Nesta prova, adotam-se as seguinte convenções:

- As equações de quádricas e cônicas estão sempre dadas em relação a um sistema de coordenadas $\Sigma = (0, \mathcal{B})$, em que \mathcal{B} é uma base ortonormal.
- ullet O operador identidade de um espaço vetorial será denotado por I.
- A base canônica de \mathbb{R}^n ou de \mathbb{C}^n será denotada por can.
- Se α é um número complexo, $\overline{\alpha}$ denotará seu conjugado complexo.
- **Q1.** Considere as matrizes $A=\frac{1}{3}\begin{bmatrix}3+i&-2i\\-4i&3-i\end{bmatrix}$ e $Q=\begin{bmatrix}1&1\\-1&2\end{bmatrix}$. Sabendo que $Q^{-1}AQ$ é uma matriz diagonal, é correto afirmar que a soma dos elementos na segunda coluna de A^{400} é igual a
- (A) $3 \cdot 2^{203}$
- (B) $3 \cdot 2^{201}$
- (C) 2^{201}
- (D) $3 \cdot 2^{200}$
- (E) 2^{200}
- **Q2.** Considere \mathbb{R}^2 munido do produto interno usual. Se $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ é o operador linear simétrico que tem 5 como autovalor e que satisfaz T(1,2) = (3,6), então a soma dos elementos na segunda coluna de $[T]_{\mathsf{can}}$ é
- (A) 3/5
- (B) 11/5
- (C) 13/5
- (D) 27/5
- (E) -8/5

Q3. Em \mathbb{R}^4 , com o produto interno usual, seja $T \colon \mathbb{R}^4 \to \mathbb{R}^4$ um operador linear cujos autovalores distintos são λ_1, λ_2 e λ_3 e que satisfaz $\operatorname{Ker}(T-\lambda_1 I) = [(1,0,1,1),(2,0,1,0)]$ e $\operatorname{Ker}(T-\lambda_2 I) = [(1,0,-2,1)]$. Considere as seguintes afirmações:

- I. T certamente não é simétrico.
- II. Se T é simétrico, então existem $a, b, c, d \in \mathbb{R}$ tais que $\text{Ker}(T \lambda_3 I) = [(a, b, c, d)]$ com abcd = 0.
- III. T certamente é diagonalizável, e existem $a,b,c,d\in\mathbb{R}$ tais que $\mathrm{Ker}(T-\lambda_3 I)=[(a,b,c,d)]$ com abcd=0.

Está correto apenas o que se afirma em

- (A) II e III.
- (B) I.
- (C) I e III.
- (D) III.
- (E) II.
- **Q4.** A dimensão do subespaço vetorial complexo de \mathbb{C}^5 gerado pelos vetores

$$(1,2+i,-1,0,1+i), (1-i,3-i,-1+i,0,2), (1,1+i,0,1-i,0), (2-i,3+i,0,1-3i,0), (1,2i,1-i,1-3i,-2)$$

é igual a

- (A) 3
- (B) 1
- (C) 2
- (D) 4
- (E) 5

Q5. Seja $A \in M_3(\mathbb{R})$ uma matriz simétrica tal que $A \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Se 4 é um autovalor de A, então a solução X(t) do sistema de equações diferenciais X'(t) = AX(t) que satisfaz X(0) = (1, 2, 3) é dada por

- (A) $(-1+2e^t, 2e^t, 1+2e^t)$
- (B) $\left(-1+2e^{4t}, 2e^{4t}, 1+2e^{4t}\right)$
- (C) $(e^{4t}, 2e^{4t}, 3e^{4t})$
- (D) $\left(-2e^t + 3e^{4t}, e^t + e^{4t}, 3e^{4t}\right)$
- (E) $(1, 1 + e^{4t}, -1 + 4e^{4t})$

Q6. Seja n um inteiro maior do que 1. Considere as seguintes afirmações sobre uma matriz $A \in M_n(\mathbb{R})$.

- I. Se A diagonalizável sobre $\mathbb C$, então A é também diagonalizável sobre $\mathbb R$.
- II. Seja L o operador linear do espaço vetorial complexo \mathbb{C}^n tal que $[L]_{\mathsf{can}} = A$. Se $\lambda \in \mathbb{C}$ é autovalor de L, então $\dim(\ker(L \lambda I)) = \dim(\ker(L \overline{\lambda}I))$.
- III. Seja T o operador linear do espaço vetorial real \mathbb{R}^n tal que $[T]_{\mathsf{can}} = A$. Se A é diagonal e \mathbb{C} é uma base ortonormal de \mathbb{R}^n em relação ao produto interno usual, então $[T]_{\mathbb{C}}$ é diagonal.

Está correto o que se afirma em

- (A) I e II, apenas.
- (B) I e III, apenas.
- (C) I, II e III.
- (D) II, apenas.
- (E) III, apenas.

Q7. Considere as seguintes matrizes

$$L = \begin{bmatrix} 77 & 99 & \pi^2 \\ 99 & e^5 & 55 \\ \pi^2 & 55 & 11 \end{bmatrix}, M = \begin{bmatrix} 7 - 8i & 99 & 88 \\ 0 & 97 + 79i & \pi^{10} \\ 0 & 0 & 5 - 8i \end{bmatrix}, N = \begin{bmatrix} 1 + i & 1 \\ 1 & 1 - i \end{bmatrix},$$

e seja $P \in M_4(\mathbb{R})$ uma matriz que tem 3-7i e $88-\pi i$ como autovalores. São diagonalizáveis sobre \mathbb{C}

- (A) $L, M \in N$, apenas.
- (B) $N \in P$, apenas.
- (C) $L, M \in P$, apenas.
- (D) $L, M, N \in P$.
- (E) $L \in M$, apenas.

Q8. Sejam $a, b \in \mathbb{R}$ e considere as seguintes afirmações sobre a equação

$$-6x^2 + ay^2 - 6z^2 + 2xz = b$$

nas variáveis x, y, z:

- I. Se a < 0 e b > 0, então a equação não possui solução.
- II. Se a < 0 e b = 0, então a equação não possui solução.
- III. Se a > 0 e b = 0, então a equação possui infinitas soluções.

Está correto apenas o que se afirma em

- (A) II e III.
- (B) I e II.
- (C) I e III.
- (D) I.
- (E) II.

Q9. Seja U um espaço vetorial real de dimensão finita munido de um produto interno, seja $T: U \to U$ um operador linear e sejam λ_1 , λ_2 e λ_3 autovalores de T dois a dois distintos. Para cada i = 1, 2, 3, denote $V_i = \text{Ker}(T - \lambda_i I)$. Considere as seguintes afirmações:

- I. Se $\dim(U) = 4$ e $\dim(V_1) = 2$, então T é simétrico.
- II. Se T é simétrico, então $V_1 \subset (V_2^{\perp} \cap V_3^{\perp})$ e $V_2 \subset V_3^{\perp}$.
- III. Se T é diagonalizável, $\lambda_1, \lambda_2, \lambda_3$ são os únicos autovalores de T e valem as inclusões $V_1 \subset (V_2^{\perp} \cap V_3^{\perp})$ e $V_2 \subset V_3^{\perp}$, então T é simétrico.

Está correto o que se afirma em

- (A) I e III, apenas.
- (B) II, apenas.
- (C) II e III, apenas.
- (D) I, apenas.
- (E) I, II e III.

Q10. Seja $A \in M_2(\mathbb{R})$. Sabendo que $X(t) = (e^{2t} - e^{-t}, e^{2t} + e^{-t})$ é solução do sistema de equações diferenciais X'(t) = AX(t), pode-se afirmar corretamente que o determinante de A é igual a

- (A) -2
- (B) 0
- (C) 2
- (D) -1
- (E) 1

Q11. Seja V um espaço vetorial real munido de um produto interno e seja $T\colon V\to V$ um operador linear simétrico. Se v e w são vetores de V tais que $v\in \mathrm{Ker}(T-3I),\ w\in \mathrm{Ker}(T-4I)$ e $\|v\|=\|w\|=2$, então $\|T(v-w)\|$ é igual a

- (A) $\sqrt{30}$
- (B) 20
- (C) $\sqrt{70}$
- (D) 10
- (E) $\sqrt{85}$

Q12. Seja n um inteiro maior do que 1 e seja $T: \mathbb{C}^n \to \mathbb{C}^n$ o operador linear no espaço vetorial complexo \mathbb{C} cuja matriz, em relação à base canônica de \mathbb{C}^n , é $A \in M_n(\mathbb{C})$. Denote por p_T o polinômio característico de T. Considere as seguintes afirmações:

- I. Se n=2 e $\lambda\in\mathbb{C}$ é um autovalor de T tal que $\lambda\not\in\mathbb{R}$, então T é necessariamente diagonalizável.
- II. Se $A \notin M_n(\mathbb{R})$ e $\alpha \in \mathbb{C}$ é uma raiz de p_T tal que $\alpha \notin \mathbb{R}$, então certamente $p_T(\overline{\alpha}) \neq 0$.
- III. Se $\lambda \in \mathbb{C}$ é um autovalor de T de multiplicidade algébrica n-1, então T será diagonalizável se, e somente se, a dimensão do subespaço complexo $\operatorname{Ker}(T-\lambda I)$ de \mathbb{C}^n for igual a n-1.

Está correto apenas o que se afirma em

- (A) II e III.
- (B) I e III.
- (C) II.
- (D) III.
- (E) I e II.

Q13. A cônica de equação $2x^2 - 2xy + 5y^2 - 1 = 0$ é

- (A) uma parábola.
- (B) um par de retas paralelas.
- (C) um par de retas concorrentes.
- (D) uma hipérbole.
- (E) uma elipse.

Q14. Seja $a \in \mathbb{R}$. A cônica de equação 2xy + 3x - y + a = 0 é um par de retas concorrentes se, e somente se, a for igual a

- (A) 7/2
- (B) -3/2
- (C) 5/3
- (D) 9/2
- (E) -7/3

- **Q15.** Sabendo que $1 e^{-2+i}$ são raízes do polinômio característico da matriz
- $A = \begin{bmatrix} 1 & 0 & -2 \\ -5 & 6 & 11 \\ 5 & -5 & -10 \end{bmatrix}$ e que o auto-espaço de A associado ao autovalor
- -2+ié gerado pelo vetor (2,-3+i,3-i), pode-se afirmar corretamente que uma base para o espaço vetorial formado pelas soluções reais do sistema de equações diferenciais X'(t) = AX(t) é dada por
- (A) $\{e^t(1,1,0), e^{-2t}(2\cos t, -3\cos t \sin t, 3\cos t + \sin t)\}$ $e^{-2t}(2\sin t, \cos t - 3\sin t, -\cos t + 3\sin t)\}$
- (B) $\{e^t(1,1,0), e^{-2t}(2\cos t, 2\cos t 3\sin t, \cos t + \sin t), e^{-2t}(2\sin t, 3\cos t + \sin t, 2\cos t \sin t)\}$
- (C) $\{e^t(1,1,0), e^{-2t}(2\cos t, -3\cos t + 2\sin t, 3\cos t + 2\sin t), e^{-2t}(-2\sin t, 3\cos t 2\sin t, -3\cos t 2\sin t)\}$
- (D) $\{e^t(1,0,1), e^{-2t}(2\cos t, -3\cos t + 2\sin t, 3\cos t + 2\sin t), e^{-2t}(2\sin t, 3\cos t 2\sin t, -3\cos t 2\sin t)\}$
- (E) $\{e^t(1,0,1), e^{-2t}(2\cos t, -3\cos t 4\sin t, 3\cos t + 4\sin t), e^{-2t}(2\sin t, -2\cos t + 4\sin t, \cos t 2\sin t)\}$
- **Q16.** Seja $T: \mathbb{C}^3 \to \mathbb{C}^3$ um operador linear do espaço vetorial complexo \mathbb{C}^3 tal que $[T]_{\mathsf{can}} \in M_3(\mathbb{R})$. Sabendo que T possui 3 autovalores distintos e que (1,1,0) é um autovetor de T, qual dos seguintes vetores de \mathbb{C}^3 certamente não é um autovetor de T?
- (A) 3i(1,1,0)
- (B) (1,1,0) + 4i(1,1,0)
- (C) (1,1,1) + i(2,2,2)
- (D) (1,1,0) + 4(1,1,0)
- (E) (1,1,0) + i(1,1,1)