6yz = 4.$$

Uma equação reduzida para essa quádrica é:

- (a) $3p^2 8q^2 2r^2 = 4$;
- (b) $3p^2 + 8q^2 2r^2 = 4$;
- (c) $3p^2 + 8q^2 + 2r^2 = 4$;
- (d) $3p^2 + 4q^2 + 2r^2 = 4$;
- (e) $3p^2 + 4q^2 + 2r^2 = 1$.

Q12. Seja $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ uma transformação linear tal que o polinômio

$$p_1(t) = 1 + t + t^2$$

seja um autovetor de T associado ao autovalor $\lambda_1=1,$ o polinômio

$$p_2(t) = t + t^2$$

seja um autovetor de T associado ao autovalor $\lambda_2 = -1$ e tal que $\mathrm{Ker}(T)$ seja igual ao subespaço vetorial gerado pelo polinômio $p_3(t) = t^2$. Temos que $T(3-2t+t^2)$ é igual a:

- (a) $3 + 8t + 8t^2$;
- (b) $3 + 5t + 5t^2$;
- (c) $3+7t+7t^2$;
- (d) $3+4t+4t^2$;
- (e) $3 + t + t^2$.

Q13. Considere o espaço vetorial \mathbb{R}^3 munido do seu produto interno usual e seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ o operador linear tal que

$$[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

em que \mathcal{B} é a base de \mathbb{R}^3 dada por:

$$\mathcal{B} = \{(2,0,0), (0,1,0), (0,0,1)\}.$$

Considere as seguintes afirmações:

- (I) T é simétrico;
- (II) T é diagonalizável;
- (III) T é inversível e $\frac{1}{2}$ e $\frac{1}{5}$ são autovalores de T^{-1} .

Assinale a alternativa correta:

- (a) apenas a afirmação (III) é verdadeira;
- (b) apenas a afirmação (II) é verdadeira;
- (c) apenas as afirmações (II) e (III) são verdadeiras;
- (d) todas as afirmações são verdadeiras;
- (e) apenas as afirmações (I) e (II) são verdadeiras.

Q14. Seja $T: \mathbb{C}^3 \to \mathbb{C}^3$ um operador linear tal que 1, 1-i e 1+i sejam autovalores de T e considere as seguintes afirmações:

- (I) T é diagonalizável;
- (II) T é inversível e $\frac{1+i}{2}$ é um autovalor de T^{-1} ;
- (III) $T \circ T 5T + 6$ I é um operador inversível, em que I denota o operador identidade de \mathbb{C}^3 .

Assinale a alternativa correta:

- (a) nenhuma das afirmações é necessariamente verdadeira;
- (b) todas as afirmações são necessariamente verdadeiras;
- (c) apenas as afirmações (I) e (III) são necessariamente verdadeiras;
- (d) apenas as afirmações (II) e (III) são necessariamente verdadeiras;
- (e) apenas as afirmações (I) e (II) são necessariamente verdadeiras.

Q15. Considere a matriz

$$A = \begin{pmatrix} 3 & -2i \\ -4i & -3 \end{pmatrix} \in M_2(\mathbb{C})$$

e seja $B=A^{-1}$. Temos que $A^{111}+B^{222}$ é igual a:

(a)
$$\begin{pmatrix} 1 & -2i \\ 4i & 0 \end{pmatrix}$$
;

(b)
$$\begin{pmatrix} 0 & -1 \\ 4i & 0 \end{pmatrix}$$
;

(c)
$$\begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix}$$
;

(d)
$$\begin{pmatrix} 1 & 0 \\ i & -2i \end{pmatrix}$$
;

(e)
$$\begin{pmatrix} 4 & -2i \\ -4i & -2 \end{pmatrix}$$
.

Q16. Se

$$A = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix} \in M_2(\mathbb{R}),$$

então a soma das duas entradas na primeira linha da matriz A^{33} será igual a:

- (a) 3^{33} ;
- (b) $2 \cdot 3^{33}$;
- (c) $\frac{1}{2}(5^{33}+3^{33});$
- (d) 5^{33} ;
- (e) $2 \cdot 5^{33}$.