Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0_V . Se u_1,\ldots,u_n forem vetores de V, o subespaço de V gerado por $\{u_1,\ldots,u_n\}$ será denotado por $[u_1,\ldots,u_n]$. Se V estiver munido de um produto interno e S for um subespaço de V, a projeção ortogonal de um vetor $u\in V$ sobre S, se existir, será denotada por proj $_S u$.

Em \mathbb{R}^n , o produto interno usual é dado por $\langle (a_1,\dots,a_n),(b_1,\dots,b_n)\rangle=a_1b_1+\dots+a_nb_n.$

Se A é uma matriz quadrada, $A^{\rm t}$ denota a matriz transposta de A e ${\rm tr}(A)$ denota o traço de A, isto é, a soma das entradas na diagonal principal de A.

Q1. Seja Vum espaço vetorial com produto interno $\langle\;,\;\rangle$ e sejam $u,v\in V.$ Então $\|u+v\|=\|u\|+\|v\|$ se, e somente se,

- (a) $u \perp v$
- (b) $|\langle u, v \rangle| = ||u|| ||v||$
- (c) $u \neq 0_V$ e $v \neq 0_V$
- (d) $\langle u, v \rangle = ||u|| ||v||$
- (e) $u = 0_V$ ou $v = 0_V$
- **Q2.** Sejam U e V espaços vetoriais de dimensão finita e seja $T\colon U\to V$ uma transformação linear. Assinale a alternativa que contém uma implicação que é necessariamente verdadeira.
- (a) Se $\{u_1,\dots,u_n\}$ é uma base de U, então $\{T(u_1),\dots,T(u_n)\}$ é uma base de $\mathrm{Im}(T).$
- (b) Se $\dim \operatorname{Im}(T) = \dim \operatorname{Ker}(T),$ então T é sobrejetora.
- (c) Se $\dim V \leq \dim U \dim \operatorname{Ker}(T)$, então T é sobrejetora.
- (d) Se T é injetora, então $\dim U = \dim V$.
- (e) Se $\dim V \dim \mathrm{Im}(T) = \dim U,$ então T é injetora.

Q3. Sejam $a,b\in\mathbb{R}$ e seja $T\colon\mathbb{R}^3\to\mathbb{R}^3$ o operador linear que satisfaz $T(1,0,0)=(1,-3,1),\,T(1,1,0)=(2,-5,a)$ e T(1,1,1)=(-1,2,b). Então, Té injetor se, e somente se, a+b for

- (a) diferente de 1
- (b) igual a 2
- (c) diferente de 0
- (d) igual a 1
- (e) diferente de 2

Q4. Considere o subespaço S=[(1,-1,1,2),(0,1,-2,0),(0,0,1,-3)] de \mathbb{R}^4 e o vetor v=(3,-1,4,2). Se \mathbb{R}^4 está munido do produto interno usual, e $v=v_1+v_2$, com $v_1\in S$ e $v_2=(a,b,c,d)\in S^\perp$, então 47(a+b+c+d) é igual a

- (a) 121
- (b) 130
- (c) 11
- (d) 83
- (e) 2

Q5. Seja $\{u_1,u_2,u_3\}$ uma base de \mathbb{R}^3 , munido do produto interno usual, e seja $\{v_1,v_2,v_3\}$ a base obtida de $\{u_1,u_2,u_3\}$ por meio do processo de ortogonalização de Gram-Schmidt. Se $u_3=(0,2,-1)$ e $v_3=(-1,1,0)$, então $\operatorname{proj}_{[v_1,v_2]}u_3$ é igual a

- (a) (1,-1,-1)
- (b) (1,1,-1)
- (c) (-1,3,-1)
- (d) (1, -1, 1)
- (e) (-1, -1, 1)

Q6. Considere, em $M_4(\mathbb{R})$, o produto interno definido por $\langle A, B \rangle = \operatorname{tr}(B^t A)$. Se $S = \{U \in M_4(\mathbb{R}) : U^t = -U\}$, então dim S^{\perp} é igual a

- (a) 5
- (b) 6
- (c) 9
- (d) 10
- (e) 8

Q7. Se $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ é o operador linear que satisfaz $T(1+t)=2-3t+t^2, T(1+t^2)=1+t+2t^2$ e $T(t+t^2)=-1-2t+5t^2,$ e $a,b,c\in\mathbb{R}$ são tais que $T(3-2t+4t^2)=a+bt+ct^2,$ então a+b+c é igual a

- (a) 17
- (b) 25
- (c) 5
- (d) 10
- (e) 13

 ${\bf Q8.}~{\bf A}$ respeito das afirmações

- (I) Existe um operador linear $T\colon P_4(\mathbb{R})\to P_4(\mathbb{R})$ tal que $\mathrm{Ker}(T)=\mathrm{Im}(T).$
- (II) A função $T\colon P_5(\mathbb{R})\to P_5(\mathbb{R})$ definida por $T\bigl(p(t)\bigr)=p(t+1),$ para todo $p(t)\in P_5(\mathbb{R}),$ é uma transformação linear.
- (III) Se E e F são espaços vetoriais de dimensão finita e $T\colon E\to F$ é uma transformação linear, então T é injetora se, e somente se, dim $E\le\dim F$.

é correto afirmar que

- (a) apenas (III) é verdadeira.
- (b) apenas (II) é verdadeira.
- (c) (I), (II) e (III) são falsas.
- (d) (I), (II) e (III) são verdadeiras.
- (e) apenas (II) e (III) são verdadeiras.

Q9. Considere os vetores $v_1=(1,-1,0),\ v_2=(1,2,1)$ e $v_3=(-2,1,1)$ do espaço vetorial \mathbb{R}^3 , munido do produto interno usual. Se $u\in\mathbb{R}^3$ é tal que $\langle u,v_1\rangle=2,\ \langle u,v_2\rangle=0$ e $\langle u,v_3\rangle=-2$, então $\|u\|$ é igual a

- (a) $\sqrt{5}$
- (b) $\sqrt{3}$
- (c) $2\sqrt{2}$
- (d) $\sqrt{2}$
- (e) $2\sqrt{3}$

Q10. Considere, em $P_2(\mathbb{R})$, o produto interno definido por

$$\langle p, q \rangle = p(0)q(0) + p(1)q(1) + p(2)q(2).$$

Considere o subespaço $S=\left[t-1,t^2-1\right]$ de $P_2(\mathbb{R})$ e o polinômio $f=t^2+t+1$. Se $g=at^2+bt+c$, em que $a,b,c\in\mathbb{R}$, é o elemento de S que satisfaz d(f,g)< d(f,h), para todo $h\in S,\,h\neq g$, então a-b-c é igual a

- (a) 8
- (b) 5
- (c) -3
- (d) -13
- (e) -1

Q11. Considere \mathbb{R}^2 munido do produto interno usual e seja T um operador linear de \mathbb{R}^2 que satisfaz $\langle T(u), T(v) \rangle = \langle u, v \rangle$, para todos $u, v \in \mathbb{R}^2$. Sejam $a, b \in \mathbb{R}$ e suponha que T(1,0) = (a,b) e T(0,1) = (b,a). Nessa situação, considere as seguintes afirmações:

- (I) ab = 0
- (II) $a^2 + b^2 = 1$
- $(\dot{\mathrm{III}})$ $a \ge 0 \ \mathrm{e} \ b \ge 0$

Está correto o que se afirma em

- (a) (I) e (II), apenas.
- (b) (II) e (III), apenas.
- (c) (I) e (III), apenas.
- (d) (I), apenas.
- (e) (I), (II) e (III).

Q12. Considere a matriz $A=\begin{bmatrix}1&-1\\2&3\end{bmatrix}$ e a transformação linear $T\colon M_2(\mathbb{R})\to M_2(\mathbb{R})$ definida por T(X)=XA-AX, para todo $X\in M_2(\mathbb{R})$. Nessas condições, dim $\mathrm{Im}(T)$ é igual a

- (a) 2
- (b) 1
- (c) 3
- (d) 4
- (e) 0

Q13. Se, no espaço vetorial $M_2(\mathbb{R})$, com o produto interno dado por $\langle A, B \rangle =$ $\operatorname{tr}(B^{\operatorname{t}}A),\,S$ é o subespaço definido por

$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}) \, : \, a-b+3c+d=0 \text{ e } 2a-b+2d=0 \right\},$$

(a)
$$\left\{ \begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -6 & 0 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -6 & 0 \end{bmatrix} \right\}$$

(c)
$$\left\{ \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \right\}$$

(d)
$$\left\{ \begin{bmatrix} 0 & 1 \\ -6 & 0 \end{bmatrix} \right\}$$

(a)
$$\left\{ \begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -6 & 0 \end{bmatrix} \right\}$$
(b)
$$\left\{ \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -6 & 0 \end{bmatrix} \right\}$$
(c)
$$\left\{ \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \right\}$$
(d)
$$\left\{ \begin{bmatrix} 0 & 1 \\ -6 & 0 \end{bmatrix} \right\}$$
(e)
$$\left\{ \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -6 & 0 \end{bmatrix} \right\}$$

Q14. Considere as seguintes afirmações sobre um espaço vetorial E com produto interno \langle , \rangle :

- (I) Se S_1 e S_2 são subespaços de E tais que $S_1\subset S_2$, então $S_1^\perp\subset S_2^\perp$. (II) Se $\{u_1,u_2,u_3\}$ é uma base do subespaço S de E, então

$$\operatorname{proj}_{S} v = \operatorname{proj}_{[u_{1}]} v + \operatorname{proj}_{[u_{2}]} v + \operatorname{proj}_{[u_{3}]} v,$$

qualquer que seja $v \in E$.

(III) Se $E=[u_1,\ldots,u_n]$ e $v\in E$ é tal que $\langle v,u_j\rangle=0$, para todo $j=1,\ldots,n$, então $v=0_V$.

Está correto o que se afirma em

- (a) (II), apenas.
- (b) (I) e (II), apenas.
- (c) (I) e (III), apenas.
- (d) (I), (II) e (III).
- (e) (III), apenas.

Q15. Em $P(\mathbb{R})$, com o produto interno definido por $\langle p,q\rangle=\int_0^1 p(t)q(t)\,dt$, seja a+bt, com $a,b\in\mathbb{R}$, o polinomio de grau menor ou igual a 1 mais proximo do polinômio t^7 . Então, 12(a+b) é igual a

- (a) 4
- (b) 6
- (c) 5
- (d) 9
- (e) 7

Q16. Seja E um espaço vetorial de dimensão finita com produto interno, seja S um subespaço não trivial de E e seja $T\colon E\to E$ o operador linear definido por $T(v)=-v+\operatorname{proj}_S v$, para todo $v\in E$. Então, pode-se afirmar corretamente que

- (a) Ker(T) = S
- (b) Im(T) = S
- (c) T é injetor
- (d) $\operatorname{Ker}(T) = S^{\perp}$
- (e) T é sobrejetor