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Abstract

These are the notes for a series of lectures in the 7th School and
Workshop on Lie Theory, at Universidade Federal de Juiz de Fora, Minas
Gerais, Brazil (online event), in September 8-15, 2021. We wish to thank
the organizers for the invitation to give these lectures. Lecture 1 intro-
duces Riemannian symmetric spaces in terms of geodesic reflections and
explain their basic structure. Lecture 2 presents a sketch of the classifi-
cation of symmetric spaces, based on a good amount of Lie group theory.
Lecture 3 discusses the intrinsic geometry of symmetric spaces, in terms
of flats and restricted roots, and includes a brief survey on isometric ac-
tions on those spaces. The appendices contain a complete proof of the
Cartan-Ambrose theorem (based on Cheeger-Ebin’s book), and a review
of semisimple Lie theory.

Introduction

Symmetric spaces were introduced and extensively studied by Élie Cartan around
1925-1930, over ten years after completion of his impressive work on real and
complex Lie algebras, and constitute undoubtedly his most important work
on Riemannian geometry, with ramifications in classical geometries, the theory
of analytical functions of several complex variables, number theory, harmonic
analysis and topology. It is often said that (in addition to Einstein’s Relativity
Theory) his work on symmetric spaces provoked further development of Rieman-
nian geometry. Roughly speaking, a Riemannian manifold is called a symmetric
space if it is reflectionally symmetric around any point. From the modern point
of view, such manifolds form a class of Riemannian manifolds that simultane-
ously extends space forms and Lie groups with bi-invariant metrics, and include
projective spaces, Grassmann manifolds and their classical generalizations, as
well as some exceptional spaces and non-compact counterparts.
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The classification of symmetric spaces is also the work of Cartan. In modern
terminology, every symmetric space is a homogeneous space. The universal cov-
ering of a symmetric space is also a symmetric space. Every simply-connected
symmetric space is a Riemannian product of irreducible symmetric spaces. The
nonflat irreducible symmetric spaces are separated into compact type and non-
compact type, which are interchanged by Cartan duality. Each of those two
types, in turn, fall into two classes. The symmetric spaces of compact type
can be class 2 (compact Lie groups with bi-invariant metrics), or class 1 (ho-
mogeneous spaces of a compact Lie group defined by an involution), and the
symmetric spaces of non-compact type can be class 4 (homogeneous spaces of
a complex Lie group by a real form, dual to class 2), or class 3 (homogeneous
spaces of a non-compact, non-complex Lie group, by a maximal compact sub-
group, dual to class 1).

In fact, originally Cartan considered a tensorial condition, namely, the par-
allelism of the curvature tensor, ∇R ≡ 0. This condition defines the class of
locally symmetric spaces (which can be equivalently defined as those Rieman-
nian manifolds which are locally reflectionally symmetric around any point), and
only later he brought the property of existence of symmetries to the forefront.
In turns out that in the category of complete and simply connected Rieman-
nian manifolds, the symmetric spaces can also be characterized by the property
that ∇R ≡ 0.

It is often said that Lie groups and homogeneous spaces equipped with in-
variant metrics are good testing spaces in Riemannian geometry. However these
classes can be too general in some contexts, and then symmetric spaces appear
as a more manageable class in which much more refined calculations can take
place. For instance, a good amount of the geometry of symmetric spaces is
described in terms of (non-reduced) root systems. The Jacobi equation along a
geodesic has constant coefficients, and conjugate and cut loci can be accurately
described. Totally geodesic submanifolds are abundant in symmetric spaces,
and their complete classification is a formidable, possibly unreachable algebraic
problem; nonetheless the flat ones are completely understood and indeed play
a major role in the structural theory of symmetric spaces. The topology of
symmetric spaces is also computable, and serves as a nice application of Morse
Theory.

Herein our point of view is to avoid excessive technicality and use Rieman-
nian geometric arguments whenever possible. This somehow contradicts some
opinions that results of an algebraic character should have an algebraic proof,
but, on the other hand, is in line with the feeling that Élie Cartan expressed in
the final lines of [8]:

“J’espère vous avoir montré toute la variété des problèmes que la
Théorie des groupes et la Géométrie, en s’appuyant mutuellement
l’une sur l’autre, permettent d’aborder et de résoudre. Il y a encore
là un champ de recherches à peine exploré et qui promet des résultats
très intéressants.”
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1 Lecture 1: Basic structure

The origins of the theory can be traced back to a joint paper with Schouten [11],
in which Cartan studied some classes of bi-invariant connections on Lie groups,
hence with curvature tensor invariant under parallel transport.1 Cartan pub-
lished a number of papers on the then called “espaces E”, at first building the
theory mostly from the local point of view, and starting 1927, he combined his
techniques with results and points of view of H. Weyl and embarked on a global
theory, mixing differential geometry and semisimple Lie groups in a striking
manner. This led to the monograph [10], in which Cartan outlined the founda-
tions of a global theory of Lie groups and homogeneous spaces. From 1929 on,
Cartan changed the name to “espace symétrique” and went on further develop-
ing the theory. Some highlights are the extension of the Peter-Weyl Theorem to
compact symmetric spaces, the computation of the Betti numbers of compact
Lie groups and their homogeneous spaces and, finally, the paper on bounded
symmetric domains, which was influenced by the work of his son Henri Cartan.

The final chapters of Pontryagin’s book [37] contains an exposition of some
global aspects of Lie theory. However, Chevalley’s Princeton book on Lie
groups [15], born out of his reports on the subject for Bourbaki before the
war, quickly became the standard reference in textbook form, for many years.

In the early fifties there was no exposition of the theory of symmetric spaces
beyond Cartan’s papers. Between 1953 and 1961, A. Borel gave three series of
lectures on the subject (at IAS-Princeton, MIT and Tata Institute in Mumbai),
hoping that the notes would lead to a publication. Early in January 1958, the
available material was communicated to S.-S. Chern, who organized a seminar
on symmetric spaces at the University of Chicago in the first quarter, which
generated informal seminar notes. At that time, R. Palais was an instructor
at Chicago, S. Helgason was assistant professor and J. Wolf was a student of
Chern. Helgason’s and Wolf’s books ([23, 42], first editions in 1962 and 1967,
resp.), containing material on symmetric spaces, would come out of this. In the
same year, J.-L. Koszul visited the University of São Paulo and gave a series
of lectures on symmetric spaces and homogeneous bounded domains, which
notes were published there [31]. Both Borel’s and Koszul’s notes were added
to Bourbaki’s archive, as preparatory material towards chapters on semisimple
Lie groups and symmetric spaces in the book on Lie groups and Lie algebras,
but this has never materialized. In the sixties, symmetric spaces also appeared
in book form in [27] and [32]. Borel’s notes were finally published in 1998,
unedited [4].

The author first learned this material from J. Wolf, and these notes are
mostly inspired by the treatment in his book (which is directly based on the
Borel notes). Throughout the text, (M, g) or M shall denote a connected Rie-
mannian manifold.

1H. Levy had already considered Riemannian manifolds with ∇R = 0, but apparently his
work contains errors and does not go very far.
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1.1 Definition and basic examples

Any point x ∈ M is known to admit a normal neighborhood, that is, a neigh-
borhood U which is the diffeomorphic image of a neighborhood U0 of the origin
0x in the tangent space TxM under the exponential map expx : TxM → M . It
is clear that U0 can be taken to be of the form of an open ball B(0x, ǫ) for some
ǫ > 0. Now it makes sense to define the geodesic symmetry at x to be the map
sx : U → U taking expx(v) to expx(−v) for every v ∈ B(0x, ǫ). Note that sx
reverses geodesics emanating from x.

1.1.1 Proposition Fix a point x in M . Then the following assertions are
equivalent:

a. The geodesic symmetry sx at x is a local isometry.

b. There exists a local isometry s of M defined on a neighborhood of x such
that s(x) = x and the differential dsx = −id.

c. There exists an involutive local isometry of M defined on a neighborhood
of x which has x as an isolated fixed point.

Proof. (a) is equivalent to (b). Assume the geodesic symmetry at x is a
local isometry. We have sx(0) = sx(expx(0x)) = expx(0x) = x. Moreover,
let v ∈ TxM and consider the geodesic γ(t) = expx(tv) for small t. Then
dsx(v) =

d
dt
|t=0sx(expx(tv)) =

d
dt
|t=0 expx(−tv) = −v. Hence we can take s =

sx. Conversely, if s is as in (b), then s(expx(v)) = exps(x)(dsx(v)) = expx(−v)
forcing s to be the geodesic symmetry.

(b) implies (c). The fixed point set of a local isometry s at x is a totally
geodesic submanifold S of M through x whose tangent space at x is precisely
the fixed point set of dsx in TxM . Since dsx = −id, we have TxS = {0} and
hence S is discrete at x. Moreover, s2 is a local isometry with s2(x) = x and
d(s2)x = id, hence it must be the identity on a neighborhood of x.

(c) implies (b). Suppose s is an involutive local isometry as in (c). Then
(dsx)

2 = id. Since dsx is an orthogonal transformation of TxM , this implies
that its eigenvalues are ±1. However, owing to the fact that x is an isolated
fixed point of s, the eigenvalues must be all −1 by the same argument as above.
This finishes the proof. �

A Riemannian manifold (M, g) is called a locally symmetric space if the
assertions of Proposition 1.1.1 hold at every point of M . Furthermore, (M, g) is
called a globally symmetric space or, simply, a symmetric space if the geodesic
symmetry sx is globally defined on M and an isometry for every x ∈M .

1.1.2 Examples a. Euclidean space Rn is a symmetric space. The geodesic
symmetry at the origin is s0(y) = −y for y ∈ Rn. More generally, the
geodesic symmetry at x ∈ Rn is sx(y) = 2x− y. Note that sx and s0 are
conjugate by the translation τx : y 7→ y + x. This suggests the following
example.
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b. A Riemannian manifold is called homogeneous if it admits a transitive
group of isometries. A homogeneous Riemannian manifold is also called a
Riemannian homogeneous space. A Riemannian manifold is called locally
homogeneous if given two points x, y in M , there exist neighborhoods U ,
V of x, y, respectively, and an isometry f : U → V such that f(x) = y.
If (M, g) is (resp. locally) homogeneous, the (resp. local) symmetries at
different points are all conjugate by (resp. local) isometries among them-
selves. Therefore it suffices to check that the geodesic symmetry at one
single point is a (resp. local) isometry in order to show thatM is (resp. lo-
cally) symmetric.

c. The canonical metric on the sphere Sn is realized as the induced metric
from its embedding as the unit sphere in Euclidean space of one dimension
higher. It is then clear that Sn is homogeneous under the group O(n+ 1)
of orthogonal transformations of Rn+1. Anyway, for any x ∈ Sn, the
Euclidean reflection on the line Rx is an orthogonal transformation of
Rn+1 whose restriction to Sn is the geodesic symmetry sx. Hence S

n is a
symmetric space.

d. The real hyperbolic space RHn+1 can be realized as the upper sheet
of a two-sheeted hyperboloid in Lorentzian space. Namely, consider the
Lorentzian inner product in Rn+1 given by

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xnyn,

where x = (x0, . . . , xn), y = (y0, . . . , yn) ∈ Rn+1. We will write R1,n

to denote Rn+1 with such a Lorentzian inner product. Note that if x ∈
R1,n is such that 〈x, x〉 < 0, then the restriction of 〈, 〉 to the orthogonal
complement x⊥ is positive-definite. Note also that the equation 〈x, x〉 =
−1 defines a two-sheeted hyperboloid in R1,n. Now we can define the real
hyperbolic space as the following submanifold of R1,n,

RHn = {x ∈ R1,n | 〈x, x〉 = −1 and x0 > 0 },

equipped with a Riemannian metric g given by the restriction of 〈, 〉 to the
tangent spaces at its points. Since the tangent space of the hyperboloid
at a point x is given by x⊥, the Riemannian metric g turns out to be well
defined. Actually, this submanifold is sometimes called the hyperboloid
model of RPn. Of course, as a smooth manifold, RHn is diffeomorphic
to Rn. It is not difficult to see that RHn is homogeneous under the
group O(1, n) of Lorentzian transformations of R1,n. Moreover, RHn is
a symmetric space, for the geodesic symmetry at a point x is induced by
the reflection along the line Rx, similar to the case of the sphere.

e. Let G be a compact Lie group. It is known that G admits a bi-invariant
metric (cf. subsection 5.6). This means that there exists a Riemannian
metric on g such that the left translations Lg : G → G, Lg(x) = gx,
and right translations Rg : G → G, Rg(x) = xg, are isometries for all
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g ∈ G. In particular, G is homogeneous. Moreover we claim G is also
symmetric. Indeed, let us check that the inversion map ι(x) = x−1 satisfies
the conditions in part (b) of Proposition 1.1.1 at the identity 1. Plainly,
ι(1) = 1, and dι1(X) = d

dt
|t=0ι exp

G(tX) = d
dt
|t=0 exp

G(−tX) = −X
for X ∈ T1G, where expG denotes the Lie group exponential map. In
particular, dι1 is a linear isometry. In order to see that dιg is a linear
isometry for all g ∈ G, we apply the chain rule to the identity ι = Rg−1 ◦
ι◦Lg−1 to get dιg = (dRg−1)1 ◦dι1 ◦ (dLg−1)g and note that (dRg−1)1 and
(dLg−1)g are linear isometries. Hence ι is an isometry.

f . A Riemannian manifold locally isometric to a symmetric space is locally
symmetric. In particular, if M̃ →M is a Riemannian covering and M̃ is a
symmetric space, then M is locally symmetric. The manifold M does not
have to be globally symmetric; examples are given by a surface of genus
g ≥ 2 (covered by RH2) and most lens spaces (covered by spheres).

We have seen that the class of symmetric spaces is a simultaneous general-
ization of the classes of spaces of constant curvature and compact Lie groups
equipped with bi-invariant metrics. The relation of symmetric spaces to spaces
of constant curvature will be made more explicit when we discuss the curva-
ture of symmetric spaces; indeed, there is a local characterization of symmetric
spaces in terms of curvature. On the other hand, the relation of symmetric
spaces to Lie groups involves the fact that symmetric spaces are a special type
of homogeneous spaces, and this is the basis of the structure and classification
results that we shall study.

1.2 Transvections

Contemplate a locally or globally symmetric space M . Do the geodesic symme-
tries generate any kind of group?

Fix a point x in M and a geodesic γ : (−ǫ, ǫ) → M through x = γ(0). For
t ∈ (−ǫ, ǫ), the geodesic symmetry sγ(t), which for the moment we denote simply
by st, is defined and a local isometry. Now the composite map pt := s t

2
s0 is

locally defined and a local isometry of M ; this is called a (local) transvection
along γ. Since γ passes through x, we also say that pt is a transvection at x.

1.2.1 Proposition Let γ : (−ǫ, ǫ) →M be a geodesic through x = γ(0).

a. The transvection pt induces translation along the curve γ, that is, pt(γ(t0)) =
γ(t+ t0). More generally, pt induces parallel transport on vectors along γ,
in the sense that if v ∈ Tγ(t0)M then X(t) = (dpt−t0)γ(t0)(v) is a parallel
vector field along γ.

b. The transvections {pt} along γ form a local one-parameter group of lo-
cal isometries of M , namely, pt+t′ = ptpt′ whenever both hand sides are
defined.
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c. The transvection pt depends only on γ but not on the chosen initial point
x = γ(0). In other words, s t

2
s0 = st0+ t

2
st0 .

Proof. (a) We have pt(γ(t0)) = s t
2
s0(γ(t0)) = s t

2
(γ(−t0)) = γ(t+ t0). In the

proof of the second assertion, we are going to use the fact that isometries act
on vector fields by push-forward taking parallel vector fields to parallel vector
fields. The assertion follows from the fact that if an isometry maps a geodesic
to itself, up to a translation in the parameter, then it maps a parallel vector
field along that geodesic to itself, up to a translation in the parameter. More
formally, assume that t0 = 0 for simplicity of notation. We want to show that
X(t) = (dpt)x(v) is parallel along γ. Let Y denote the parallel vector field along
γ such that Y (0) = v. Fix t1. Then Z(t) = (dpt1)γ(t−t1)(Y (t− t1)) ∈ Tγ(t)M is
a parallel vector field along γ. Note that Z(t1) = (dpt1)x(v) = X(t1). Since t1
is arbitrary, this completes the proof of (a).

(b) An isometry is locally determined by its differential at one point. More-
over, the composition of parallel transports along two adjacent segments of γ
equals the parallel transport along the juxtaposed segment, so the result follows
from part (a).

(c) Use part (b) to write pt = pt+2t0p−2t0 = s t
2
+t0

s0s−t0s0. We have already

remarked that for a local isometry g, the conjugation gsxg
−1 = sgx. Applying

this to g = s0 = g−1 yields that s0s−t0s0 = st0 , as desired. �

It follows from Proposition 1.2.1 that each geodesic determines a unique
local one-parameter group of transvections along it.

1.2.2 Proposition A connected locally symmetric space is locally homogeneous.
A connected globally symmetric space is homogeneous and complete.

Proof. Suppose (M, g) is connected and locally symmetric. Declare two
points of M to be equivalent if there exists a local isometry of M mapping
the first point to the second one. It is enough to prove that the equivalence
classes are open. Indeed, the existence of transvections implies that a normal
neighborhood of a point is contained in its equivalence class.

If (M, g) is in addition globally symmetric, transvections are global isome-
tries and by this argument M is globally homogeneous. Completeness follows
from homogeneity in general. �

It follows from Proposition 1.2.2 and the Hopf-Rinow theorem that a globally
symmetric space M is geodesically complete. In this case, the transvections
along a geodesic form a full one-parameter group of global isometries of M .
Moreover, since any two points of M can be joined by a geodesic arc, the
product of any two geodesic symmetries of M is a transvection.

If M is globally symmetric, the group generated by transvections at a fixed
point x generate a connected transitive subgroup of the isometry group of M ,
and we shall see in subsection 2.1 that this group indeed coincides with the
identity component of the full isometry group of M in case M has no flat de
Rham factor.
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1.2.3 Example Consider the unit sphere Sn. We have already remarked that
the geodesic symmetry sx at a point x is the isometry induced by reflection of
Rn+1 on the line Rx. It follows that for y 6= ±x, the transvection sysx is the
isometry which rotates the geodesic arc xy by an angle twice the angle between
x and y, and which is the identity on the orthogonal complement of the plane
spanned by x, y (if y = −x, then sy = sx). Every element of SO(n+ 1) can
be “diagonalized”, in the sense that it is a product of 2 × 2 rotations, and a
fixed direction in case n is even, with respect to a suitable basis. It is then clear
that the group generated by transvections at x is the full special orthogonal
group SO(n+ 1).

1.3 Tensorial characterization

We first prove Cartan’s criterion allowing to extend a linear isometry, defined on
the tangent space to a Riemannian manifold at a point, to an isometry, defined
on a normal neighborhood of that point.

We need to introduce some notation. Let M and M̃ be two Riemannian
manifolds and let x ∈ M and x̃ ∈ M̃ . Let I : TxM → Tx̃M̃ denote a linear
isometry and let V ⊂ M denote a normal coordinate neighborhood around x
such that expx̃ is defined in I(exp−1

x (V )). We define a map ϕ : V → M̃ by
setting

(1.3.1) ϕ(y) = expx̃ ◦I ◦ exp−1
x (y).

Note that dϕx = I.
For y ∈ V , let Pγ : TxM → TyM denote the parallel transport along the

unique geodesic γ : [0, 1] → M in V from x to y, and let Pγ̃ : Tx̃M̃ → TỹM̃ ,
where ỹ = ϕ(y), be the parallel transport along γ̃ = ϕ ◦ γ. Finally we define

(1.3.2) Iγ : TyM → TỹM̃

by setting
Iγ(u) = Pγ̃ ◦ I ◦ P−1

γ (u).

The purpose of Cartan’s Theorem is to give a criterion for ϕ to be a local
isometry. The main ingredient in the proof below is the fact that the Jacobi
equation along a geodesic in a locally symmetric space has constant coefficients
(with respect to a parallel orthonormal frame).

1.3.3 Theorem (Cartan) If for every y ∈ V and every u, v, w in TqM we
have

Iγ(R(u, v)w) = R̃(Iγ(u), Iγ(v))Iγ(w),

where R and R̃ are the curvature tensors of M and M̃ respectively, then ϕ is a
local isometry. Moreover dϕy = Iγ for every y ∈ V .

Proof. Let y be a point in V and let v be a vector in TyM . We would like
to show that ‖dϕy(v)‖ = ‖v‖.
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There is a unique Jacobi field J along the geodesic γ : [0, 1] → V ⊂M joining
x and y such that J(0) = 0 and J(1) = v since V is a normal neighborhood.
It is known that J(t) = d(expx)tγ′(0)(tw) where w = J ′(0) and hence that
v = d(expx)γ′(0)(w). By the chain rule we have

dϕy(v) = d(expx̃)I(γ′(0)) ◦ I ◦ d(expx)−1
γ′(0)(v),

and hence
dϕy(v) = d(expx̃)γ̃′(0)(I(w)),

where γ̃ = ϕ ◦ γ. Therefore dϕy(v) = J̃(1) where J̃ is the Jacobi field along γ̃

satisfying J̃(0) = 0 and J̃ ′(0) = I(w) = I(J ′(0)).
Let E1 = γ′, E2, . . . , En be an orthonormal frame of parallel vector fields

along γ. We write

J =
n∑

j=1

αjEj

where αj are real valued functions. The Jacobi equation now implies that the
functions αj are the unique solutions of the system of ordinary differential equa-
tions

α′′
j +

n∑

k=1

fkjαk = 0,

where fkj = 〈R(Ek, γ
′) γ′, Ej〉, satisfying the initial condition αj(0) = 0 and

α′
j(0) = wj , where wj are the coefficients of w = J ′(0) with respect to the basis

E1(0), . . . , En(0), i.e., w =
∑

j wjEj(0). It is clear that ‖v‖2 =
∑

j α
2
j (1).

Now let Ẽ1 = γ̃, Ẽ2, . . . , Ẽn denote the parallel vector fields along γ̃ such
that Ẽj(0) = I(Ej(0)). Notice that Iγ(t)(Ej(t)) = Ẽj(t) and Iγ(t)(γ

′(t)) = γ̃′(t).
Hence

〈R̃(Ẽk, γ̃
′) γ̃′, Ẽk〉 = 〈R(Ek, γ

′) γ′, Ek〉
by our assumption. Using the Jacobi equation as above we therefore get

(1.3.4) J̃ =

n∑

j=1

αjẼj ,

i.e., the coefficients of J and J̃ are the same with respect to the two bases.
Here we have used that J̃ satisfies the initial condition J̃(0) = 0 and J̃ ′(0) =
∑

j wjẼj(0). Hence ‖dϕy(v)‖2 =
∑

j α
2
j (1) = ‖v‖2. Using (1.3.4), we also have

that dϕy(v) = J̃(1) = Iγ(J(1)) = Iγ(v). This finishes the proof. �

Next we prove the main result of this section. Consider a Riemannian man-
ifold M with Levi-Cività connection ∇. The characterization of locally sym-
metric spaces in Theorem 1.3.5 is clearly equivalent to the sectional curvature
of M being invariant under parallel transport of tangent 2-planes. The theorem
makes clear the degree of generalization that we get by passing from space forms
to symmetric spaces.

10



1.3.5 Theorem The Riemannian manifold M is locally symmetric if and only
if ∇R = 0.

Proof. Let x ∈ M and consider the geodesic symmetry sx. If M is locally
symmetric, this is a local isometry at x. Since (dsx)x = −id, the equation

d(sx)x∇uR(v, w)z = ∇d(sx)xuR(d(sx)xv, d(sx)xw)d(sx)xz

for u, v, w, z ∈ TxM yields that ∇R = 0.
Conversely, assume that ∇R = 0 and let x ∈ M . Take I = −id and define

ϕ and Iγ as in eqns. (1.3.1) and (1.3.2). Then ϕ is the geodesic symmetry sx.
Since R is a tensor of degree 4, Rx is invariant under I. Since ∇R = 0, R is
preserved by parallel transport, and hence by Iγ . It follows from Theorem 1.3.3
that sx is a local isometry. Since x ∈M is arbitrary, M is locally symmetric. �

1.3.6 Remark The argument in the proof of the first half of Theorem 1.3.5
shows that any “canonical” tensor of even (resp. odd) total degree in a locally
symmetric space must be parallel (resp. must vanish).

1.4 Killing fields

Let us recall some facts about Killing fields. A Killing field X on a Riemannian
manifold M is the infinitesimal generator of a (local) one-parameter group of
(local) isometries of M , and it can be characterized by the equation LXg = 0,
or, equivalently, that (∇X)x is a skew-symmetric endomorphism of TxM for
every x ∈M .

1.4.1 Lemma A Killing vector field X on a Riemannian manifold M is com-
pletely determined by the values of X and ∇X at a given point x ∈M .

Proof. Fix a point x ∈ M , and denote by g the vector space of Killing
vector fields on M . The assertion is then equivalent to the linear map X ∈ g 7→
((∇X)x, Xx) ∈ so(TxM)⊕ TxM being injective. So suppose Xx = (∇X)x = 0.
For any geodesic γ originating at x, the restriction J := X ◦γ is clearly a Jacobi
field along γ, and the assumption on X implies that J(0) = J ′(0) = 0, hence
J ≡ 0. The manifold M is not necessarily complete, but any point of it can be
joined to x by broken geodesic, so that the argument above suffices to conclude
that X ≡ 0. �

It follows from the identity L[X,Y ] = [LX , LY ] and Lemma 1.4.1 that the
space of Killing fields on a n-dimensional Riemannian manifold forms a finite-
dimensional Lie algebra of dimension at most 1

2n(n + 1). In the case of a
complete manifold, it is easily seen that Killing fields are complete (since they
have constant length along their integral curves).

Suppose now that M is a locally symmetric space. Fix a base-point x in M .
For every one-parameter group of transvections {pt} originating at x, there is a
corresponding Killing vector field Y whose value at y ∈M is Y (y) = d

dt
|t=0pty;

such a Y is called an infinitesimal transvection at x.

11



1.4.2 Proposition A Killing vector field Y is an infinitesimal transvection at
x if and only if (∇Y )x = 0. It follows that the bracket of two infinitesimal
transvections vanishes at x.

Proof. Let {pt} be the transvection one-parameter group at x that Y gener-
ates and take any curve η(s) passing through x at s = 0. For the first assertion,

it suffices to prove that ∇(Y ◦η)
ds

|s=0 = 0. Since the Levi-Cività connection is
torsionless,

(1.4.3)
∇
ds

d

dt
ptη(s) =

∇
dt

d

ds
ptη(s) =

∇
dt

(dpt)η(s)η
′(s).

By Proposition 1.2.1(a), the vector field (dpt)xη
′(0) is parallel along γ(t) =

pt(x). Since Y (η(s)) = d
dt
|t=0ptη(s), evaluating eqn. (1.4.3) at s = t = 0 yields

one direction of the claim.
Conversely, assume (∇Y )x = 0, take γ to be the geodesic with γ(0) = x,

γ′(0) = Yx, and consider the infinitesimal transvection Z at x along γ. Then
Y = Z, due to Lemma 1.4.1.

The last assertion follows from [Y1, Y2] = ∇Y1
Y2 −∇Y2

Y1. �

1.5 Linearization

Recall that the Myers-Steenrod Theorem states that isometry group G of a Rie-
mannian manifold M , equipped with the compact-open topology, has a natural
structure of Lie group such that the action of G on M is smooth and repre-
sents its Lie algebra g as the Lie algebra of Killing vector fields on M . It is
also worth recalling that convergence of a sequence of isometries in G in the
compact-open topology is equivalent to pointwise convergence in M . Finally,
the isotropy group Gx at a point x ∈M is compact.

1.5.1 Proposition Let M be a globally symmetric space with Lie group of
isometries G. Fix x ∈ M , write K for the isotropy group at x, and P for
the set of transvections at x. Also, denote by g and k the Lie algebras of G, K,
and by p the set of infinitesimal transvections at x. Then:

(i) M = G/K and G = KP = PK.

(ii) s = Adsx defines an involutive automorphism of g, and g = k + p is the
±1-eigenspace decomposition.

(iii) The projection π : G → M , given by π(g) = gx, has differential π∗ : p ∼=
TxM .

(iv) If k ∈ K and Y ∈ p, then π∗(AdkY ) = dkx(π∗Y ). In particular, the inner
product on TxM lifts to an AdK-invariant inner product on p.

Proof. (i) G acts transitively on M by Proposition 1.2.2, so M is the ho-
mogeneous space G/K. Also, if g ∈ G and y = g−1x, by Hopf-Rinow there is
p ∈ P such that py = x. Now gp−1x = x, so gp−1 ∈ K and g = (gp−1)p ∈ KP ,
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proving G = KP . Finally, PK = KP because K is a subgroup of G and
P−1 = P .

(ii) Every Killing field Z on M decomposes as a sum of Killing fields X+Y ,
where Y ∈ p is the infinitesimal transvection such that Yx = Zx and X =
Z−Y ∈ k. Of course s2 = 1 since s2x = idM . If k ∈ K, then sxks

−1
x is an isometry

of M that fixes x and has the same differential at x as k; hence sxks
−1
x = k.

It follows that sx = +1 on k. Also, sx maps the geodesic γv(t) = expx(tv),
v ∈ TxM , to its opposite γ−v, and hence conjugates the transvections along γv
to the transvections along γ−v. It follows that sx = −1 on p.

(iii) π is onto and kerπ∗ = k.
(iv) We compute

π∗(AdkY ) = π∗

(
d

dt

∣
∣
∣
t=0

k exp tY k−1

)

=
d

dt

∣
∣
∣
t=0

π(k exp tY k−1)

=
d

dt

∣
∣
∣
t=0

k exp tY · x
= dkx(Yx)

= dkx(π∗Y ),

as desired. �

To every symmetric space M , we have associated a triple (g, s, B) where
g is the Lie algebra of the isometry group of M , s = Adx is an involutive
automorphism of g, where x is a chosen basepoint, the +1-eigenspace of s is
a Lie subalgebra k of g that acts faithfully on the the −1-eigenspace p of s
(since the isotropy representation of K on TxM is faithful), and B is an AdK-
invariant, and hence adk-invariant, (positive definite) inner product on p. The
triple (g, s, B) is called the orthogonal involutive Lie algebra of M at x. Since
M is assumed connected, the choice of point x is unimportant.

An abstract orthogonal involutive Lie algebra is a triple (g, s, B), where g

is a real finite-dimensional Lie algebra, s is an involutive automorphism of g,
the fixed point set k of s does not contain nontrivial ideals of g and B is an
adk-invariant inner product on the −1-eigenspace p of s.

Given an abstract OIL-algebra (g, s, B), we construct a simply-connected
symmetric space as follows. Let G̃ be the simply-connected Lie group with Lie
algebra g, and let K̃ ⊂ G̃ be the connected subgroup with Lie algebra k. There
is an involution σ of G̃ such that dσ = s, and K̃ is the identity component of
the fixed point subgroup G̃σ; thus K̃ is closed in G̃. NowM = G̃/K̃ is a simply-
connected (since G̃ is simply-connected andK is connected) homogeneous space,
but in general G̃ does not act effectively on M ; let Z̃ = {g ∈ G̃ : g : M →
M is the identity} ⊂ K̃ be the kernel of the action. Z̃ is discrete because k

does not contain nontrivial ideals of g. Now M = G′/K ′ where G′ = G̃/Z̃,
K ′ = K̃/Z̃ have resp. Lie algebras g, k. The projection π : G′ → M yields
π∗ : p ∼= TxM , where x = 1K ′, and B defines a K ′-invariant inner product on
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TxM that extends to aG′-invariant Riemannian metric onM . Finally, σ induces
ψ : M → M by the rule ψ(gK ′) = σ(g)K ′, or ψ(gx) = σ(g)x = πσ(g) for
g ∈ G′. Note that ψ is well-defined and fixes x. Also, dψx(Yx) = π∗s(Y ) = −Yx
for Y ∈ p, so dψx = −id. Since ψ(gg1K

′) = σ(g)σ(g1)K
′ = σ(g)ψ(g1K

′), we
have ψ ◦ g = σ(g) ◦ ψ. By the chain rule dψgx = (d(σ(g)))x ◦ (dψ)x ◦ (dg−1)gx
for every g ∈ G′. It follows that ψ is an isometry of M . Hence M is symmetric.

In particular, suppose that we apply the construction described in the previ-
ous paragraph to the orthogonal involutive Lie algebra (g, s, B), which is asso-
ciated to a given symmetric space M = G/K as in Proposition 1.5.1, to obtain
M̃ = G̃/K̃. Since G̃ is simply-connected and has the same Lie algebra as G,
there is a covering homomorphism p : G̃ → G. Moreover, K̃ and K also have
the same Lie algebra, so p(K̃) = K and p induces p̄ : M̃ → M . Owing to
the identity π ◦ p = p̄ ◦ π and the identifications Tx̃M̃ ∼= p ∼= TxM , dp̄x̃ is
the identity, thus an isometry. The homomorphism property of p implies that
p̄ ◦ g = p(g) ◦ p̄ as maps on M̃ , where g ∈ G̃; since g (resp. p(g)) is an isometry
of M̃ (resp. M), this shows that p̄ is a local isometry. Finally, the completeness
of M̃ implies that p̄ : M̃ → M is a Riemannian covering. In particular, if M is
taken simply-connected, then it is isometric to M̃ .

1.5.2 Example It is known that the group of isometries of the unit sphere
is O(n+ 1). The isotropy group at, say, x = (1, 0, . . . , 0)t is O(n). Now the
associated orthogonal involutive Lie algebra (g, s, B) is given by g = so(n+ 1),
s is conjugation by the matrix

(
−1 0
0 In

)

,

where In is an identity block of order n, its eigenspaces are given by

k =

{(
0 0
0 A

)

: A ∈ so(n)

}

, p =

{

Y =

(
0 −vt
v 0

)

: v ∈ Rn

}

,

and B(Y, Y ) = (const) tr(Y tY ) = (const)||v||2.

1.5.3 Example Let H be a simply-connected compact connected semisimple
Lie group, and denote its Lie algebra by h. We can define an abstract orthogonal
involutive Lie algebra (g, s, B) by setting g = h ⊕ h, s(X,Y ) = (Y,X) for
X, Y ∈ h; then k is the diagonal of g and p = {(X,−X) : X ∈ h}; put
B((X,−X), (Y,−Y )) = λβ(X,Y ) for X, Y ∈ h, where λ < 0 and β denotes the
Killing form of h.

The simply-connected symmetric space M associated to (g, s, B) is M =
H ×H/∆H , where ∆H = {(h, h) : h ∈ H}. Note that H ×H acts transitively
on H by the rule (h1, h2) · x = h1xh

−1
2 ; the isotropy at 1 ∈ H is ∆H , hence

there is a diffeomorphism H × H/∆H
∼= H, (h1, h2)∆H 7→ h1h

−1
2 . Using this

identification M = H, the projection π : H × H → H is π(h1, h2) = h1h
−1
2 ,

the geodesic symmetry ψ : H → H at 1 is ψ(x) = ψ((x, 1)∆H) = σ(x, 1)∆H =
(1, x)∆H = x−1. Finally π∗(X,Y ) = X − Y for X, Y ∈ h, so π∗(X,−X) = 2X
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and the metric on H is H ×H-invariant (i.e. bi-invariant) with value at 1 given
by a negative multiple of the Killing form of h.

1.5.4 Example It is not difficult to show that the full group of isometries of
Euclidean space is the semidirect product G = O(n)⋉Rn (cf. Problem 1.7.11).
The isotropy group at the origin is O(n). Now its associated orthogonal invo-
lutive Lie algebra (g, s, B) is g = so(n) +Rn (semi-direct sum), s : g → g is +1
on so(n) and −1 on Rn, and B is the inner product on Rn. Note that [p, p] = 0
in this example.

More generally, for any subalgebra k ⊂ so(n), the semi-direct sum g = k+Rn

has a similar structure of orthogonal involutive Lie algebra, including the case
k = 0. The associated simply-connected symmetric space is again Euclidean
space.

1.6 Complement on simply-connected symmetric spaces

There is a global version of Cartan’s Theorem 1.3.3 for complete simply-connected
Riemannian manifolds (see section 4), aka the Cartan-Ambrose Theorem, which,
in the hypotheses, replaces the geodesics starting from a point by broken geodesics
starting from the point, and constructs a global isometry. It follows from the
Cartan-Ambrose Theorem that:

• A complete simply-connected locally symmetric space is globally symmet-
ric.

• A complete simply-connected Riemannian manifold is globally symmetric
if and only if its curvature tensor is parallel.

• The universal Riemannian covering of a complete locally symmetric space
is a globally symmetric space.

Let M be a locally symmetric space. One can also directly associate to M
an orthogonal involutive Lie algebra. Namely, fix x ∈ M . The linear isotropy
group of M at x is defined to be the group K of all linear isometries of the
tangent space TxM that preserve the curvature tensor. Then K has the struc-
ture of a Lie group because it is a closed subgroup of the orthogonal group of
TxM . By Theorem 1.3.3, each element of K extends to an isometry of a normal
neighborhood U of x. Now K is a group of isometries of U , called the local
isotropy group of M at x. Let k be the Lie algebra of K. Then the action
of K on U represents k faithfully as a finite-dimensional Lie algebra of vector
fields on U . These vector fields vanish at x because K(x) = {x}. Denote by
p the set of infinitesimal transvections at x. It follows from Lemma 1.4.1 and
Proposition 1.4.2 that p is a vector space and the map Y ∈ p 7→ Yx ∈ TxM is a
linear isomorphism.

1.6.1 Proposition We have

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.
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In particular, g = k + p (direct sum of vector spaces) is a Lie algebra of vector
fields defined on a normal neighborhood of x. The geodesic symmetry sx induces
an involutive automorphism s of g such that k and p are respectively the ±1-
eigenspaces.

Proof. The first inclusion holds because k is a Lie algebra of vector fields.
For the second one, let k ∈ K and Y ∈ p. Then Y generates a one-parameter
of transvections at x, which we denote by etY , and AdkY is the Killing field
d
dt
|t=0ke

tY k−1. Using that d(etY )x is parallel transport along γ(t) = etY ·x, it is
easy to see that dketY ·xd(e

tY )xdk
−1
x is parallel transport along k · γ. Therefore

ketY k−1 is the one-parameter group of transvections along k·γ and thus AdkY ∈
p, implying the second inclusion. Finally, if Y1, Y2 ∈ p, then [Y1, Y2] is a Killing
field generating a one-parameter group {gt} of local isometries fixing x, by
Proposition 1.4.2, and obviously preserving Rx. Hence gt ∈ K and [Y1, Y2] =
dgt
dt

∈ k.

Finally, for Z ∈ g, set sZ = d
dt
|t=0sxe

tZs−1
x . If X ∈ k, then sxe

tXs−1
x

is a local isometry fixing x with differential at x given by d(etX)x. Hence
sxe

tXs−1
x = etX and sX = X. If Y ∈ p, then sxe

tY s−1
x is the local transvection

at x along sxe
tY · x = e−tY · x. Therefore sY = −Y . This finishes the proof. �

To a point x in a locally symmetric spaceM , there is now associated a triple
(g, s, B), where g = k + p and s are as in Proposition 1.6.1, and B is the inner
product of TxM lifted to p under the identification p ∼= TxM , Y 7→ Yx. If M is
simply-connected, the elements of the local isotropy group K at x and the set P
of local transvections at x extend to global isometries of M by Theorem 4.2.1,
and hence this construction of orthogonal involutive Lie algebra coincides with
that in section 1.5.

To have a more complete picture, for a Riemannian covering M → M ′

with M globally symmetric, we would like to know when M ′ is also globally
symmetric.

We first need:

1.6.2 Proposition The fundamental group of a symmetric space is Abelian.

Proof. Let M be a symmetric space and fix x ∈M . By applying a standard
curve-shortening process, one shows that any nontrivial element in π1(M,x) can
be represented by a closed geodesic through x, say γ. The geodesic symmetry
sx reverses geodesics through x, so sx(γ(t)) = γ(−t). Now the homomorphism
induced by sx on the fundamental group level is group inversion. The result
follows from noticing that group inversion is a homomorphism only if the un-
derlying group is Abelian. �

The preceding result poses a topological obstruction for a smooth manifold
to admit the structure of a symmetric space.

1.6.3 Corollary A surface of genus g ≥ 2 does not admit a Riemannian metric
with respect to which it is a symmetric space.
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1.6.4 Theorem Let M be a symmetric space, let G be the transvection group
of M , that is, the (connected) subgroup of the isometry group of Isom(M) gen-
erated by all transvections, and let ∆ be the centralizer of G in Isom(M). If
M → M ′ is a Riemannian covering with M ′ symmetric, then M ′ = M/Γ for
some discrete subgroup Γ of ∆. Conversely, if Γ is a discrete subgroup of ∆,
then M →M/Γ is a Riemannian covering and M/Γ is symmetric.

Proof. (First half) Assume p : M → M ′ is a Riemannian covering with M ′

symmetric. By Proposition 1.6.2, the covering is Galois, so M ′ = M/Γ for a
discrete subgroup Γ of Isom(M). Let sx′ be the symmetry at x′ ∈M ′ and take
x ∈M projecting to x′. Again in view of Proposition 1.6.2, (sx′)#p#(π1(M)) =
p#π1(M), so there is a unique lift of sx′p :M →M ′ to a smooth map f :M →
M taking x to itself. Since dfx = −id, f must be the geodesic symmetry at x,
that is, sx′p = psx. It follows that sx maps fibers of p to fibers of p. Now for
γ ∈ Γ, sxγs

−1
x preserves each fiber and hence is an element of Γ. We have shown

that every geodesic symmetry of M normalizes Γ. In particular, G normalizes
Γ. But Γ is discrete and G is connected, so G centralizes Γ.

For the second half, see [42, Theorem 8.3.11]. �

1.7 Problems

1.7.1 Problem Let M be a complete connected Riemannian manifold with
vanishing sectional curvature. Deduce from Cartan-Ambrose theorem that, for
every x ∈M , expx : TxM →M is a smooth covering.

1.7.2 Problem Let M be a symmetric space and x ∈ M . Prove that the
geodesic symmetry sx normalizes the group generated by transvections at x.

1.7.3 Problem Prove that every geodesic loop in a symmetric space is a closed
geodesic. (Hint: Consider the one-parameter group of transvections along the
geodesic.)

1.7.4 Problem Let G be a compact connected Lie group equipped with a bi-
invariant metric. Show that the left translations in G are transvections if and
only if G is Abelian.

1.7.5 Problem Let σ be an involution of a Lie group G, and let K be a sub-
group of G which is open in the fixed point set Gσ, (Gσ)0 ⊂ K ⊂ Gσ, and such
that AdG(K) is a compact subgroup of Aut(g), where g is the Lie algebra of G.
Check that M = G/K carries a structure of symmetric space.

1.7.6 Problem Let M be a symmetric space as in Problem 1.7.5, and denote
by x0 the basepoint of M . Show that gx0 lies in cut-locus of x0 for every
g ∈ Gσ \K.
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1.7.7 Problem LetM be a compact symmetric space. For each x ∈M , denote
the geodesic symmetry at x by sx. Fix two points x, y ∈M and prove that the
following assertions are equivalent:

a. sx(y) = y.

b. There is a closed geodesic γ in M , and x, y are antipodal points along γ.

c. There exists a transvection p of M such that p(x) = y and p2(x) = x.

Further, show that these conditions imply that y belongs to the cut-locus of x.

1.7.8 Problem With the notation of Problem 1.7.7, prove that the following
assertions are equivalent:

a. y is an isolated fixed point of sx.

b. sy = sx.

c. There exists a transvection p of M such that p(x) = y and p2 = id.

If these conditions are satisfied, one says that y is a pole of x [14].

1.7.9 Problem View a compact connected Lie group equipped with a bi-
invariant Riemannian metric as a symmetric space and show that the poles
of the identity element 1 (cf. Problem 1.7.8) are the central elements that are
square roots of 1.

1.7.10 Problem Let (M, g) be a connected Riemannian manifold and con-
sider the underlying metric space structure (M,d). Prove that any isome-
try f of (M, g) is distance-preserving, that is, it satisfies the condition that
d(f(x), f(y)) = d(x, y) for every x, y ∈M .

1.7.11 Problem Describe the isometry group G of Rn:

a. Show that G is generated by orthogonal transformations and translations.

b. Show that G is isomorphic to the semidirect product O(n)⋉Rn, where

(B,w) · (A, v) = (BA,Bv + w)

for A, B ∈ O(n) and v, w ∈ Rn.

(Hint: Use the result of the previous exercise.)

1.7.12 Problem Prove that every isometry of the unit sphere Sn of Euclidean
space Rn+1 is the restriction of a linear orthogonal transformation of Rn+1.
Deduce that the isometry group of Sn is isomorphic to O(n+ 1). What is the
isometry group of real projective space RPn?
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1.7.13 Problem Prove that every isometry of the hyperboloid model of RHn

is the restriction of a linear Lorentzian orthochronous (time-preserving) trans-
formation of R1,n. Deduce that the isometry group of RHn is isomorphic
to O0(1, n).

1.7.14 Problem Let (g, s, B) and (g′, s′, B′) be two orthogonal involutive Lie
algebras such that g is a subalgebra of g′, s = s′|g, p = p′ and B = B′.
Prove that the corresponding simply-connected symmetric spaces M and M ′

are isometric. (There is essentially only one nontrivial concrete example; can
you guess it?)

2 Lecture 2: Classification

The enumeration of all the symmetric Riemann spaces is not a simple problem.
Cartan first observed that if a locally symmetric space is decomposed into a
product, then each factor is locally symmetric. The problem is thus reduced to
the irreducible case. Cartan then proposed two different lines of attack. The
first method is the determination of the subgroups of the orthogonal group that
can be holonomy groups of an irreducible symmetric space. For a point p in
a Riemannian manifold M , the holonomy group of M at p is the group of all
linear isometries of TpM generated by parallel translation along loops at p. In
case of ∇R ≡ 0, such a subgroup must leave the curvature tensor invariant, and
this imposes strong restrictions. Cartan proved a number of important results,
but did not fully carry out this method since a simpler way became available.2

The second method brings the classification of locally symmetric spaces into the
realm of group theory. In particular, he notes that the search for irreducible
locally symmetric spaces amounts to that of real forms of complex simple Lie
algebras, a problem he himself had already solved in 1914. In the sequel we
expose the basic ideas behind this method.

2.1 Decomposition theorem

The first result shows that if a symmetric space is decomposed into a product
of Riemannian manifolds, then each factor is also a symmetric space. We first
prove a number of lemmata.

Let M be a symmetric space with associated orthogonal involutive alge-
bra (g, s, B). Denote by G the identity component of the isometry group of M
and write g = k+ p under s.

2.1.1 Lemma If G is semisimple, then it is generated by the transvections of
M at the basepoint.

2Much later holonomy groups would be used to study Riemannian geometry in a more
general setting. In 1952 Georges de Rham proved the de Rham decomposition theorem, a
principle for splitting a Riemannian manifold into a Cartesian product of Riemannian man-
ifolds by splitting the tangent bundle into irreducible spaces under the action of the local
holonomy groups. Later, in 1953, Marcel Berger classified the possible irreducible holonomies.
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Proof. It suffices to prove that k = [p, p]. Indeed, set h = [p, p] + p; we
prove that this is an ideal of g. In fact, [k, h] ⊂ h because [k, p] ⊂ p, and
[k, [p, p]] ⊂ [[k, p], p] ⊂ [p, p] by the Jacobi identity. Also, [p, h] ⊂ h because
[p, [p, p]] ⊂ [p, k] ⊂ p.

Since g is semisimple and h is an ideal, there exists an ideal u of g such that
g = h⊕u (direct sum of ideals). Note that s is automorphism of g and preserves
p, so it also preserves [p, p]. Now s(h) = h and hence s(u) = u. It follows that
u = u ∩ k + u ∩ p. Since u ∩ p ⊂ u ∩ h = 0, we get u ⊂ k. However, k does not
contains nontrivial ideals of g, thus u = 0 and h = g. �

It follows from Lemma 2.1.1 that a symmetric space M with semisimple
isometry group (equivalently, without a flat factor, according to Corollary 2.1.5
below) has a canonical presentation as a homogeneous space, namely,M = G/K
where G is the transvection group (a connected Lie group) and K is the isotropy
group at a point.

2.1.2 Lemma Denote by β the Killing form of g. Then:

a. β(k, p) = 0

b. β|k is negative-definite.

c. if a and b are β-orthogonal subspaces of p and b is adk-invariant then
[a, b] = 0.

Proof. (a) Owing to the s-invariance of β, β(X,Y ) = β(sX, sY ) = β(X,−Y ) =
−β(X,Y ) for X ∈ k and Y ∈ p.

(b) Let X ∈ k. Since adX leaves B invariant and B is positive-definite,
adX |p → p is semisimple with purely imaginary eigenvalues, therefore tr p(ad

2
X) ≤

0. Using Theorem 5.5.1, the compactness of k gives that tr k(ad
2
X) ≤ 0. Now

β(X,X) = tr k(ad
2
X)+ tr p(ad

2
X) ≤ 0, and equality holds if and only if adX = 0,

namely, X is central in g. In this case, the multiples of X form an ideal of g
contained in k, hence X = 0.

(c) Let X ∈ a, Y ∈ b and Z = [X,Y ]. Then Z ∈ k and β(Z,Z) =
β([X,Y ], Z) = β(X, [Y,Z]) = 0, where the last equality follows from [Y,Z] ∈ b

and the assumptions. Hence Z = 0 by (b). �

An OIL-algebra (g, s, B) is called Euclidean if [p, p] = 0, and it is called
irreducible if it is not Euclidean and the adjoint representation of k on p is
irreducible.

2.1.3 Proposition (Decomposition) Let (g, s, B) be an OIL-algebra. Then
there is a decomposition

g = g0 ⊕ g1 ⊕ · · · ⊕ gr

into a direct sum of ideals such that:

a. each gi is s-invariant;
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b. (g0, s|g0
, B|p0

) is Euclidean;

c. (gi, s|gi
, B|pi

) is irreducible for i = 1, . . . , r.

Proof. Since B is nondegenerate, we can define a linear map A : p → p by
putting B(AX,Y ) = β(X,Y ) for X, Y ∈ p. Due to the symmetry of B and β,
we have B(AX,Y ) = B(X,AY ), thus A has real eigenvalues λ0 = 0, λ1, . . . , λt
with corresponding B-orthogonal eigenspace decomposition p = q0+ q1+ · · · qt.
It immediately follows that this decomposition is β-orthogonal and

β|qi
= λiB|qi

for i = 1, . . . , t, and β(q0, p) = 0.

Since B and β are adk-invariant, A commutes elementwise with adk, and
thus adk preserves each qi. Now each qi with i > 0 can be decomposed into
adk-irreducible subspaces yielding a B-orthogonal decomposition

∑t
i=1 qi =

∑r
i=1 pi, where [k, pi] ⊂ pi. Put p0 = q0. Clearly β(pi, pj) = 0 for i, j > 0,

i 6= j, so Lemma 2.1.2(c) yields that

(2.1.4) [pi, pj ] = 0 for i, j > 0, i 6= j and [p0, p] = 0.

Set now gi = [pi, pi] + pi for i > 0. It follows from the adk-invariance of pi,
(2.1.4) and the Jacobi identity that the gi are ideals of g. Suppose i > 0. Since
β is a nonzero multiple of B on pi, β is nondegenerate of pi and hence on gi by
Lemma 2.1.2(a) and (b). Since gi is an ideal of g, β|gi

is its Killing form. Hence
gi is semisimple.

Let now g̃ = g1⊕· · ·⊕gr, s-invariant semisimple ideal of g. Then g = g0⊕ g̃

where g0 is the centralizer of g̃. Clearly s(g0) = g0, g0 ∩ p = p0 and [p0, p0] = 0.
�

2.1.5 Corollary If g is simple then (g, s, B) is irreducible. If (g, s, B) is irre-
ducible then k is a maximal subalgebra of g and its own normalizer in g. g is
semisimple if and only if (g, s, B) has no Euclidean factor.

2.1.6 Remark With just a little bit more work one can show that the decom-
position in Proposition 2.1.3 is unique, up to permutation of the simple factors.

2.1.7 Proposition The Euclidean OIL-algebras are precisely the OIL-algebras
(g, s, B) where g = k +Rn (semi-direct sum), k ⊂ so(n), s is +1 on k and −1
on Rn, and B is the standard inner product on Rn.

Proof. Suppose (g, s, B) is Euclidean. Since [p, p] = 0, g = k + p is a semi-
direct sum. Let n = dim p and isometrically identify p = Rn so that B is the
standard inner product. Now k ⊂ so(n), since it is effective on p. �

The associated simply-connected symmetric space in Proposition 2.1.7 is
(flat) Euclidean space, and its quotients are flat tori.
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2.1.8 Remark It follows from Theorem 1.3.3 that the holonomy group of a
symmetric space M at a point x is contained in the local isotropy group at x
defined in subsection 1.6. If M has no flat factor, then k = [p, p] (Lemma 2.1.1)
and thus the identity component of holonomy group (i.e. the restricted holonomy
group) coincides with the identity component of the isotropy group at x.

2.2 Cartan duality

Cartan duality associates to an OIL-algebra (g, s, B), g = k + p, another OIL-
algebra (g, s, B)∗ = (g∗, s∗, B∗) which we define now. Consider the complex-
ification gc = kc + pc and extend s C-linearly to an automorphism sc of gc.
We put g∗ = k + p∗, where p∗ =

√
−1p, and note that it is real subalge-

bra of gc, invariant under sc. Let s∗ be the restriction of sc to g∗ and set
B∗(

√
−1X,

√
−1Y ) = B(X,Y ) for X, Y ∈ p. Note that X 7→

√
−1X for X ∈ p

defines an equivalence between the adk-representations p and p∗ which maps B
to B∗.

2.2.1 Proposition Let (g, s, B) be an OIL-algebra. Then:

a. If (g, s, B) =
∑r

i=0(gi, si, Bi) is the decomposition of Proposition 2.1.3,
then

(g, s, B)∗ =
r∑

i=0

(gi, si, Bi)
∗

is the corresponding decomposition.

b. If (g, s, B) is irreducible, then precisely only of g, g∗ is compact.

Proof. (a) is clear. We prove (b). We have g = k + p where β is negative
definite on k, β(k, p) = 0 and β = λB on p where λ 6= 0. Since β, β∗ are
restrictions of the Killing form of gc,

β∗(
√
−1X,

√
−1Y ) = βc(

√
−1X,

√
−1Y )

= −βc(X,Y )

= −β(X,Y )

= −λB(X,Y )

= −λB∗(
√
−1X,

√
−1Y )

for X, Y ∈ p. Just one of ±λ is negative, so just one of β|p, β∗|p∗ is negative
definite, so just one of g, g∗ is compact. �

2.3 The irreducible case

2.3.1 Lemma Let g be a real simple Lie algebra. Then the complexified Lie
algebra gc is not simple if and only if g is the realification of a complex simple
Lie algebra.
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Proof. Assume that g is the realification of a complex Lie algebra h. Then
there is complex structure J on the real Lie algebra3 g such that J [X,Y ] =
[JX, Y ] = [X, JY ] for X, Y ∈ g. The C-linear extension of J to gc admits
eigenvalues ±

√
−1 and corresponding eigenspace decomposition gc = a√−1 +

a−
√
−1, where a±

√
−1 = { 1

2 (Z ∓
√
−1JZ) : Z ∈ gc}. It is easy to see that

gc = a√−1 + a−
√
−1 is a direct sum of ideals. In particular we see that gc is

not simple, which proves half the lemma. Note that a√−1 is isomorphic as a

complex Lie algebra via 1
2 (Z −

√
−1JZ) 7→ Z to h, and a−

√
−1 is isomorphic as

a complex Lie algebra via 1
2 (Z+

√
−1JZ) 7→ Z to h endowed with the conjugate

complex structure.
Conversely assume that the complexification gc can be written as a direct

sum of simple ideals h1 ⊕ · · · ⊕ hr for some r > 1, where the hi are complex
simple Lie algebras. Let πi : g → hi be the composition of the inclusion map
g → gc followed by the projection h1 ⊕ · · · ⊕ hr → hi. We claim that πi(g) 6= 0
for all i. In fact, if Z is a nonzero element of hi, we write Z = X +

√
−1Y for

some X, Y ∈ g, and then Z = πi(X) +
√
−1πi(Y ), which implies that either

πi(X) 6= 0 or πi(Y ) 6= 0, and this proves the claim. Since g is simple, we have
that πi is injective and then the real dimension of hi cannot be less than the
real dimension of g, namely

dimR hi ≥ dimR g =
1

2
dimR gc.

This implies that r = 2 and that dimR hi = dimR g. Now π : g → hi is an
isomorphism and we can transfer the complex structure from hi to g, which
completes the proof. �

2.3.2 Proposition The irreducible OIL-algebras (g, s, B) fall into four pairwise
disjoint classes, as follows:

Class 1: g is a compact simple Lie algebra, s is an involutive automorphism
of g, and B = λβ with λ < 0.

Class 2: g = h ⊕ h where h is a compact simple Lie algebra, s(X,Y ) =
(Y,X) for (X,Y ) ∈ g, and B = λβ with λ < 0.

Class 3: g is a noncompact simple Lie algebra with gc simple, k is a max-
imal compact subalgebra, and B = λβ with λ > 0.

Class 4: g is the realification of a complex simple Lie algebra, k is a compact
real form and a maximal compact subalgebra, s is complex conjugation over
k, and B = λβ with λ > 0.

Duality exchanges classes 1 and 3, 2 and 4.

Proof. We first remark that the algebras (g, s, B) of the four classes are
irreducible, otherwise by Proposition 2.1.3 there would be a s-invariant direct

3That is, an endomorphism J : g → g such that J2 = −id.
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sum of ideals g = g1 ⊕ g2, but this is clearly impossible in classes 1, 3 and 4
because g a simple, and also impossible in class 2 as it is not difficult to see.
By diagonalizing B with respect to β, in the irreducible case we always have
B = λβ on p with λ < 0 for compact g and λ > 0 for noncompact g. If (g, s, B)
is irreducible then k is a maximal subalgebra by Corollary 2.1.5; in classes 3 and
4, k is compact by Lemma 2.1.2(b). and Theorem 5.5.1(c).

Next suppose that (g, s, B) is irreducible. Assume first that g is compact.
Then g = g1 ⊕ · · ·⊕ gr where the gi are compact simple. Since s is an automor-
phism, it must permute the simple ideals gi. Since s is involutive, the orbit of
each gi under the cyclic group generated by s contains at most two elements.
By irreducibility, g does not admit an s-invariant ideal, so there is only one such
orbit. It follows that either g is simple or g = g1 ⊕ g2 where s exchanges the
summands. In the first case (g, s, B) is in class 1. In the second case, g1 and g2
are isomorphic under s and (g, s, B) is in class 2.

Now assume that g is noncompact. The dual (g∗, s∗, B∗) is such that g∗ is
compact and so it falls into classes 1 or 2. If g∗ is simple then gc = (g∗)c is
also simple, as g∗ is compact. Since g is a real form of gc, it must be simple.
Therefore (g, s, B) is in class 3. On the other hand, if g∗ = h ⊕ h where h is a
compact simple Lie algebra and s∗(X,Y ) = (Y,X), then gc = (g∗)c = hc ⊕ hc

and therefore gc is not simple. The same argument as in the previous paragraph
shows that if g is not simple, then g = g1 ⊕ g1 where g1 is a noncompact simple
Lie algebra and s exchanges the summands; but then the (+1)-eigenspace k of
s is the diagonal in g1 ⊕ g1, hence isomorphic to g1 which is a contradiction
since g1 is noncompact. Therefore g has to be simple. By Lemma 2.3.1, g is the
realification of a complex Lie algebra. Let J be the underlying complex structure
of g. Since k is compact, Jk 6⊂ k (see Problem 2.6.6), and then g = k + Jk by
maximality of k. Recall that g∗ = h⊕ h and k is the diagonal; since

dimR k = dimR h =
1

2
dimR g∗ =

1

2
dimR g = dimC g,

we get that k is a real form of g and k∩Jk = 0. Due to Problem 2.6.1, β(k, Jk) = 0,
so Jk = p and s is complex conjugation of g over k, thus (g, s, B) is in class 4. �

2.3.3 Remark In particular, in classes 3 and 4, the subalgebra k of g is com-
pactly embedded, in the sense that the subgroup generated by eadX for X ∈ k

has compact closure in GL(g).

An OIL-algebra (g, s, B) is called of compact type (resp. noncompact type) if
the Killing form of g is negative (resp. positive) definite on the −1-eigenspace
of s. A symmetric space is called of compact type (resp. noncompact type) if its
OIL-algebra is of compact (resp. noncompact type). Of course, the irreducible
OIL-algebras in class 1 or 2 (resp. 3 or 4) are of compact (resp. noncompact
type).

We shall proceed with the classification of irreducible OIL-algebras by dis-
cussing classes 1 and 2: this amounts to the classification of compact simple Lie
algebras and their involutive automorphisms.
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The compact simple Lie algebras are listed in a table in subsection 5.7.
From that table, one obtains the irreducible symmetric spaces of compact type
in class 2. In order to list the irreducible symmetric spaces of compact type in
class 1, one needs to classify involutive automorphisms s of each Lie algebra g

in the table.
Suppose first s in an inner automorphism of g, s = Adg for some g ∈ G,

where G is any Lie group with Lie algebra g. We can always take g in a given
maximal torus of G.4 In particular, the fixed point space k will always be a
subalgebra of maximal rank of g (that is, k contains a Cartan subalgebra of g).
In case of classical Lie algebras, we can find canonical forms for s just using
Linear Algebra, as follows.

An: g ∈ SU(n+ 1) is an element of order 2 in the adjoint group which
belongs to the maximal torus of diagonal matrices. The eigenvalues of g are ±1,

so it is conjugate to
(

Ip
−Iq

)

, where p+ q = n+ 1. The associated symmetric

space is the complex Grassmannian SU(p+ q)/S(U(p)×U(q)) = Grq(C
p+q).

Bn: This case is similar to An and we get the real Grassmannian

SO(2p+ 2q + 1)/S(O(2p+ 1)×O(2q)) = Gr2q(R
2p+2q+1),

where n = p+ q.
Cn: The center of Sp(n) is ±I. If g2 = I, then we get the quaternionic

Grassmannian Sp(p+ q)/(Sp(p)×Sp(q)) = Grq(H
p+q), as above, where p+q =

n, In case g2 = −I, we realize Sp(n) as the subgroup of SU(2n) consisting of

matrices of the form
(

A −B̄
B Ā

)

. Then g is conjugate to Jn =
(

0 −In
In 0

)
, so its

centralizer consists of matrices with B = 0, that is, it is isomorphic to U(n);
hence we get the symmetric space Sp(n)/U(n).

Dn: The center of SO(2n) is ±I. If g2 = I, then we get the real Grassman-
nian SO(2p+ 2q)/S(O(2p)×O(2q)) = Gr2q(R

2p+2q), as above, where p+q = n.
If g2 = −I, g is conjugate to Jn and we get the symmetric space SO(2n)/U(n).

In the case of exceptional Lie algebras, such simple matrix representations
are not available and one instead resorts to root systems.5 We quote the global
classification (the rank will be introduced in subsection 2.5):

2.3.4 Theorem The irreducible symmetric spaces of class 1 and inner type are
listed as follows:

4Any two maximal tori of G are conjugate, a consequence of Proposition 2.5.5.
5We have s = AdexpX where X belongs to a given CSA t of g. A conjugation of X, using

the Weyl group, can bring 1

2π
√
−1

X to the closed positive Weyl chamber C̄ ⊂
√
−1t. Finally,

a translation by an element in the central lattice (namely, exp−1(Z(G)) = 2π
√
−1L∗

rt, where
Lrt is the root lattice) does not alter s and can make 0 ≤ 1

2π
√
−1

α(X) ≤ 1 for all roots α, so

it brings 1

2π
√
−1

X to the simplex with vertices {v0, v1, . . . , vn}, where

v0 = 0, αi(vj) = 0 for i 6= j, αi(vi) = 1/mi,

where α1, . . . , αn are simple roots and
∑n

i=1 miαi is the highest root. The fact that s is an

involution implies that we can take X = vi with mi = 2 or X = 1
2
vi with mi = 1 for some i.

See [32, Theorem 3.1, p.121, v. 2] or [42, Theorem 8.10.8].
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G/K Dimension Rank

SU(p+ q)/S(U(p)×U(q)) 2pq min{p, q}
SO(2p+ q)/SO(2p)× SO(q) 2pq min{2p, q}
Sp(p+ q)/Sp(p)× Sp(q) 4pq min{p, q}

Sp(n)/U(n) n(n+ 1) n
SO(2n)/U(n) n(n− 1) [ 12n]
G2/SO(4) 8 2

F4/(Sp(3)× Sp(1)/Z2) 28 4
F4/Spin(9) 16 1

E6/(Spin(10)× SO(2)/Z2) 32 2
E6/(SU(6)× SU(2)/Z2) 40 4
E7/(E6 × SO(2)/Z3) 54 3

E7/(SU(8)/Z4) 70 7
E7/(Spin(12)× SU(2)/Z2) 64 4

E8/(Spin(16)/Z2) 128 8
E8/(E7 × SU(2)/Z2) 112 4

In order to deal with outer automorhisms, one first shows that the group
Aut(g)/Inn(g) of outer automorphisms modulo inner automorphisms of a com-
pact simple Lie algebra g is canonically isomorphic to the group of symmetries
of the Dynkin diagram of g. An inspection of the diagrams (cf. subsection 5.7)
shows that the only types that admit outer automorphisms are types A, D, E,
where the symmetry group is given by Z2, unless we are in case D4, in which
case it is the dihedral group of order 6; in particular, in all cases the conjugation
class of automorphisms of order 2 is unique. A canonical representative s0 is
given as follows:

An: Here g = su(n + 1) consists of skew-Hermitian matrices of trace zero
and s0X = X̄ = −Xt. On the group level, it is given by g 7→ ḡ = (gt)−1 and
we get the symmetric space SU(n)/SO(n).

Dn: Here g = so(2n) consists of real skew-symmetric matrices and s0 is

given by conjugation with the matrix I1,2n−1 =
(

−1
I2n−1

)

. We have the sphere

SO(2n)/SO(2n− 1) as corresponding symmetric space.
E6: Here the description is more involved and we just quote the result.

There is a symmetric space E6/F4 of outer type which is the Cartan dual of
E6(−26)/F4, where E6(−26) (a certain noncompact real form of E6

c) is the group
of collineations of the Cayley projective plane, and F4 is its maximal compact
subgroup and the isometry group of the Cayley projective plane.6

6Alternatively, there is a description in terms of Jordan algebras [7]. The Albert algebra J
is the 27-dimensional real Jordan algebra consisting of 3× 3 Hermitian matrices





ξ1 x3 x̄2

x̄3 ξ2 x1

x2 x̄1 ξ3





with octonionic entries, and the (commutative) multiplication being defined by

X ◦ Y =
1

2
(XY + Y X)
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Conversely, let s be an arbitrary outer automorphism of g. We carry out the
classification in each case.

An: Then s = s0 ◦Adg for some g ∈ SU(n+ 1). Since s0 ◦Adg = Adḡ ◦ s0,
we have

id = s2 = (s0 ◦Adg)2 = Adḡ ◦ σ2
0 ◦Adg = Adḡg,

which implies that ḡg is in the center of SU(n+ 1), so ḡg = cIn+1 for some
c ∈ C, where In+1 denotes the identity matrix of order n + 1. Using that
ḡ = (gt)−1, we get g = cgt and then g = c(cgt)t = c2g, therefore c = ±1.

If c = 1 then g = gt, so there is h ∈ SO(n+ 1) such that hgh−1 is a diagonal
matrix d ∈ SU(n+ 1), and we can replace s by its conjugate

Adh ◦ s ◦Ad−1
h = s0 ◦Add,

and assume g diagonal. Clearly we can choose a diagonal matrix b ∈ SU(n+ 1)
with b2 = g. Replacing s by its conjugate

Adb ◦ s0 ◦Adg ◦Ad−1
b = s0 ◦Ad−1

b ◦Adg ◦Ad−1
b = s0,

we may assume s = s0. This gives the symmetric space SU(n+ 1)/SO(n+ 1).
If c = −1 then g = −gt, so there is h ∈ SU(n+ 1) such that hght equals

Jm =

(
0 Im

−Im 0

)

where Im denotes an m×m identity block and 2m = n+ 1. Replacing s by its
conjugate

Ad−1
ht ◦ s ◦Adht = s0 ◦Adh ◦Adg ◦Adht = s0 ◦AdJm

,

we may assume g = Jm. The fixed point group of s0 ◦AdJm
in SU(2m) consists

of the matrices g ∈ SU(2m) satisfying JmḡJ
−1
m = g. Since this relation is

equivalent to gtJmg = Jm, that fixed point group is isomorphic to Sp(m).
Hence in this case s defines the symmetric space SU(2m)/Sp(m).

Dn: By passing to a conjugate if n = 4, we can suppose that s = s0 ◦Adg for
some g ∈ SO(2n). Now s = Adh where h = I1,2n−1 g ∈ O(2n) and deth = −1.
Also, s2 = id implies that h2 centralizes SO(2n), so h2 = ±I2n.

If h2 = −I2n then ht = −h and the eigenvalues of h are pure imaginary,
implying deth = 1, so we must have h2 = I2n. Now ht = h and the eigenvalues
of h are all ±1. We thus have that h is conjugated in SO(2n) to

Ip,q =

(
Ip 0
0 −Iq

)

,

where XY is the ordinary matrix product. The derivation algebra of J is a Lie algebra
isomorphic to f4. Let p denote the 26-dimensional space of left multiplications LX by elements
X ∈ J of trace zero. From general theory, [D,LX ] = LDX for D ∈ f4 and X ∈ J ; moreover,
[LX , LY ] is a derivation of J for all X, Y ∈ p. It can be shown that f4 + p is a Lie algebra
isomorphic to e6. Now we have an involutive decomposition e6 = f4 + p where f4 is compact,
and hence we have an OIL-algebra. Since the rank of f4 is less than the rank of e6, the
corresponding involution of e6 is of outer type.
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where p + q = 2n and p, q are odd. This gives the real Grassmann manifold
SO(p+ q)/SO(p)× SO(q).

Before dealing with E6, we prove a few lemmata.

2.3.5 Lemma Let g be compact semisimple Lie algebra and let σ be an involu-
tive automorphism. Given a Cartan subalgebra s of the fixed point set gσ, there
is a Cartan subalgebra t of g containing s which is invariant under σ; further,
σ preserves some Weyl chamber in t.

Proof. By Problem 2.6.3, gσ 6= 0. Consider the ±1-eigenspace decomposition
g = gσ + g−σ. The centralizer t = Zg(s) is σ-invariant and compact, t = s+ z,
where z = Zg−σ (s). Therefore it decomposes as a direct sum of ideals t =
Z(t)+[t, t], where Z(t) is its center, and the derived algebra [t, t] is compact and
semisimple. But [t, t] = [z, z] ⊂ t∩ gσ = s is Abelian. Therefore [t, t] = 0 and t is
thus a Cartan subalgebra of g. Since Zg(s) is the union of all CSA containing s,
this shows that s is contained in exactly one CSA of g. In particular, a generic
element7 of s will be a regular element of t. Since σ fixes a regular element of t,
it must fix the Weyl chamber containing that element. �

2.3.6 Lemma Let g be a compact semisimple Lie algebra, denote the adjoint
group by G, let σ be an involutive automorphism of g, let u be a CSA of gσ, and
denote the associated maximal torus in Gσ by U . Then every involutive auto-
morphism ϕ = σ ◦Adg with g ∈ G is conjugated under an inner automorphism
to an automorphism of the form σ ◦Adu for some u ∈ U . In particular, Gσ and
Gϕ have the same rank.

Proof. Let v be a CSA of gϕ. Due to Lemma 2.3.5, u and v are respectively
contained in CSA’s t and s of g, respectively σ- and ϕ-invariant. By conjugacy of
CSA, there is h ∈ G such that t = Adhs. Now t is preserved by ϕ′ := AdhϕAd

−1
h .

Again by Lemma 2.3.5, σ and ϕ′ preserve Weyl chambers C and C′ in t. Since
the Weyl group acts transitively on the Weyl chambers, there is n ∈ NG(T )
such that AdnC′ = C, where T is the maximal torus associated to t. Now σ and
ϕ′′ := Adnϕ

′Ad−1
n both preserve C, and we have:

σ−1ϕ′′ = σ−1AdnhϕAd(nh)−1

= Adσ−1(nh)σ
−1ϕAd(nh)−1

= Adx,

where x = σ−1(nh)gϕ(nh)−1. It follows that x centralizes T , so x ∈ T . We
have shown that ϕ is conjugated to ϕ′′ = σAdx with x ∈ T . To finish, we need
only solve

σAdx = AdtσAduAd
−1
t = σAdσ(t)ut−1

for t ∈ T and u ∈ U . But this follows from Problem 2.6.4. �

7Say, the infinitesimal generator of a one-parameter group dense in the torus generated
by s.
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Now we can carry out the classification of symmetric spaces of outer type
of E6. Recall that the group of outer automorphisms of e6 is Z2, with a gen-
erator represented by s0, which has fixed point set f4. Any other given outer
automorphism can be assumed of the form s = s0 ◦Adg for some g ∈ F4, owing
to Lemma 2.3.6. In particular, s and s0 are commuting involutions of e6, defin-
ing involutions σ and σ0 of E6 and corresponding symmetric spaces E6/K and
E6/F4. Now σ defines an involution of F4 and σ0 defines an involution of K;
further, the fixed point sets of σσ0 on F4 and on K coincide. The only sym-
metric spaces of F4 are F4/Spin(9) and F4/Sp(3)Sp(1), by the classification of
irreducible symmetric spaces of compact type and inner type. Suppose we are
in the first case; then K contains Spin(9) and has rank 4. Since K is a max-
imal subgroup of E6, we get dimK > dimSpin(9) = 36, but an enumeration
of compact Lie group satisfying these conditions shows K = F4. Therefore we
may assume we are in the second case, that is σ0 defines F4/Sp(3)Sp(1). Now
K has rank 4, contains Sp(3)Sp(1) and K/Sp(3)Sp(1) is symmetric. It follows
that K = Sp(4)/Z2. Finally, we obtain the symmetric space E6/(Sp(4)/Z2).

We collect the results in the case of outer automorphism:

2.3.7 Theorem The irreducible symmetric spaces of class 1 and outer type are
listed as follows:

G/K Dimension Rank

SU(n) n2 − 1 n− 1
Spin(n) 1

2n(n− 1) [n2 ]
Sp(n) 2n2 + n n
G2 14 2
F4 52 4
E6 78 6
E7 133 7
E8 248 8

SU(n)/SO(n) 1
2 (n− 1)(n+ 2) n− 1

SU(2n)/Sp(n) (n− 1)(2n+ 1) n− 1
SO(2p+ 2q + 2)

SO(2p+ 1)×SO(2q + 1)
(2p+ 1)(2q + 1) min{p, q}

E6/F4 26 2
E6/(Sp(4)/Z2) 42 6

2.3.8 Theorem Every simply-connected symmetric space is isometric to the
Riemannian product of an Euclidean factor with irreducible symmetric spaces
of compact type given by the tables in Theorems 2.3.4, 2.3.7, 5.7.1, and their
Cartan duals of noncompact type.

2.4 Noncompact real forms of complex simple Lie algebras

It all starts with the existence of compact real forms of complex semisimple Lie
algebras. Cartan first checked it case by case, without realizing its importance,
and Hermann Weyl [41, Satz 6, p. 375] gave a general proof, relying of the
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full strength of the Killing-Cartan structure theory of complex semisimple Lie
algebras via a subtle analysis of structure constants and the construction of
the so called Cartan-Weyl basis.8 In [9] Cartan refers to Weyl’s proof and asks
whether a simpler argument is possible, for “une telle démonstration permettrait
de simplifier notablement l’exposition de la théorie des groupes simples.” He
then describes an unsuccessful attempt of his to prove it. His guess is that a
basis that diagonalizes the Killing form and minimizes the sum of the squares
of the absolute values of the structure constants would span a compact real
form. This idea was taken up much later, and pushed through to a proof by
Richardson [39].

In order to obtain uniqueness of compact real forms, up to inner automor-
phism, Cartan uses the following tool. This is a striking example of what he
means by Differential Geometry aiding Lie group theory.

2.4.1 Theorem (Cartan (1929)) LetM be a Hadamard manifold (i.e. a com-
plete simply-connected Riemannian manifold of nonpositive sectional curvature),
and let H be a compact group of isometries of M . Then H has a fixed point.

Proof. Recall that the distance function to a point on a nonpositively curved
manifold is convex (this follows e.g. from the formula for the second variation
of length). Consider the orbit Hp for any fixed p ∈ M . Fix a Haar measure µ
on H. Now the function

F (x) =

∫

H

d2(hp, x) dµ(h)

is strictly convex (due to the exponent 2 in the distance function), so it has a
unique point of minimum p̄ ∈ M , called the center of mass of Hp. For any
h′ ∈ H,

F (h′x) =

∫

H

d2(hp, h′x) dµ(h)

=

∫

H

d2((h′)−1hp, x) dµ(h)

=

∫

H

d2((h′′p, x) dµ(h′′)

= F (x),

where we have used left-invariance of the Haar measure in the next to last
equality. By the uniqueness of the center of mass, p̄ is a fixed point of H. �

2.4.2 Proposition Let g be a noncompact real simple Lie algebra. Then there
exist s and B such that (g, s, B) is an orthogonal involutive Lie algebra.

8In modern terms, this involves, among other things, Lie’s theorem, Engel’s theorem, the
existence of Cartan subalgebras and the root space decomposition of a semisimple Lie algebra.
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Proof. Suppose first the complexification gc of g is not simple. Then g is
a complex Lie algebra viewed as real, owing to Lemma 2.3.1. We take s to be
complex conjugation of g over a compact real form k. The Killing form β of
g is negative definite on k and positive definite on p =

√
−1k, so we can take

B = β|p. We get an OIL-algebra in class 4.
Consider now the case gc is simple. It admits a compact real form gu, which

is also simple. LetGc be the adjoint group of gc, and denote byGu the connected
subgroup of Gc with Lie algebra gu. Note that Gu is a compact Lie group and
M = Gc/Gu is a symmetric space of nonpositive curvature by Corollary 3.1.4
below, where the metric is induced from the Killing form of gc.

We claim that M is simply-connected. Recall from Proposition 1.5.1(i) that
Gc = Gu exp[

√
−1gu]. Consider the inner product on gc given by the Killing

form on
√
−1gu and its negative on gu. Then gu consists of skew-symmetric en-

domorphisms, and
√
−1gu consists of symmetric endomorphisms of gc. Now Gu

consists of orthogonal matrices. It is known that the exponential is a diffeomor-
phism from

√
−1gu onto its image, which consists of positive definite symmetric

matrices. It follows that Gu ∩ exp[
√
−1gu] = {1} and Gu ×

√
−1gu → Gc,

(g,X) 7→ g expX is a diffeomorphism. In particular, M ≈
√
−1gu.

Denote the complex conjugation of gc over g by σ. Then σ is an automor-
phism of gc, viewed as a real Lie algebra, and induces an involutive automor-
phism of Gc, still denoted σ, which fixes Gu pointwise. Any automorphism of
Gc defines an isometry of M . Let x, y ∈ M be two points interchanged by σ.
Then σ fixes the midpoint z of the unique geodesic joining x and y. It follows
that the isotropy group of Gc at z is a compact subgroup of Gc which is in-
variant under σ. In particular, σ induces an involutive automorhism on its Lie
algebra, denoted by g∗. Therefore g∗ = g∗ ∩ g + g∗ ∩

√
−1g is an involutive

decomposition.
As a conjugate of gu, also g∗ is a real form of gc, gc = g∗+

√
−1g∗. It follows

that g = k+ p, where k = g∩ g∗ and p = g∩
√
−1g∗. Since g∗ = k+

√
−1p is an

involutive decomposition (under σ), also g = k+p is an involutive decomposition,
that is, the ±1-eigenspaces of an involutive automorphism s, and B can be taken
to be the restriction of the Killing form of g to p. In this case we get an OIL-
algebra in class 3. �

2.4.3 Proposition Let g be a noncompact real simple Lie algebra. Then any
two maximal compactly embedded subalgebras of g are conjugated under an inner
automorphism.

Proof. Let G be the adjoint group of g and use Proposition 2.4.2 to find
a compact connected subgroup K of G and a symmetric space M := G/K in
class 3 or 4, hence of nonpositive curvature, due Corollary 3.1.4 below. Let h

be any compactly embedded subalgebra of g and denote by H the associated
connected subgroup of G. Note that H is compact, and it obviously acts by
isometries onM . By Theorem 2.4.1, H has a fixed point x ∈M . Write x = gx0
for some g ∈ G, where x0 is the basepoint. Then g−1Hgx0 = g−1Hx = g−1x =
x0, that is, g

−1Hg ⊂ K. It follows that Adg−1h ⊂ k. �
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2.4.4 Corollary A compact real form of a complex semisimple Lie algebra is
unique, up to inner automorphism.

Proof. One needs only note that the compact real form is compactly embed-
ded and a maximal subalgebra. �

Incidentally, the s in Proposition 2.4.2 is called a Cartan involution of g, and
the associated ±1-decomposition g = k+p is called a Cartan decomposition of g
(for the existence and uniqueness of Cartan decompositions, see also [26, 6.18,
6.19]). Recall this means that the Killing form β of g satisfies β|k is negative
definite and β|p is positive definite.

2.4.5 Remark As a consequence of the Proposition 2.4.2, the determination
of OIL-algebras in class 3 is tantamount to the classification of noncompact real
forms of complex simple Lie algebras. Since the determination of OIL-algebras
in class 2 is tantamount to the classification of compact real forms of complex
simple Lie algebras, we note that the classification of irreducible symmetric
spaces is equivalent to the classification of real forms of complex simple Lie
algebras.

2.4.6 Theorem Every connected semisimple Lie group G with finite center ad-
mits a maximal compact subgroup K, which is unique, up to conjugation. Fur-
ther, K is connected and contains the center of G. Finally, G is diffeomorphic
to K ×Rn for some n.

Proof. Let g denote the Lie algebra of G. Let k be a maximal compactly
embedded subalgebra of g as in Proposition 2.4.2, and write g = k + p for the
Cartan decomposition.

For the adjoint group Ḡ := Ad(G), as in the proof of Proposition 2.4.2,
one shows that K̄ × p → Ḡ, (k,X) 7→ k expḠX defines a diffeomorphism,
where K̄ = expḠ[k] is compact. In case of a covering group π : G → Ḡ, let
K = π−1(K̄). The covering is finite, as the center Z(G) of G is finite, so K is
compact and Z(G) ⊂ K. Now K̄ = K/Z(G) andK×p → G, (k,X) 7→ k expGX
defines a diffeomorphism; in particularK is connected. K is a maximal subgroup
of G, since K normalizes P = exp[p], and it is unique up to inner automorphism,
by Proposition 2.4.3. �

2.4.7 Corollary A symmetric space of noncompact type is simply-connected,
and the isotropy subgroup of its transvection group at a point is connected and
a maximal compact subgroup.

2.4.8 Corollary A connected semisimple Lie group with finite center has the
homotopy type of a compact Lie group.
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2.5 Restricted roots

Recall from Propositions 2.4.2 and 2.4.3 that for a given real noncompact simple
Lie algebra g, there exists a structure (s,B) of OIL-algebra in g, unique up to
inner automorhism, such that (g, s, B) is irreducible in class 3 or 4.

Throughout this section, we let (g, s, B) be an irreducible OIL-algebra in
class 3 or 4, i.e. g is a real noncompact simple Lie algebra, k ⊂ g is a maximal
compact subalgebra and B = λβ with λ > 0. We construct a (non-reduced)
root system associated to (g, s, B); this root system can be used to characterize
the symmetric space, and in Lecture 3 it will be shown to reflect some geometric
properties of the associated symmetric space.

Note that Bs(X,Y ) = −β(X, sY ) for X, Y ∈ g defines a positive definite
inner product on g.

2.5.1 Lemma We have (adX)∗ = −adsX for X ∈ g, where the adjoint homo-
morphism is with respect to Bs.

Proof. For X, Y , Z ∈ g,

Bs(adXY,Z) = −β([X,Y ], sZ)

= β(Y, [X, sZ])

= β(sY, [sX,Z])

= −Bs(Y, adsXZ),

as wished. �

Of course any subalgebra of p must be Abelian since [p, p] ⊂ k. A maximal
Abelian subalgebra a of p is called a Cartan subspace of p.

Fix a maximal Abelian subalgebra a ⊂ p. Now {adH : H ∈ a} is a family of
self-adjoint endomorphisms of g whose members pairwise commute. It follows
that g is the vector space orthogonal direct sum of simultaneous eigenspaces,
with real eigenvalues. Let

gλ = {X ∈ g : adHX = λ(H)X, for H ∈ a}.

Then λ ∈ a∗ and we denote

∆(g, a) = {λ ∈ a∗ : gλ 6= 0 and λ 6= 0} (system of restricted roots).

If λ ∈ ∆(g, a), the number dim gλ is called the multiplicity of λ.

2.5.2 Proposition a. There is a ada-invariant B-orthogonal vector space
direct sum decomposition

g = g0 +
∑

λ∈∆(g,a)

gλ.

b. [gλ, gµ] ⊂ gλ+µ.
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c. s[gλ] = g−λ; in particular, λ ∈ ∆(g, a) if and only if −λ ∈ ∆(g, a).

d. g0 = m+ a, where m = Zk(a).

Proof. (a) This is the common eigenspace decomposition of adH for H ∈ a.
(b) Let H ∈ a, X ∈ gλ, Y ∈ gµ. Then, using the Jacobi identity,

adH [X,Y ] = [adHX,Y ] + [X, adHY ] = (λ(H) + µ(H))[X,Y ],

so [X,Y ] ∈ gλ+µ (possibly zero).
(c) Let H ∈ a, X ∈ gλ. Then, using that s is an automorphism and that

sH = −H,

[adH , sX] = s[ad−H , X] = sλ(−H)X = −λ(H)sX,

so sX ∈ g−λ.
(d)

g0 = Zg(a)

= Zk(a) + Zp(a) (since a ⊂ p)

= m+ a (since a is maximal Abelian in p),

as wished. �

One can show the set ∆(g, a) ⊂ a∗ introduced above is a (non-reduced) root
system (cf. subsection 5.7). Fix a basis of a∗. Then we have an associated
lexicographic order. This defines a notion of positivity, and we have a system of
positive roots ∆+(g, a). Let n =

∑

λ∈∆+(g,a) gλ. Thanks to Proposition 2.5.2(b),
n is a nilpotent subalgebra of g and a+ n is a solvable subalgebra of g.

2.5.3 Theorem (Iwasawa decomposition) There is a direct sum of vector
spaces g = k+ a+ n.

Proof. Given X ∈ g, use Proposition 2.5.2(a) and (d) to find X0 ∈ m, H ∈ a

and Xλ ∈ gλ such that

X = X0 +H +
∑

λ∈∆(g,a)

Xλ

=



X0 +
∑

λ∈∆+(g,a)

Xλ + sXλ



+H +




∑

λ∈∆+(g,a)

Xλ − sXλ



 ;

note that the last line is in k+a+n, which shows that the vector space sum is all
of g. To see that the sum is direct, it suffices to consider X ∈ k ∩ (a+ n). Note
that X = sX ∈ a+ sn. Since a+ n+ sn is a direct sum, we obtain X ∈ a ⊂ p.
Now X ∈ k ∩ p = 0 implies X = 0. �
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2.5.4 Theorem (Global Iwasawa decomposition) Let G be a noncompact
real semisimple connected Lie group with finite center, and fix an Iwasawa de-
composition g = k+a+n of the Lie algebra of G. Let K, A, N be the connected
subgroups of G with Lie algebras k, a, n, respectively. Then the multiplication
map K ×A×N → G is a global diffeomorphism.

Proof. Let Ḡ = Ad(G) be the adjoint group, viewed as a closed subgroup
of GL(g), and let K̄, Ā and N̄ be the subgroups of Ḡ corresponding to K, A
and N .

By semisimplicity, indeed Ḡ ⊂ SL(n,R). The elements of K̄ are special
orthogonal matrices, those of A are diagonal matrices with positive entries, and
those of N are upper triangular matrices with 1’s along the diagonal. Hence the
result for Ḡ follows from the result for SL(n,R) (cf. Problem 2.6.9).

Now we have a commutative diagram

K ×A×N > G

K̄ × Ā× N̄
∨

> Ḡ
∨

where the horizontal arrows denote the multiplication maps, and the vertical
arrows denote covering maps. Note that Ā and N̄ are simply-connected, and
Ḡ = G/Z(G), where Z(G) ⊂ K̄ (cf. proof of Theorem 2.4.6). Therefore the
result for Ḡ can be lifted to G. �

The construction of the restricted root system of g is independent of choice
of Cartan subspace of p, as we show now. Let K be the connected subgroup of
GL(g) generated by exp adX for X ∈ k.

2.5.5 Proposition Let a and a′ be two Cartan subspaces of p. Then there
exists k ∈ K such that Adka = a′.

Proof. It follows from Proposition 2.5.2 that there exists X ∈ a such that
the centralizer of X in p is exactly a (namely, any element in the complement
of the union of the kernels of the restricted roots). Given Y ∈ p, consider the
continuous real-valued function f(k) = β(AdkY,X) for k ∈ K, where β is the
Killing form of g. Recall K is compact, and choose a point of minimum k0 ∈ K.
Then, for Z ∈ k,

0 =
d

dt
|t=0β(Adexp(tZ)k0

Y,X) = β([Z,Adk0
Y ], X) = β(Z, [Adk0

Y,X]).

Since β is negative definite on k and Z ∈ k is arbitrary, [Adk0
Y,X] = 0. By the

choice of X, Adk0
Y ∈ a. In particular, if Y ∈ a′ is taken so that its centralizer of

in p is exactly a′, then a ⊂ Adk0
a′. In particular, dim a ≤ dim a′. By symmetry,

the dimensions must be equal and hence a = Adk0
a′. �

Next, we want to explain that the restricted roots of (g, a) are literally re-
strictions of roots of g with respect to a Cartan subalgebra containing a.
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2.5.6 Proposition If t is a maximal Abelian subalgebra of m, then hc is a
Cartan subalgebra of gc, where h = t+ a.

Proof. It is clear that hc is Abelian. Suppose now Z = X +
√
−1Y central-

izes hc, where X, Y ∈ g. Then X and Y centralize h. In particular, [X, a] = 0
and [sX, a] = s[X, a] = 0, implying X, sX ∈ m + a. Now X + sX ∈ k implies
X + sX ∈ m, so [X + sX, t] = [X, t] + s[X, t] = 0 yields X + sX ∈ t. Similarly,
X−sX ∈ p gives X−sX ∈ a. Therefore 2X = (X+sX)+(X−sX) ∈ t+a = h.
In a similar way, Y ∈ h and thus Z ∈ hc. This proves that hc is maximal Abelian.

Finally, if H ∈ t ⊂ k then ad∗H = −adsH = −adH , so adH is diagonalizable
over C. On the other hand, if H ∈ a then adH is already diagonal. We
have seen that the real and imaginary parts of any H ∈ hc, under the adjoint
representation, are semisimple endomorphisms. Since they commute, this proves
that adH is semisimple for all H ∈ hc. �

2.5.7 Corollary The roots α ∈ ∆(gc, hc) take real values on
√
−1t + a. If

m = 0, then g is a normal real form of gc and all the multiplicities of the
restricted roots are 1.

Proof. If H ∈ a, then adH : g → g is self-adjoint and has thus real eigenval-
ues; the same is of course true for adH : gc → gc. On the other hand, if H ∈ t,
then adH : g → g is skew-adjoint and so has purely-imaginary eigenvalues.

If m = 0, then t = 0 so the roots are real-valued on h. Hence g contains the
real form h of a Cartan subalgebra hc ⊂ gc where the roots are real. Also, h = a

and gλ is a real form of (gc)α for α ∈ ∆(gc, hc) and λ = α|a. �

In the special case in which m = 0, we have h = a and the rank of M equals
the rank of G; the associated symmetric space G/K (and its dual) are called of
maximal rank.

In general, we compare the decomposition of g into restricted root spaces,
with respect to a, with the decomposition of gc into complex root spaces, with
respect to h = t+ a (cf. Proposition 2.5.6). We have

gc = hc +
∑

α∈∆(gc,hc)

(gc)α

= tc + ac +
∑

α|a 6=0

(gc)α +
∑

α|a=0

(gc)α.

If α|a 6= 0, then ((gc)α + σ(gc)α)) ∩ g ⊂ gλ for λ = α|a ∈ ∆(g, a), where σ
denotes the conjugate-linear conjugation of gc over g. Hence

(gc)α ⊂ (gλ)
c.

On the other hand, if α|a = 0, then (gc)α ⊂ Za(g
c) = mc + ac. Now unidimen-

sionality and s-invariance of (gc)α imply

(gc)α ⊂ mc.
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We finally get

mc = tc +
∑

α|a=0

(gc)α and (gλ)
c =

∑

α|a=λ

(gc)α.

Finally, we discuss some peculiarities in the case in which (g, s, B) is in
class 4. Then g admits an ad-invariant complex structure J . We have g = k+Jk
relative to s, and k is a maximal compact subalgebra and a real form of g. Let
h = t + a be as above. Since a centralizes h, so does Ja. We have Ja ⊂ k, and
this implies Ja ⊂ t. Similarly, one checks that Jt ⊂ a and then Ja = t. Now
h = Ja+ a is a (complex) Cartan subalgebra of (g, J). Consider

g = h+
∑

α∈∆(g,h)

gα (complex decomposition)

= t+ a+
∑

α∈∆(g,h)

gα (real decomposition)

= t+ a+
∑

α|a∈∆(g,a)

gα.

It follows that m = t and all roots of g with respect to h are nonzero on a. Since
the real dimension of gα is 2, all the multiplicities are 2. The restriction map
α ∈ ∆(g, h) 7→ α|a ∈ ∆(g, a) is a bijection and an isometry, and ∆(g, a) is a
reduced root system. Also, the rank of g as a complex Lie algebra equals the
rank of the symmetric space G/K.

2.5.8 Example For the symmetric space SL(n,R)/SO(n) of class 3x, we have
g = sl(n,R), sX = −Xt and k = so(n). The vector space p consists of the n
by n traceless real symmetric matrices. A maximal Abelian subspace a ⊂ p is
given by the diagonal matrices, namely,

a =












a1
. . .

an




 ; a1 + · · ·+ an = 0, ai ∈ R







.

Hence the rank is n − 1. The centralizer of a diagonal matrix with pairwise
different entries is diagonal, so m = Zk(a) = 0. Therefore t = 0 and h = a. It
follows that sl(n,R) is a normal real form of sl(n,C) and SL(n,R)/SO(n) is a
symmetric space of maximal rank. Let θi(H) denote the ith diagonal element
of H ∈ a. Then

∆(g, a) = {±(θi − θj) : 1 ≤ i < j ≤ n}
and the multiplicities are 1.

We close this section combining the restricted root decomposition with the
decomposition into eigenspaces of the involution. By Proposition 2.5.2(c), gλ +
g−λ is s-invariant, thus it decomposes into the sum of its intersections with k

and p. For λ ∈ ∆+(g, a), set

kλ = (gλ + g−λ) ∩ k and pλ = (gλ + g−λ) ∩ p.
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2.5.9 Proposition a. There are vector space direct sum decompositions

k = m+
∑

λ∈∆+(g,a)

kλ and p = a+
∑

λ∈∆+(g,a)

pλ.

b. We have dim kλ = dim pλ, and it equals the multiplicity mλ of λ.

c. We have
kλ = {X ∈ k | ad2HX = λ(H)2X for all H ∈ a}

and
pλ = {Y ∈ p | ad2HY = λ(H)2Y for all H ∈ a}.

d. We have

[kλ, kµ] ⊂ kλ+µ + kλ−µ, [kλ, pµ] ⊂ pλ+µ + pλ−µ, [pλ, pµ] ⊂ kλ+µ + kλ−µ.

e. Let X ∈ kλ, Y ∈ pλ, H ∈ a be nonzero vectors. Then λ(H) = 0 if and
only if [H,X] = 0 if and only if [H,Y ] = 0.

Proof. (a) This follows from Proposition 2.5.2(a), since kλ + pλ = gλ + g−λ.
(b) Given λ, take H ∈ a \ kerλ. Then adH sends kλ into pλ and pλ into

kλ, injectively. The assertion about the dimensions now follows from kλ + pλ =
gλ + g−λ.

(c) ad2H preserves k and p for H ∈ a, so the desired result again follows from
kλ + pλ = gλ + g−λ.

(d) This is a calculation analogous to Proposition 2.5.2(b).
(e) If λ(H) = 0 then ad2HX = 0 by part (c). Using Lemma 2.5.1:

0 = Bs(ad
2
HX,X) = Bs(adHX, adHX).

Hence adHX = 0 by definiteness of Bs. The converse is clear, and the result
for Y is analogous. �

2.5.10 Remark The results in Proposition 2.5.9 can also be phrased in the
case of a symmetric space of compact type by using Cartan duality. On the
maximal Abelian subalgebra au :=

√
−1a ⊂

√
−1p, the restricted roots take

purely imaginary values.

2.5.11 Example Here is an example of using the restricted root system to
do calculations in a symmetric space. We shall use the resulting formula in
section 3.

The projections

gλ + g−λ → kλ, gλ + g−λ → pλ

are respectively given by

Z 7→ 1

2
(Z + sZ), Z 7→ 1

2
(Z − sZ).
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Taking a basis {Zi
λ}mλ

i=1 ⊂ gλ for λ ∈ ∆+(g, a) and setting Zi
−λ = sZi

λ, we have,
dropping the “i” from the notation,

[H,Zλ + Z−λ] = λ(H)(Zλ − Z−λ), [H,Zλ − Z−λ] = λ(H)(Zλ + Z−λ).

Let g = k+ pu be the Cartan dual of g = k+ p and take au =
√
−1a. Then

[
√
−1H,Zλ + Z−λ] = λ(H)

√
−1(Zλ − Z−λ)

and
[
√
−1H,

√
−1(Zλ − Z−λ)] = −λ(H)(Zλ + Z−λ).

Now
Xλ = Zλ + Z−λ ∈ kλ, Yλ =

√
−1(Zλ − Z−λ) ∈ (pu)λ

and H ′ =
√
−1H ∈ au satisfy

[H ′, Xλ] = −
√
−1λ(H ′)Yλ, [H ′, Yλ] =

√
−1λ(H ′)Xλ.

Put λ(H ′) =
√
−1t for t ∈ R. Then

AdexpH′Yλ = eadH′Yλ

=
∞∑

k=0

1

k!
adkH′Yk

=
∞∑

k=0

1

(2k)!
λ(H ′)2kYλ +

√
−1

∞∑

k=0

1

(2k + 1)!
λ(H ′)2k+1Xλ

=
∞∑

k=0

1

(2k)!
(−1)kt2kYλ −

∞∑

k=0

1

(2k + 1)!
(−1)kt2k+1Xλ

= cos t Yλ − sin tXλ

= cos t Yλ +
sin t

t
adH′Yλ

= cos
√

−λ(H ′)2 Yλ +
sin

√

−λ(H ′)2
√

−λ(H ′)2
adH′Yλ.(2.5.12)

Note that, in formula (2.5.12), Yλ can be considered as an arbitrary element
of (pu)λ.

2.5.13 Remark A real simple Lie algebra is completely determined by the
abstract root system together with the multiplicities (see [23, Ex. 9, Ch. X,
p. 535]). Equivalently, the classification of irreducible symmetric spaces is equiv-
alent to the determination of the possible abstract root systems together with
their multiplicities, and the construction of a symmetric space (and its dual) for
each possibility.
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2.6 Problems

2.6.1 Problem Let g be a complex Lie algebra and denote its Killing form
by β. Prove that the Killing form of the realification of g is twice the real part
of β.

2.6.2 Problem Let g be a complex simple Lie algebra. Prove that the real-
ification gr is a real simple Lie algebra. (Hint: Show that any ideal of gr is
invariant under the complex structure.)

2.6.3 Problem Let g be a non-Abelian Lie algebra and let σ be an involutive
automorphism of g. Show that the fixed point set gσ is not zero.

2.6.4 Problem Let T be a torus, and let σ be an involutive automorphism
of T with fixed point set U . Prove that the map Φ : T × U → T given by
Φ(t, u) = σ(t)ut−1 is surjective. (Hint: Show it is open and closed by computing
its differential.)

2.6.5 Problem Explain with sl(2,R) is not a compact Lie algebra.

2.6.6 Problem Prove that a complex compact Lie algebra is trivial.

2.6.7 Problem Let G be a connected semisimple Lie group whose Lie algebra
has a complex structure. Check that G has finite center.

2.6.8 Problem Let g be a noncompact real semisimple Lie algebra, let s be a
Cartan involution, write g = k+p for the Cartan decomposition. An s-invariant
CSA h of g is called maximally compact (resp. maximally noncompact) if h ∩ k

(resp. h ∩ p) is a maximal Abelian subalgebra of k (resp. p).

a. Prove that two maximally compact s-invariant CSA of g are conjugate
under an inner automorphism of g induced by k. (Hint: Use Lemma 2.3.5.)

b. Prove that two maximally noncompact s-invariant CSA are conjugate un-
der an inner automorphism of g induced by k. (Hint: Use Proposition 2.5.5
and the conjugacy of maximal tori in a compact connected Lie group.)

2.6.9 Problem Derive the global Iwasawa decomposition for G = SL(n,R)
from the Gram-Schmidt orthonormalization process.

2.6.10 Problem Let G/K be a symmetric space of maximal rank, where G is
semisimple. Show that dimM = 1

2 (dimG+ rankG) = rankG+ dimK.

2.6.11 Problem Let M = G/K be a symmetric space of noncompact type,
where G is the transvection group. Show thatK is a maximal compact subgroup
of G.
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2.6.12 Problem Let g = k+ p the Cartan decomposition of a real semisimple
Lie algebra. Let K be the connected subgroup of GL(g) generated by exp adX
for X ∈ k. Assume a1, a2 are two Cartan subspaces of p such that H ∈ a1 ∩ a2.
Show that there exists k0 ∈ K such that Adk0

a1 = a2 and Adk0
H = H. (Hint:

Adapt the idea of the proof of Proposition 2.5.5.)

2.6.13 Problem (i) Generalize Example 1.5.2 to construct the orthogonal
involutive Lie algebra associated to the Grassmann manifold Gr(k,Rn) of
unoriented k-planes in Rn.

(ii) Explain the Riemannian covering Gr+(k,Rn) → Gr(k,Rn), in terms of
the canonical presentation of the symmetric spaces as homogeneous spaces,
where Gr+(k,Rn) denotes Grassmann manifold Gr(k,Rn) of oriented k-
planes in Rn.

2.6.14 Problem (i) Identify SO(n)/U(n) with the space of orthogonal com-
plex structures on R2n, where U(n) is embedded into SO(2n) as the sub-
group of matrices of the form

(
A −B
B A

)
.

(ii) What is the involution s of so(2n) whose fixed point set is u(n)? What is
the (−1)-eigenspace of s?

2.6.15 Problem (i) Identify SL(n,R)/SO(n) with the convex cone of n×n
positive definite symmetric matrices (cf. Example 2.5.8). .

(ii) Show that SL(2,R)/SO(2) is isometric to the real hyperbolic plane RH2.

2.6.16 Problem Show that a symmetric space of dimension at most 3 must
have constant curvature.

2.6.17 Problem Prove that the only 4-dimensional compact symmetric spaces
are S4 and CP 2.

3 Lecture 3: Geometry

The Borel lectures seem to be the starting point for the wide dissemination of
Élie’s Cartan’s theory of symmetric spaces and, in the late 1950’s and through
the 1960´s, they started to received more attention. It was realized that sym-
metric spaces help unify and explain in a general way various phenomena in
classical geometries, in addition to its applications to functions of several com-
plex variables, number theory and topology.

For one thing, an interesting connection between symmetric spaces and
holonomy was noticed: the de Rham decomposition theorem (1952) and Berger’s
classification of holonomy groups (1953). It then became clear that almost all
holonomy groups occurred for symmetric spaces and therefore gave good ap-
proximating geometries to most holonomy groups. An even more interesting
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question also came out of this, namely, what about those few holonomy groups
that do not occur for symmetric spaces?

In the early 1950’s Bott devised the concept of variational completeness for
isometric group actions, which roughly translates to the absence of conjugate
points in the quotient, and developed powerful Morse-theoretic methods to com-
pute the homology and cohomology of their orbits. These methods were put to
use in the study of the topology of symmetric spaces (together with Samelson),
as their isotropy representations are variationally complete, and in the proof
(in 1957) of the celebrated Bott periodicity theorem for the stable homotopy
groups of the classical groups, where loop spaces are interpreted as symmetric
spaces.

As later developments in the geometric theory, we would also like to quote
various rigidity theorems in the realm of symmetric spaces, like e.g. Mostow’s
rigidity and higher rank rigidity of Ballmann and Burns-Spatzier.

Symmetric spaces play a central role in modern differential geometry, with
a list of connections and ramifications in different areas of Mathematics and
Mathematical Physics that is so long to compilate, that it is better left to the
interested reader to search and investigate, according to his/her tastes.

3.1 Curvature

The calculation of the curvature of symmetric spaces was already known to
Cartan. Let M be a locally symmetric space with Levi-Cività connection ∇
and curvature tensor R. We use the sign convention that

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

for vector fields X, Y , Z on M .

3.1.1 Lemma Let M be a locally symmetric space and fix x ∈ M . Let X be
an infinitesinal transvection at x and let Y be any vector field defined on a
neighborhood of x. Then (∇XY )x = (LXY )x.

Proof. Let {pt} denote the local one-parameter group of local transvection
generated by X. Since pt induces parallel transport of vectors along the geodesic
γ(t) = pt(x), we have

(LXY )x =
d

dt

∣
∣
∣
t=0

dp−t(Xγ(t))

=
d

dt

∣
∣
∣
t=0

P γ
0,t(Xγ(t))

= (∇XY )x,

where P γ
t1,t0

denotes parallel transport along γ from t0 to t1. �

3.1.2 Proposition Let M be a locally symmetric space, x ∈ M and X, Y ,
Z ∈ TxM . Then

(3.1.3) Rx(X,Y )Z = −[[X,Y ], Z]x,
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where on the right-hand side we use the infinitesimal transvection induced by
the corresponding tangent vector.

Proof. Let γ be the geodesic with initial speed Xx ∈ TxM . Since Y is a
Killing field, its restriction along γ is a Jacobi field. Therefore, using ∇

dt
to

denote the covariant derivative along γ,

R(X,Y )X =

(∇
dt

∇
dt
Y

) ∣
∣
∣
t=0

=

(∇
dt

[X,Y ]γ(t)

)

t=0

(by Lemma 3.1.1)

= [X, [X,Y ]]γ(0) (idem)

= −[[X,Y ], X]x.

The proof is finished by recalling that the sectional curvature determines the
curvature tensor and that the right-hand side of (3.1.3) has the symmetries of
the curvature tensor. �

3.1.4 Corollary Let M be an irreducible locally symmetric space, x ∈M , and
consider the OIL-algebra (g, s, B) at x. Recall that B = λβ|p×p for some λ 6= 0,
where β is the Killing form of g. Then the sectional curvature of the 2-plane
spanned by an orthonormal pair X, Y ∈ TxM ∼= p is given by

K(X,Y ) = λβ([X,Y ], [X,Y ]).

Proof. Using formula (3.1.3) and the ad-invariance of the Killing form, we
have

K(X,Y ) = −B(R(X,Y )X,Y ) = λβ([[X,Y ], X], Y ) = λβ([[X,Y ], [X,Y ]),

as desired. �

It follows from this corollary that Cartan duality changes the signs of the
sectional curvatures of the tangent planes. Indeed symmetric spaces of compact
(resp. noncompact) type has nonnegative (resp. nonpositive) curvature.

3.1.5 Corollary Let M be a locally symmetric space and construct the simply-
connected symmetric space M̃ associated to the OIL-algebra of M . Given x ∈
M , x̃ ∈ M̃ , there exist neighborhoods U , Ũ of x, x̃ and an isometry ϕ : Ũ →
U such that ϕ(x̃) = x. If M is complete, then ϕ extends to the universal
Riemannian covering.

Proof. Let R̃ and R be the curvature tensors of M̃ and M . By for-
mula (3.1.3), there exists a linear isometry I : Tx̃M̃ → TxM which sends R̃x̃

to Rx. Since R̃ and R are parallel, I extends to an isometry ϕ : Ũ → U of
normal neighborhoods by Theorem 1.3.3. If M is complete, ϕ further extends
to a universal Riemannian covering by Theorem 4.2.1. �
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3.2 Totally geodesic submanifolds

Let M be a Riemannian manifold. Recall that an isometric immersion f : N →
M is called totally geodesic if the geodesics of N are geodesics ofM . A necessary
and sufficient condition is that the second fundamental form vanishes identically.
In stark contrast to general Riemannian manifolds, we shall see that symmetric
spaces posses an abundance of totally geodesic submanifolds.

Let M be a locally symmetric space. Fix a base-point x ∈M and denote by
(g, s, B) the associated OIL-algebra. Recall that the geodesics of M through x
are of the form t 7→ exp(tX) · x for X ∈ TxM .

3.2.1 Proposition Let M be a locally symmetric space. Then every totally
geodesic submanifold N has an induced structure of locally symmetric space.

Proof. Let x ∈ N . It is obvious that the geodesic symmetry sx of M locally
leaves N invariant. �

A subspace s of a Lie algebra is called a Lie triple system if [[X,Y ], Z] ∈ s

for every X, Y , Z ∈ s.

3.2.2 Theorem Let M be a symmetric space. The connected complete totally
geodesic submanifolds of M passing through x are precisely of the form exp[s] ·x,
where s ⊂ p is a Lie triple system.

Proof. Suppose N is a totally geodesic submanifold of M passing through
x. Let s ⊂ p be the subspace corresponding to TxN ⊂ TxM . Due to total-
geodesicness, the curvature tensor of M restricts to that of N . By Proposi-
tion 3.1.2, we get [[s, s], s] ⊂ s, hence s is a Lie triple system. If N is complete
and connected, every one of its points can be joined to x by a (minimizing)
geodesic. It follows that N = exp[s] · x.

Conversely, suppose s ⊂ p is a Lie triple system. Then b = [s, s] + s is a
subalgebra of g. Denote by B the associated connected subgroup of G. Then
the orbit N = B(x) is a connected homogeneous submanifold of M such that
the induced Riemannian metric is B-invariant. If X ∈ s, then the geodesic
t 7→ exp(tX) · x of M is contained in N . It follows that N is totally geodesic
at x; hence, owing to homogeneity, it is totally geodesic everywhere. It is now
obvious that N is complete and N = exp[s] · x. �

Examples of complete totally geodesic submanifolds are more interesting if
they are closed.

3.2.3 Proposition A maximal connected complete totally geodesic submanifold
of a symmetric space is properly embedded.

Proof. Let M = G/K be a symmetric space where K = Gx, and let N =
exp[s] · x be a totally geodesic submanifold as in Theorem 3.2.2. Put b̃ =
Nk(s) + s, where Nk(s) is the normalizer of s in k. Maximality of the LTS
s implies that b̃ is a self-normalizing Lie subalgebra of g. It follows that the
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corresponding connected subgroup B̃ is the connected normalizer of b̃ in G. In
particular, B̃ is a closed subgroup of G. Since N = B̃(x), the desired result
follows. �

Although the determination of totally geodesic submanifolds is reduced to an
algebraic problem, it has only been accomplished in low rank or under additional
hypothesis. In particular, the work of Chen and Nagano [13] is noteworthy for
the geometric ideas introduced (see also [25], for an approach based on restricted
root systems).

A symmetric space admits a totally geodesic submanifold of codimension one
only in case it has constant curvature. The minimal codimension of a totally
geodesic submanifold of a symmetric space was investigated by Onishchik and,
recently, it has been computed for almost all irreducible symmetric spaces by
Berndt and Olmos [3].

3.3 Maximal flats and rank

Let M = G/K be a symmetric space where G is the connected isometry group
of M and (g, s, B) is the OIL-algebra at x ∈M .

A complete connected totally geodesic flat submanifold of M will be simply
called a flat. A flat is said to bemaximal if it is not properly contained in another
flat. It follows from Theorem 3.2.2 and Proposition 3.1.2 that a maximal flat
through x has the form F = exp[a]x where a is Cartan subalgebra of p. It
follows from Proposition 2.5.5 that all the maximal flats of M are conjugate
and hence have the same dimension. This number is called the rank of the
symmetric space.

3.3.1 Proposition A maximal flat F ofM is a properly embedded submanifold.
If M is of compact (resp. noncompact) type, then F is isometric to a flat torus
(resp. flat Euclidean space).

Proof. We have F = Ax and A = exp[a] is the connected Abelian subgroup
of G with Lie algebra some Cartan subspace a. F is properly embedded if A
is closed in G. In fact, the closure Ā is also a connected Abelian group with
Lie algebra contained in p (because the involution σ of G satisfies σ(g) = g−1

for g ∈ A and thus for g ∈ Ā). Hence Ā = A. If M is of compact type, F
is a compact homogeneous flat manifold, thus isometric to a torus. If M is of
noncompact type, the exponential map expx : TxR

n → M is a diffeomorphism
and the result follows (cf. Corollary 2.4.7). �

3.4 Conjugate locus

In this section, we describe the conjugate locus of a point in a symmetric space
of compact type M = G/K . By homogeneity, it suffices to study the conjugate
locus of the basepoint x0. Furthermore, it is clear that the conjugate locus of
x0 is K-invariant, so it is completely determined by the conjugate locus along
a maximal flat passing through x0.
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First we describe Jacobi fields on a locally symmetric space. It is convenient
to introduce the functions

cα(t) =







cos(
√
αt) if α > 0,

1 if α = 0,
cosh(

√
−αt) if α < 0,

and sα(t) =







sin(
√
αt)√
α

if α > 0,

t if α = 0,
sinh(

√
−αt)√

−α
if α < 0.

Let γ be a geodesic with initial speed v ∈ Tx0
M . Since the curvature tensor

is parallel along γ, the Jacobi equation

−Y ′′ +R(γ′, Y )γ′ = 0

has constant coefficients when expressed in a parallel frame along γ. The self-
adjoint endomorphism u 7→ −R(v, u)v of Tx0

M has real eigenvalues α0 = 0,
α1, . . . , αn−1 with corresponding orthonormal eigenbasis v0 = v, v1, . . . , vn−1,
so the Jacobi equation splits into n independent constant coefficient second-
order linear ordinary differential equations

y′′i + αiyi = 0,

where αi = −〈R(v,vi)v, vi〉. Hence a basis of solutions of the Jacobi equation
can be given as

Yi(t) = cαi
(t)Ei(t), Zi(t) = sαi

(t)Ei(t)

where {E0 = γ′, E1, . . . , En−1} is a parallel orthonormal frame along γ.

3.4.1 Proposition (Variational completeness) LetM be a symmetric space
and γ : [0,+∞) →M be a geodesic ray. If γ(t0), t0 > 0, is a conjugate point to
γ(0) along γ, then there exists a nontrivial one-parameter group of transvections
{pt} fixing both γ(0) and γ(t0).

Proof. By the discussion above, there exists a Jacobi field along γ of the
form J(t) = sα(t)E(t) and J(t0) = 0. Since sα(t0) = 0, we have α = (mπ/t0)

2

for some integer m 6= 0 (note that we must have α > 0). There exists t1 ∈
(0, t0) such that cα(t1) = 0. This means J ′(t1) = 0. Let {pt} be the one-
parameter group of transvections induced by J(t1), and set Z = d

dt
|t=0pt. Since

the restriction of Z along γ is a Jacobi field and (∇Z)γ(t1) = 0 = J ′(t1), Zγ(t1) =
J(t1), we get Z ◦γ = J . In particular, Z(γ(0)) = Z(γ(t0)) = 0. Using that {pt}
is a one-parameter group of isometries, we finally see that pt(γ(0)) = γ(0) and
pt(γ(t0)) = γ(t0) for all t. �

3.4.2 Remark The ideas in Proposition 3.4.1 provide another proof that a
symmetric space M of noncompact type is simply-connected. In fact, suppose
M is not simply-connected. Then in a nontrivial free homotopy class of loops
we can find a closed geodesic γ (of minimal length in that class). Now there
is a parallel vector field E(t) along γ such that J(t) = cosh(

√
−αt)E(t) is a
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Jacobi field along γ; in particular, ||J || is unbounded. On the other hand, since
J ′(0) = 0, J must be the restriction along γ of the infinitesimal transvection
Z ∈ p with Zγ(0) = J(0); therefore ||J || is bounded, as γ is a closed curve, a
contradiction.

3.4.3 Remark Proposition 3.4.1 already implies that the conjugate locus of
a point x is a symmetric space of compact type M = G/K, where K = Gx,
consists of singular points of the K-action. In fact, since x = γ(0) is a fixed
point of K, the geodesic γ is orthogonal to every K-orbit it meets, in particular
to Ky, where y = γ(t0). The existence of the nontrivial one-parameter of
transvections {pt} shows that the isotropy subgroup Ky does not fix the normal
vector −γ′(t0). Hence y is a singular point.

We now give a more precise, algebraic description of the conjugate locus.

3.4.4 Theorem Let M = G/K be a symmetric space of compact type where
G is the connected group of isometries and K is the isotropy subgroup at a
basepoint x. Fix a maximal flat Fu passing through x and let TxFu = au. Then
the conjugate locus of x consists precisely of the points of the form (k expH)x,
where k ∈ K and H ∈ au satisfies λ(H) = mπ

√
−1 for some λ ∈ ∆+(g, a) and

some integer m 6= 0.

Proof. Let y be a point conjugate to x along some geodesic. Without loss
of generality, we may assume that y = (expH)x for some nonzero H ∈ au. Let
t0 = ||H|| > 0. The Jacobi operator −R(H

t0
, X)H

t0
= − 1

t2
0

ad2HX for X ∈ TxM ∼=
p = au ⊕ ∑

λ pλ, and its nonzero eigenvalues are −λ(H)2/t20 for λ ∈ ∆+(g, a).
By the argument in the proof of Proposition 3.4.1, our conjugate point must
satisfy −λ(H)2/t20 = (mπ/t0)

2 for some λ ∈ ∆+(g, a) and some integer m 6= 0.
The desired result follows. �

3.4.5 Remark In Theorem 3.4.4, the Jacobi fields associated to a conjugate
point y = (expH)x of x along t 7→ expx(t

H
||H|| )x, for H ∈ au, have the form

J(t) = sα(t)E(t), where α = (mπ/||H||)2 = −λ(H/||H||)2, and E(0) ∈ pλ is an
eigenvector of the Jacobi operator −ad2 H

||H||
with eigenvalue α. It follows that

the multiplicity of y as a conjugate point is
∑
mλ, where λ runs through all

positive restricted roots such that 1
π
√
−1
λ(H) is a non-zero integer.

3.5 Cut locus

We next explain the result that, in a simply-connected symmetric space of com-
pact type, the cut locus coincides with the first conjugate locus, a result probably
first published by Crittenden [17].

Let M = G/K be a symmetric space of compact type where G is the con-
nected group of isometries and K is the isotropy subgroup at a basepoint x. Fix
a maximal flat Fu passing through x and let TxFu = au. It is clear that the cut
locus of x is K-invariant, so it suffices to describe it along Fu.
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3.5.1 Proposition For a unit vector H ∈ au, suppose y = exp(t0H)x is a cut
point of x along t 7→ exp(tH)x. Then either y is the first conjugate point of x
along γ or there exists a unit vector H ′ ∈ au, H

′ 6= H, such that y = exp(t0H
′)x.

Proof. It is known that if y is not the first conjugate point of x along γ, then
y is not conjugate to x and there exists a unit vector Y ∈ pu, Y 6= H, such that
y = exp(t0Y )x. We will prove that [H,Y ] = 0. In fact, suppose [H,Y ] 6= 0.
Then Y 6∈ au. Since exp(t0H)x = exp(t0Y )x, we have exp(−t0H) exp(t0Y ) = k
for some k ∈ K. Now

exp(−t0H) exp(sY ) exp(t0H) = k exp(sY )k−1

for all s ∈ R, so
Adexp(−t0H)Y = AdkY.

Write Y = Y0 +
∑

λ Yλ ∈ a +
∑

λ(pu)λ. Then Yλ 6= 0 for some λ. By equa-
tion (2.5.12)

Adexp(−t0H)Yλ = cos
√

−λ(t0H)2 Yλ +
sin

√

−λ(t0H)2
√

−λ(t0H)2
ad−t0HYλ.

Since AdkY ∈ p, we must have λ(t0H) = mπ
√
−1 for some integer m. Also,

[H,Y ] 6= 0 implies that m 6= 0. However, owing to Theorem 3.4.4, this con-
tradicts the fact that y is not a conjugate point of x along γ. Thus we get
[H,Y ] = 0. Now H and Y lie in a Cartan subspace a′u. There exists k′ ∈ K
such that Adk′H = H (in particular k′y = y) and Adk′a′u = au (cf. Prob-
lem 2.6.12). We are done by taking H ′ = AdkY . �

Put
(au)K = {H ∈ au | expH ∈ K}.

Then (au)K is a lattice in au and Fu is isometric to the quotient au/(au)K . It
follows from Proposition 3.5.1 that a cut point of x is either a first conjugate
point or a cut point along a maximal flat. The tangential cut locus of x in
TxFu = au is easy to compute; it is determined by the hyperplanes in (au)K
which are equidistant from 0 and a point in (au)K , that is it is the boundary of
the convex set Dx given by the intersection of the half-spaces

(3.5.2) {H ′ ∈ au : |〈H ′, H〉| ≤ ||H||2/2}

for H ∈ (au)K .

3.5.3 Lemma Let M = G/K be a symmetric space of compact type, where G
is simply-connected and K is a connected. Then (au)K is the lattice generated
by

A(λ) = 2π
√
−1

Aλ

||λ||2 ,

where λ ∈ ∆(g, a), and Aλ ∈ a =
√
−1au is defined by B(Aλ, H) = λ(H) for all

H ∈ a.
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Proof. (Sketch) Since G is simply-connected and K is connected, one shows
that K = Gσ, where dσ = s [23, Theorem 8.2]. It follows that expH ∈ K if
and only if exp(−H) = σ(expH) = expH if and only if exp(2H) = 1, showing
that (au)K = 1

2 (au)1, where

(au)1 = {H ∈ au : expH = 1}.

One needs to analyze the relation between the maximal flat in G/K and the
maximal torus in G, and recall the description of the unit lattice in a simply-
connected Lie group. We skip the technical details and refer the reader to [23,
Corollary 7.8 and Theorem 8.5] or [4]. �

3.5.4 Theorem Let M = G/K be a simply-connected symmetric space of com-
pact type. Then the cut locus of a point coincides with its first conjugate locus.

Proof. In view of Proposition 3.5.1, it suffices to show that the cut locus of
the basepoint x along the maximal flat coincides with the first conjugate locus.

In Lemma 3.5.3, note that λ(Aλ) = 2π
√
−1. It follows that the tangential

cut locus along au, as given by (3.5.2), is the boundary of
⋂

λ∈∆(g,a)

{H ′ ∈ au : |λ(H ′)| ≤ π}.

Due to Theorem 3.4.4, this is also the first tangential conjugate locus of x, as
wished. �

3.5.5 Remark Let y = (expH)x, for H ∈ au be a conjugate point to x along
γ(t) = exp(t H

||H|| )x, where 1
π

√
−1λ(H) is a non-zero integer for exactly one

λ ∈ ∆+(g, a). Then the multiplicity of y is exactly mλ, the associated Jacobi
fields have the form J(t) = sα(t)E(t), where α = −λ(H/||H||)2 > 0, and E is
the parallel extension along γ of E(0) = Yλ ∈ pλ. We can write Yλ = 1

mπ
adHXλ

for some Xλ ∈ kλ. This is another way to see the variational completeness of
Proposition 3.4.1, namely, J is induced by the Killing field Xλ ∈ kλ along γ. In
particular Xλy = 0. Indeed the isotropy algebra of y under the isotropy action
of K is m+ kλ (the isotropy algebra of a generic point in Fu is m).

Next, view the first conjugate locus of x in au ⊂ TxM as the closure of the
union of the sets Cλ consisting of points the form (expH)x, where 1

π

√
−1λ(H) =

±1 and 1
π

√
−1µ(H) is not an integer for µ 6= λ. The isotropy group of any

point in expCλ, denoted K[λ], has Lie algebra m+ kλ. The first conjugate locus
Conj1(x) is contained in the closure of ∪λK(expCλ).

We can estimate the codimension of Conj1(x), as a metric space, as follows.
For each λ, there is a product decomposition K(expCλ]) ≈ K/NK(K[λ]) ×
(expCλ), where NK(K[λ]) denotes the normalizer of K[λ] in K. Therefore
dimK(expCλ) = dimK − dimNK(K[λ]) + dimCλ. It is easy to see that
NK(K[λ]) has as Lie algebra the normalizer in g of m+ kλ, but the later is self-
normalizing. Therefore dimK(expCλ) = dim k− (dimm+dim kλ)+dim a−1 =
(dim k−dimm)−mλ+dim a−1 = (dim p−dim a)−mλ+dim a−1 = dim p−mλ−1.
It follows that ∪λK(expCλ) has codimension 1 + minλmλ in p.
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3.5.6 Remark Theorem 3.5.4 can be used to prove that π2(M) is trivial for a
symmetric space of compact type all of whose multiplicities are bigger than one.
In fact, we can pass to the universal covering and assume M simply-connected.
Fix a basepoint x ∈M and suppose dimM = n. It is known thatM is obtained
from Cut(x) by attaching an n-dimensional cell in TxM via the exponential map.
Since Cut(x) coincides with the first conjugate locus of x, by Remark 3.5.5 the
codimension of Cut(x) in M is at least 1 + minλmλ ≥ 3. Hence the image of
a given continuous map S2 → M can be first homotopically deformed so as to
avoid Cut(x), and then contracted to a point, proving that π2(M) is trivial. In
particular, H2(M,Z) = 0 if M is simply-connected, by the Hurewicz theorem.

3.6 Isometric actions on symmetric spaces

Bott introduced the concept of variational completeness in [5], and in [6] to-
gether with Samelson. Roughly speaking, an isometric action of a compact9 Lie
group G on a complete Riemannian manifold M is variationally complete if it
produces enough Jacobi fields along geodesics to determine the multiplicities of
the focal points to the orbits. More precisely, for any geodesic γ orthogonal to
the G-orbits, and for every Jacobi field J along γ that generates a variation of
γ through geodesics orthogonal to the G-orbits, and such that J vanishes at
one point, there exists a Killing field induced by G whose restriction along γ
coincides with J (Proposition 3.4.1 is a special case, as it applies to the isotropy
action of K on M , where {x} is an orbit, and its focal points are the conjugate
points to x). The motivation of Bott and Samelson to consider variationally
complete actions of G on M was to construct an explicit basis of cycles in the
Z2-homology of the path space Ω(M ;x,N), where N is an arbitrary G-orbit,
x ∈M , and the paths start at x and end at a point inN . In modern terminology,
we can state their result as follows:

3.6.1 Theorem (Bott-Samelson) The orbits of a variationally complete ac-
tion are taut submanifolds (with respect to Z2-coefficients).

Here a submanifold N of M is called taut if, for every nonfocal point x, the
energy functional E : Ω(M ;x,N) → R, E(γ) = 1

2

∫
||γ′||2ds, is a perfect Morse

function, that is, every critical point (geodesic) of E corresponds to a basis
element of H∗(Ω(M ;x,N)). Indeed, Bott and Samelson provide an algorithm
to construct an explicit cycle for each critical point. In the same paper, for
a symmetric space G/K, they prove that the isotropy action of K on G/K,
the K ×K-action on G by left and right-multiplication, and the linear isotropy
action of K on Tx0

(G/K) ∼= p are variationally complete. Soon thereafter,
Hermann [24] found a more general family of variationally complete actions on
symmetric spaces. Namely, if K and H are both symmetric subgroups of the
compact Lie group G, then the action of H on G/K is variationally complete.

9We can replace the assumption of compactness of the group by the properness of the
action.
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L. Conlon was a student of Bott. In [16], he notes that a sufficient condition
for variational completeness is (in modern jargon) hyperpolarity. An isometric
action of G on M is called hyperpolar if there exists an isometrically immersed
submanifold Σ, flat with respect to the induced metric, that meets all G-orbits,
and meets them always orthogonally; such a Σ is called a section of the action.
If we do not require flatness of the section in this definition, the action is called
simply polar.

3.6.2 Theorem (Conlon) A hyperpolar action of a compact Lie group G on
a complete Riemannian manifold M is variationally complete.

Proof. Let N = Gx be a fixed orbit and let y be a focal point of N (that
is, a critical value of the normal exponential map) along a geodesic γ : [0, ℓ] →
M with γ(0) = x and γ(ℓ) = y. Then there exists a Jacobi field J along γ
satisfying J(0) ∈ TxN , J ′(0)+Aγ′(0)J(0) ∈ νxN and J(ℓ) = 0; denote by V the
space of Jacobi fields satisfying the first two of these conditions, and note that
dimV = dimM .

Fix s0 ∈ (0, ℓ) such that z = γ(s0) is a regular point for the action of G and
z is not a focal point of N . There exists a unique section Σ passing through z.
Of course, Σ is flat and contains the image of γ. Since z is not a focal point of
N , the map J ∈ V 7→ J(s0) ∈ TzM is a linear isomorphism.

Decompose J = JV + JH where JH is the orthogonal projection of J on Σ.
Due to the total-geodesicness of Σ, both JV and JH are Jacobi fields along γ.
Since JH vanishes at s = 0 and s = ℓ and Σ is flat, we have JH ≡ 0. Since z
is a regular point, JV (s0) ∈ Tz(Gz). Let X ∈ g be such that X · z = JV (s0).
Owing to X ◦ γ ∈ V , we have X ◦ γ = JV = J , finishing the proof. �

The Bott-Samelson and Hermann examples are in fact hyperpolar, as noted
by Conlon. Here we show:

3.6.3 Theorem The isotropy action of a symmetric space is hyperpolar, with
maximal flats as embedded sections.

Proof. LetM = G/K be a symmetric space, write g = k+p under s as usual
and let a ⊂ p be a Cartan subspace. Then F = exp[a] is a maximal flat. The
isotropy action of K on M is given by k · (gK) = (kg)K. We shall prove that
F is a section for this action. Of course F is flat.

We first note that any point x ofM lies in a maximal flat. Since all maximal
flats are conjugate via the isotropy action, this shows that the orbitKxmeets F .
It remains to prove that whenever a K-orbit meets F , it meets perpendicularly.

Suppose x ∈ F . We need to check that TxF and T (Kx) are orthogonal. We
have x = ax0 for some a ∈ A = exp[a]. We may assume G/K is irreducible and
the Riemannian metric is induced by an Ad-invariant inner product on g. Now
K ×K acts on G by left and right translations, K acts on by left translations
and the projection π : G→ G/K is an equivariant Riemannian submersion, so

Tx(Kx) = dπa(k · a+ a · k),
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which implies
a−1 · Tx(Kx) = π∗(Ada−1k),

where π∗ : g → p is the projection. Taking orthogonal complements, we obtain

a−1 · νx(Kx) = p ∩Ada−1p.

But the right hand-side contains

p ∩Ada−1a = p ∩ a = a.

Hence
TxF = a · a ⊂ νx(Kx),

as desired. �

The most basic example of a (linear) polar action occurs with the diagonal-
ization of real symmetric matrices. Here the orthogonal group O(n) acts on
the space of n× n real symmetric spaces and a section is given by the subspace
of diagonal matrices. Indeed the linear case — polar representations — has
been considered in a geometric vein by Szenthe [40]. In [34] the submanifold
geometry of orbits of polar representation is discussed and they are shown to
be exactly the homogeneous isoparametric submanifolds of Euclidean space; see
also the book [35] and, especially, [2] for a more modern treatment.

In [18] we find the following classification result:

3.6.4 Theorem (Dadok) A polar representation of a compact connected Lie
group is orbit-equivalent (i.e. has the same orbits, under a suitable isometric
identification of the target spaces) to the isotropy representation of a symmetric
space of compact type.

Note that a symmetric space and its Cartan dual have equivalent isotropy
representations.

It was proved in [21], by means of classification, that a variationally complete
representation is orbit-equivalent to the isotropy representation of a symmetric
space, and hence is polar. In [19], a geometric proof of this result was provided.

3.6.5 Theorem (Di Scala-Olmos) A variationally complete representation
of a compact Lie group G on an Euclidean space V is polar.

Proof. Let p ∈ V be a regular point so that N = Gp is a principal orbit.
A standard argument shows that Σ := νpN meets all orbits (a minimizing
geodesic from any given orbit to N must meet N orthogonally, and hence has a
G-translate entirely contained in Σ, which will also meet the given orbit).

Choose v ∈ νpN such that the Weingarten operator Av has all eigenvalues
nonzero. This is possible, since Ap = −id, and indeed the set of such vectors is
open and dense in νpN . Consider the geodesic γ(s) = p+ sv, normal to N , and
fix s1 > 0 such that N1 = Gq, q = γ(s1), is also a principal orbit. Due to the
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assumption of variational completeness, q is not a focal point of N along γ. We
will show that TpN = TqN1 as subspaces of V .

Each eigenvector u ∈ TpN of Av, with corresponding eigenvalue λ 6= 0,
gives rise to a Jacobi field J(s) = (1 − λs)u along the geodesic γ(s) = p + sv,
associated to the variation γt(s) = c(t) + sv̂(t), where c is a smooth curve in N
with c(0) = p and c′(0) = u, and v̂ is the parallel extension of v to a normal
vector field along c. Since J(0) = u ∈ TpN and J( 1

λ
) = 0, the assumption of

variational completeness yields a Killing vector field X induced by G such that
X ◦ γ = J . In particular, J(s) ∈ Tγ(s)(Gγ(s)) for all s. Since q is not a focal

point of N along γ, s1 6= 1
λ
and therefore u ∈ TqN1. As the eigenvectors of Av

span TpN , this shows TqN1 = TpN .
We have seen that Σ is orthogonal to all principal orbits passing through an

open and dense subset of itself. By a continuity argument, Σ is orthogonal to
every orbit it meets. This finishes the proof. �

Now the classes of polar and variationally complete representations coincide,
and they also coincide, up to orbit-equivalence, with the class of isotropy repre-
sentations of symmetric spaces. In [22], Theorem 3.6.5 was extended to compact
symmetric spaces. So the classes of hyperpolar and variationally complete ac-
tions coincide also for compact symmetric spaces.

3.6.6 Theorem (Gorodski-Thorbergsson) A variationally complete action
of a compact Lie group on a compact symmetric space is hyperpolar.

Later, Theorem 3.6.6 was generalized to variationally complete actions on
nonnegatively curved complete Riemannian manifolds [33].

We close our discussion with a brief account on the classification of polar and
hyperpolar actions on symmetric spaces. Podestà and Thorbergsson [36] clas-
sified polar actions on compact symmetric spaces of rank one (although they
missed one action on the Cayley projective plane, which was found in [20]).
In his PhD thesis [28], A. Kollross classified hyperpolar actions on irreducible
symmetric spaces of compact type, up to orbit-equivalence; they turn out to
be just the Hermann examples and the actions with cohomogeneity (i.e. codi-
mension of principal orbits) one. No example of a polar, non-hyperpolar action
on an irreducible symmetric space of compact type and rank greater than one
was known. Several papers by Podestà, Thorbergsson, L. Biliotti, A. Gori and
Kollross culminated with the work of Lytchak and Kollross [30], in which they
confirmed that no such example exists. Recently Kollross [29] has investigated
the case of reducible symmetric spaces of compact type, and since long J. Berndt
and his collaborators have studied the case of symmetric spaces of noncompact
type [1, 38], where there is a greater richness of examples and the investigation
still has a lot to go.

3.7 Problems

3.7.1 Problem Recall that a Riemannian manifold is called an Einstein man-
ifold if the Ricci tensor is proportional to the metric tensor.
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Show that a symmetric space is an Einstein manifold if and only if it is
Euclidean or irreducible.

3.7.2 Problem Let σ be an involutive automorphism of a compact connected
Lie group G. Denote by K the closed subgroup of fixed points of σ. Equip
the Lie algebra g of G with an ad-invariant inner product and consider the
associated bi-invariant Riemannian metric on G and G-invariant Riemannian
metric on the symmetric space M = G/K. Prove that the map

f :M → G, f(gK) = gσ(g−1)

defines, up to a multiplicative constant, an isometric embedding of M as a
totally geodesic closed submanifold of G (the Cartan embedding).

3.7.3 Problem Let M = G/K be a symmetric space of non-compact type,
where G is connected and K = Gx for a point x ∈ M . Consider a connected
subgroup H of K with Lie algebra h. Prove that the fixed point set of H in M
is (exp s)x, where s is the centralizer of h in p. Further, check that s is a Lie
triple system.

3.7.4 Problem Let G be a compact connected Lie group endowed with a bi-
invariant metric. Check that the notions of rank qua compact Lie group qua
symmetric space coincide for G.

3.7.5 Problem Let M be a symmetric space of rank one. Prove that M has
positive (resp. negative) sectional curvature if it is compact (resp. noncompact)
and

κmax
κmin

= 1 or 4,

where κmax and κmin denote the maximum and the minimum of the sectional
curvatures of 2-planes tangent to M . (Hint: There are at most two positive
restricted roots.)

3.7.6 Problem Let M = G/K be a symmetric space and write g = k + p

under the involution as usual. Prove that the isotropy representation of K on
p is polar, with the Cartan subspaces as sections.

4 Appendix: The Cartan-Ambrose theorem

Possibly the main application of the Cartan-Ambrose theorem is in the basic
theory of symmetric spaces. The proof herein is adapted from [12]. We retain
the notation of section 1.3.
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4.1 Preliminaries

A broken geodesic in a Riemannian manifoldM is a continuous curve γ : [0, 1] →
M such that there is a partition t0 = 0 < t1 < · · · < tk < tk+1 = 1 with the
property that γ|[ti, ti+1] is a geodesic for i = 0, . . . , k. Let complete Riemannian
manifolds M and M̃ be given and let x ∈M and x̃ ∈ M̃ . Let I : TxM → Tx̃M̃
be a linear isometry. Then we associate to a broken geodesic γ in M starting
at x a broken geodesic γ̃ in M̃ starting at x̃ as follows: We first define γ̃ on
[0, t1] by setting γ̃(t) = expx̃ tI(γ

′(0)). Assume now that we have defined γ̃
on [0, ti] and that ti < 1. Then we define γ̃ on [ti, ti+1] by setting γ̃(t) =
expγ̃(ti)(t− ti)Iiγ(γ

′(ti+)), where I
iγ = P

iγ̃ ◦ I ◦ P−1
iγ

, and P
iγ and P

iγ̃ are the
parallel translations along iγ = γ|[0, ti] and iγ̃ = γ̃|[0, ti] respectively. Finally
we can more generally define Iη : Tη(1)M → Tη̃(1)M for any broken geodesic
η : [0, 1] →M starting at x by setting Iη = Pη̃ ◦ I ◦ P−1

η .
We will need the following lemma in the proof of Theorem 4.2.1.

4.1.1 Lemma Let M be a complete Riemannian manifold and let γ0 and γ1
be broken geodesics in M which are defined on [0, 1], join x and y, and are
homotopic to each other. Then there is a homotopy Γ : [0, 1] × [0, 1] → M
between γ0 and γ1 such that γs|[ti, ti+1] is a geodesic for i = 0, . . . , k and all s
where γs(t) = Γ(s, t) and t0 = 0 < t1 < · · · < tk+1 = 1 is a partition of [0, 1].

Proof. Let κ : [0, 1] × [0, 1] → M be a continuous homotopy between γ0
and γ1, i.e., κ0 = γ0, κ1 = γ1, κ(s, 0) = x, and κ(s, 1) = y. Let ℓ denote the
radius of a closed ball around x containing the image of the homotopy κ. Let
r > 0 be the minimum of the injectivity radius on the closed ball Bℓ(x). Let
t0 = 0 < t1 < · · · < tk+1 = 1 be a partition with the property that γ0|[ti, ti+1]
and γ1|[ti, ti+1] are geodesics for all i = 0, . . . , k, and such that κs|[ti, ti+1] is
contained in Br(κs(ti)) for all i = 0, . . . , k and all s in [0, 1]. Now we define
the homotopy Γ : [0, 1] × [0, 1] → M by setting γs|[ti, ti+1] equal to the unique
shortest geodesic between κs(ti) and κs(ti+1) for all i = 0, . . . , k and all s in
[0, 1]. The homotopy Γ has by construction the properties asked for in the claim
of the lemma. �

4.2 Statement and proof of the theorem

We retain the notation of subsection 4.1.

4.2.1 Theorem (Cartan-Ambrose) Assume that M and M̃ are complete
Riemannian manifolds, M is simply connected, and that

Iγ(R(u, v)w) = R̃(Iγu, Iγv)Iγw

for all u, v, w ∈ Tγ(t)M and all broken geodesics γ starting in x. We define

a map Φ : M → M̃ by setting Φ(y) = expx̃(Iγ
′(0)) where γ : [0, 1] → M is

a geodesic joining x and y. Then Φ is well-defined, a local isometry, and a
covering map. In particular, Φ is an isometry if M̃ is also simply connected.
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Proof. Since M and M̃ are complete, the map Φ is clearly onto if it is well-
defined. We prove the following claim which implies that Φ is well-defined: For
all broken geodesics γ0, γ1 : [0, 1] → M starting at x with γ0(1) = γ1(1), we
have γ̃0(1) = γ̃1(1) and Iγ0

= Iγ1
. We may assume that γ0 and γ1 have common

break points at t1, . . . , tk, simply by adding some of them if necessary.
The first case is when γ0 and γ1 are both contained in a normal coordinate

neighborhood V around x. Then Theorem 1.3.3 implies that ϕ = expx̃ ◦I ◦
exp−1

x |V is an isometry and, for j = 0, 1, that dϕγj(t1) = I
1γj

. In this proof it

will be convenient to consider iθj = γj |[ti, ti+1] and iθ̃j = γ̃j |[ti, ti+1], and to
notice that I

i+1γj
= P

iθ̃j
◦ I

iγj
◦ P−1

iθj
. Since ϕ is an isometry,

ϕ(γj(t)) = expx̃ tI(γ̇j(0+)) = γ̃j(t),

for 0 ≤ t ≤ t1. Proceeding by induction on i = 1, . . . , k we now have

ϕ(γj(t)) = ϕ(expγj(ti)(t− ti)γ̇j(ti+))

= expγ̃j(ti)(t− ti)(dϕγj(ti)γ̇j(ti+))

= expγ̃j(ti)(t− ti)(Iiγj
γ̇j(ti+))

= γ̃j(t),

for ti ≤ t ≤ ti+1; this implies ϕ(iθj) = iθ̃j and then

dϕγj(ti+1) = P
iθ̃j

◦ dϕγj(ti) ◦ P−1
iθj

= P
iθ̃j

◦ I
iγj

◦ P−1
iθj

= I
i+1γj

,

and the induction step is complete. This proves that ϕ ◦ γj = γ̃j and hence
γ̃0(1) = ϕ(γ0(1)) = ϕ(γ1(1)) = γ̃1(1).

The second case we want to consider is when for all i = 0, . . . , k − 1 there
is a normal coordinate neighborhood of γ0(ti) (resp. γ̃0(ti)) containing γ0(ti+1),
γ1(ti+1) and γ1(ti+2) (resp. γ̃0(ti+1), γ̃1(ti+1) and γ̃1(ti+2)) and the minimal
geodesic segments between them. If k = 1, then γ0 and γ1 are contained in a
normal coordinate neighborhood around x and the result follows from the first
case. We proceed by induction on k. Suppose that γ0 and γ1 have k ≥ 2 breaks.
We introduce the auxiliary minimal geodesic τ : [tk−1, tk] → M from γ0(tk−1)
to γ1(tk). By the induction hypothesis we have

(4.2.2) ˜(k−1γ0 ∪ τ)(tk) = kγ̃1(tk) and I
k−1γ0∪τ = I

kγ1
.

Notice that the isometry I
k−1γ0

: Tγ0(tk−1)M → Tγ̃0(tk−1)M̃ induces a correspon-

dence η 7→ η̂ between geodesics in M starting at γ0(tk−1) and geodesics in M̃
starting at γ̃0(tk−1). Set

η0 = γ0|[tk−1, 1] and η1 = τ ∪ γ1|[tk, 1] = τ ∪ kθ1.

By the first case we have

η̂0(1) = η̂1(1) and Iη0
= Iη1

,
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which is clearly equivalent to

γ̃0(1) = ˜(k−1γ0 ∪ η1)(1) and Iγ0
= I

k−1γ0∪η1
,

and by (4.2.2) we have that

˜(k−1γ0 ∪ η1)(1) = ˜(k−1γ0 ∪ τ ∪ kθ1)(1) = γ̃1(1).

It follows that γ̃0(1) = γ̃1(1), as desired.
Finally assume that γ0 and γ1 are arbitrary broken geodesics in M starting

at x such that γ0(1) = γ1(1). Since M is simply connected, γ0 and γ1 are
homotopic to each other, so by Lemma 4.1.1 a homotopy Γ between γ0 and γ1
can be chosen such that the γs(t) = Γ(s, t) for s ∈ [0, 1] are broken geodesics,
with common break points at t1, . . . , tk. By refining the partition 0 = t0 <
t1 < . . . < tk < tk+1 = 1 we may assume that k ≥ 1 and, for s ∈ [0, 1]
and i = 0, . . . , k − 1, that γs(ti+1) and γs(ti+2) belong to a normal coordinate
neighborhood of γs(ti).

Now if s0, s1 ∈ [0, 1] are sufficiently close, then γs0 and γs1 are seen to satisfy
the conditions of the second case. It follows that γ̃s0(1) = γ̃s1(1). This shows
that γs(1) is locally constant with respect to s ∈ [0, 1], which obviously implies
that γ̃s(1) is constant with respect to s ∈ [0, 1]. In particular, γ̃0(1) = γ̃1(1).
This completes the proof of the claim.

The proof so far implies that Φ(y) = γ̃(1) and dΦy = Iγ , where γ is any bro-
ken geodesic defined on [0, 1] and joining x to y. Let V be a normal coordinate
neighborhood of y in M , and let ỹ = Φ(y). Now it is clear that Φ restricted to
V coincides with the map

expỹ ◦Iγ ◦ exp−1
y |V ,

which is an isometry by Proposition 1.3.3. Therefore Φ is a local isometry. It
is well known that a local isometry from M to M̃ is a covering map if M is
complete. Hence we have proved that Φ is a covering map which finishes the
proof. �

5 Appendix: A review of semisimple and com-

pact Lie algebras

5.1 Invariant integration

In 1897 Adolf Hurwitz introduced the idea “invariant integration” on Lie groups
and in 1933 Alfred Haar considered the more general idea of a “left invariant
Haar measure” on locally compact topological groups.

On a compact Lie group, the bi-invariant Haar integral has a description in
terms of volume forms. Let G be a Lie group. A differential form ω on G is called
left-invariant if L∗

gω = ω for all g ∈ G. Similarly, and defines right-invariant
differential forms. Since a left-invariant form is determined by its value at 1,
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the space of left-invariant n-forms on G is one-dimensional for n = dimG. For
a nonzero left invariant n-form ω, consider the associated orientation on G. For
each compactly supported continuous function f on G,

(5.1.1) f 7→
∫

G

fω

defines a positive continuous linear functional and hence yields a regular Borel
measure on G. Since Lg : G → G is a diffeomorphism that preserves the
orientation of G, we have

∫

G
fω =

∫

G
L∗
g(fω) =

∫

G
(f ◦ Lg)ω for all g ∈ G, and

then (5.1.1) is called a left Haar integral on G. In case G is compact, there is
a unique left invariant n-form ω with

∫

G
ω = 1, up to sign. Henceforth we will

identify this n-form with the associated measure on G and denote them by dg.
What about right-invariance of (5.1.1)? For each h ∈ G, R∗

hdg is a left-

invariant form on G and thus we can write R∗
hdg = λ̃(h)dg for a homomorphism

λ̃ : G → R×. Now Rh : G → G is a diffeomorphism which preserves (resp. re-
verses) the orientation if λ̃(h) > 0 (resp. if λ̃(h) < 0), so

∫

G

fdg = (sgn λ̃(h))

∫

G

R∗
h(fdg)

= (sgn λ̃(h))

∫

G

(f ◦Rh)λ̃(h)dg

=

∫

G

(f ◦Rh)λ(h)dg,

where the homomorphism λ = |λ̃| : G→ (0,+∞) is called the modular function
on G. In case G is a compact Lie group, λ(G) is a compact subgroup of (0,+∞)
and thus trivial. This shows that the left Haar integral is also right-invariant,
and hence we have a two-sided Haar integral on G.

Denote the Lie algebra of G by g. Fix a basis X1 . . . , Xn of g. Let θ1, . . . , θn
be the dual basis of g∗. Then an explicit left-invariant n-form on G is given by
ω = θ1 ∧ . . .∧ θn. In case G is compact and endowed a bi-invariant Riemannian
metric (cf. subsection 5.6), and we take X1 . . . , Xn to be orthonormal, dg coin-
cides with the Riemannian volume form, and the Haar measure coincides with
the Riemannian measure.

5.1.2 Proposition Let ρ : G → GL(V ) be a real (resp. complex) representa-
tion of a compact Lie group G. Then there exists a positive definite Euclidean
(resp. Hermitian) inner product 〈, 〉 on g such that each ρ(g), with g ∈ G, is
an orthogonal (resp. unitary) transformation. In particular, there exists an Eu-
clidean inner product on the Lie algebra g of G such that each Adg, with g ∈ G,
is an orthogonal transformation.

Proof. Let 〈·, ·〉0 be an arbitrary inner (resp. Hermitian) product on V . For
u, v ∈ V , set

〈u, v〉 =
∫

G

〈ρ(g)u, ρ(g)v〉0
︸ ︷︷ ︸

=:f(g)

dg,
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where dg is a bi-invariant Haar measure. Then 〈·, ·〉 is an inner (resp. Hermitian)
product on V and, for h ∈ G,

〈ρ(h)u, ρ(h)v〉 =

∫

G

〈ρ(g)(ρ(h)u), ρ(g)(ρ(h)v)〉0 dg

=

∫

G

〈ρ(gh)u, ρ(gh)v〉0 dg

=

∫

G

f(gh) dg

=

∫

G

f(g) dg

= 〈u, v〉,
which completes the proof. �

5.1.3 Proposition Let G be a compact connected Lie group with Lie algebra
g. Then: an inner product 〈, 〉 on g is Ad-invariant if and only if

〈adXY,Z〉+ 〈Y, adXZ〉 = 0

for all X, Y , Z ∈ g; we say it is ad-invariant.

Proof. Let O(g) denote the orthogonal group of a given inner product 〈, 〉 on
g, and let SO(g) denote its identity component; these are Lie group and we let
so(g) denote their common Lie algebra. For each X ∈ g, adX ∈ so(g) if and only
if Adexp(tX) ∈ SO(g) for all t ∈ R, and this is equivalent to the statement of the
proposition, if we use the connectedness of G to have that exp[g] generates G.

�

5.2 Adjoint group

Let g be a Lie algebra. Then GL(g) is a Lie group with Lie algebra gl(g)
consisting of all endomorphisms of the vector space underlying g. The group of
automorphisms of g, denoted by Aut(g), is clearly a closed subgroup of GL(g).
Recall that a closed subgroup of a Lie group is a Lie subgroup with the subspace
topology. Hence Aut(g) is a Lie subgroup of GL(g). Its Lie algebra consists of
the endomorphisms D ∈ gl(g) such that

exp(tD) · [X,Y ] = [exp(tD) ·X, exp(tD) · Y ]

for X, Y ∈ g, t ∈ R. Differentiating this equation at t = 0, we obtain

(5.2.1) D[X,Y ] = [DX,Y ] + [X,DY ]

for X, Y ∈ g. The endomorphisms D satisfying equation (5.2.1) are called
derivations of g. Conversely, if D is a derivation of g, then it is easily checked
by induction that

Dm[X,Y ] =
∑

i+j=m

m!

i!j!
[DiX,DjX]
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for all m ≥ 1. It follows that

eD[X,Y ] =
∑

m≥0

1

m!
Dm[X,Y ] = [eDX, eDY ],

that is, eD is an automorphism. Therefore the Lie algebra of Aut(g) is the space
Der(g) of all derivations of g.

In particular, the Jacobi identity shows that adX ∈ Der(g) for all X ∈ g, so
that the image of the adjoint representation ad[g] is a subalgebra of Der(g), again
by Jacobi. The derivation property says that [D, adX ] = adDX for D ∈ Der(g)
and X ∈ g, so ad[g] is indeed an ideal of Der(g).

The elements of ad[g] are called inner derivations. Let Inn(g) be the con-
nected subgroup of Aut(g) defined by ad[g]. As ad[g] is an ideal of Der(g),
Inn(g) is a normal subgroup of Aut(g), and in accordance with the next propo-
sition, that group is called the adjoint group of g and its elements are called
inner automorphisms of g.

5.2.2 Proposition The adjoint group Inn(g) is canonically isomorphic to G/Z(G),
where G is any connected Lie group with Lie algebra g and Z(G) denotes the
center of G.

Proof. The image of the adjoint representation Ad : G→ Aut(g) is contained
in Inn(g), because AdexpX = eadX for X ∈ g, and the image of exp generates
G. Since d(Ad) = ad, the Lie algebra of the image of Ad is ad[g], thus we get
equality Ad(G) = Inn(g). Finally, note that the kernel of Ad is Z(G). �

Fix a real Lie algebra g. Regarding all the Lie groups that have Lie algebras
isomorphic to g, now the following picture emerges. If G1 → G2 is a covering
homomorphism, then G1 and G2 have isomorphic Lie algebras, but the converse
statement does not hold, namely, there exist Lie groups with isomorphic Lie
algebras such that neither one of them covers the other one (find examples!).
However, there exists a simply-connected Lie group G̃ with Lie algebra g, and G̃
does cover any other Lie group with Lie algebra g. Moreover, if g is centerless,
the adjoint group Ḡ := Inn(g) has Lie algebra g and it is covered by any Lie
group G with Lie algebra g, since Ḡ ∼= G/Z(G). Hence G̃ sits at the top of the
hierarchy and Ḡ sits at its bottom.

5.3 Killing form

Let g be a Lie algebra. The Killing form of g is the symmetric bilinear form

β(X,Y ) = tr adXadY (trace)

where X, Y ∈ g.

5.3.1 Proposition a. If a ⊂ g is an ideal, then the Killing form of a is the
restriction of β to a× a.
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b. If s ∈ Aut(g), then β(sX, sY ) = β(X,Y ) for X, Y ∈ g.

c. β(adXY,Z) + β(Y, adXZ) = 0 for X, Y , Z ∈ g (β is ad-invariant).

Proof. (a) If X, Y ∈ a then adXadY maps g into a. (b) If s ∈ Aut(g) then
adsX = s ◦ adX ◦ s−1. (c) It follows from Jacobi. �

5.4 Semisimplicity

In order to avoid unnecessary technicalities, we adopt the following nonstandard,
but completely equivalent definition. We call a Lie algebra g semisimple if β is
nondegenerate, and it is called simple if it is semisimple and has no nontrivial
ideals.10 Note that by the ad-invariance of β, its kernel is always an ideal of the
underlying Lie algebra.

A Lie group G is called semisimple (resp. simple) if its Lie algebra is semisim-
ple (resp. simple). Note that the definition of simple Lie group is different from
the definition of simple abstract group, in that a simple Lie group is allowed to
contain non-trivial discrete normal subgroups; for instance, SU(n) is considered
a simple Lie group but it has a finite center.

5.4.1 Proposition Let g be a semisimple Lie algebra, let a ⊂ g be an ideal and

a⊥ = {X ∈ g : β(X, a) = 0}.

Then a⊥ is an ideal, a and a⊥ are semisimple and g = a ⊕ a⊥ (direct sum of
ideals).

Proof. The ad-invariance of β implies that a⊥ is an ideal of g. Then a ∩ a⊥

is an ideal of g, and again by ad-invariance of β, a ∩ a⊥ is Abelian; in fact, for
every Z ∈ g and X, Y ∈ a ∩ a⊥,

β(Z, [X,Y ]) = β([Z,X], Y ) = 0,

so [X,Y ] = 0 by nondegeneracy of β. Fix now a complementary subspace b of
a∩a⊥ in g. Then, for X ∈ a∩a⊥ and Y ∈ g, the linear map adXadY maps a∩a⊥
to zero and b to a ∩ a⊥, so it has no diagonal elements and thus β(X,Y ) = 0,
yielding X = 0 by nondegeneracy of β. We have shown that a ∩ a⊥ = 0. The
nondegeneracy of β also implies that dim a+dim a⊥ = dim g, whence g = a⊕a⊥.
That a and a⊥ are semisimple is a consequence of Proposition 5.3.1(a) and
β(a, a⊥) = 0. �

5.4.2 Corollary A semisimple Lie algebra g is centerless and decomposes into
a direct sum of simple ideals g = g1 ⊕ · · · ⊕ gr. In particular, [g, g] = g.

10The more usual definitions are that a Lie algebra is semisimple if it has no nontrivial
solvable ideals, and it is simple if it is non-Abelian and has no nontrivial ideals; in particular,
a simple Lie algebra is semisimple. The equivalence with the definitions given above follows
from Cartan’s criteria for semisimplicity and solvability in terms of the Killing form.
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Proof. Clearly the center of g is contained in the kernel of the Killing form,
hence it is zero. If a is a proper ideal of g, then the proposition says that
g = a⊕ a⊥ and the decomposition result follows by induction on the dimension
of g. Finally,

[g, g] = [g1, g1]⊕ · · · ⊕ [gr, gr]

and each [gi, gi] = gi since [gi, gi] is a nonzero ideal of gi. �

5.4.3 Proposition If g is semisimple then ad[g] = Der(g), i.e. every derivation
is inner.

Proof. Since g is centerless, ad : g → Der(g) is injective, so ad[g] is semisim-
ple. Denote by β, β′ the Killing forms of ad[g] and Der(g). ad[g] is an ideal of
Der(g). Let a denote its β′-orthogonal complement in Der(g). Then also a is an
ideal of Der(g). We have, using Proposition 5.3.1,

β(ad[g], ad[g] ∩ a) = β′(ad[g], ad[g] ∩ a) = 0

so ad[g] ∩ a = 0 . Therefore adDX = [D, adX ] ∈ ad[g] ∩ a = 0 for D ∈ a and
X ∈ g. Since ker ad = 0, this implies a = 0, as desired. �

5.4.4 Corollary If g is semisimple then Inn(g) = Aut(g)0.

Proof. Inn(g) is connected and both hand sides have the same Lie algebra.
�

5.5 Compact Lie algebras

A Lie algebra g is called compact if there exists a compact Lie group whose Lie
algebra is isomorphic to g.

5.5.1 Theorem Let g be a Lie algebra. The following assertions are equivalent:

a. g is a compact Lie algebra.

b. Inn(g) is compact.

c. g admits an ad-invariant positive definite inner product.

d. g = z⊕[g, g] where z is the center of g and [g, g] is semisimple with negative
definite Killing form.

Proof. (c) implies (d). Let 〈, 〉 be an ad-invariant positive definite inner
product on g,

〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 = 0

for X, Y , Z ∈ g. The center z is ad-invariant, so also its 〈, 〉-orthogonal comple-
ment z⊥ is ad-invariant. Now g = z⊕ z⊥, direct sum of ideals. The Killing form
of z⊥ is the restriction of the Killing form β of g. Owing to the ad-invariance
of 〈, 〉, adX is skew-symmetric with respect to 〈, 〉 for X ∈ g, thus it has purely
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imaginary eigenvalues. Therefore β(X,X) = tr ad2X ≤ 0 and equality holds if
and only if adX = 0 if and only if X ∈ z. This proves that B|z⊥×z⊥ is negative
definite and hence z⊥ is semisimple and [g, g] = [z⊥, z⊥] = z⊥.

(d) implies (b). We have Inn(g) = Inn(z)× Inn([g, g]) = Inn([g, g]) since z is
Abelian. Without loss of generality, we may thus assume g is semisimple with
negative definite Killing form. Let O(g) ⊂ GL(g) the compact subgroup of
β-preserving transformations. Clearly Aut(g) is contained in O(g) as a closed,
thus compact subgroup. Now Corollary 5.4.4 yields the result.

(b) implies (c). Since the group of inner automorphisms Inn(g) is compact,
by Proposition 5.1.2 there exists an Ad-invariant positive definite inner product
on g. It is also ad-invariant.

Now (b), (c) and (d) are equivalent. We next show that (b) and (d) imply (a).
Inn([g, g]) = Inn(g) is compact and Inn([g, g]) has Lie algebra ad([g, g]) ∼= [g, g]
since [g, g] is semisimple. Now g = z⊕ [g, g] is the Lie algebra of S1 × · · ·×S1 ×
Inn([g, g]).

Finally (a) implies (b). Since g is the Lie algebra of a compact Lie group G,
Inn(g) ∼= G/Z(G) is compact. �

5.5.2 Corollary A semisimple Lie algebra is compact if and only if its Killing
form is negative definite.

5.6 Geometry of compact Lie groups with bi-invariant

metrics

Recall that a Riemannian metric on a smooth manifold M is simply a smoothly
varying assignment of an inner product 〈, 〉p on the tangent space TpM for each
p ∈M ; here the smoothness of 〈, 〉 refers to the fact that p 7→ 〈Xp, Yp〉p defines
a smooth function on M for all smooth vector fields X, Y on M .

As an important application of Proposition 5.1.2, we show that a compact Lie
group G admits a bi-invariant Riemannian metric, that is, a Riemannian metric
with respect to which left translations and right translations are isometries.

Indeed there is a bijective correspondence between positive-definite inner
products on g and left-invariant Riemannian metrics on G: every inner product
on g = T1G gives rise to a left-invariant metric on G by declaring the left-
translations to be isometries, namely, dLg : T1G→ TgG is a linear isometry for
all g ∈ G; conversely, every left-invariant metric on G is completely determined
by its value at 1. Now, when is a left-invariant metric 〈, 〉 on G also right-
invariant? Note that differentiation of the obvious formula Rg = Lg ◦ Inng−1 at
1 yields

d(Rg)1 = (dLg)1 ◦Adg−1 ,

where g ∈ G. We deduce that g is right-invariant if and only if 〈, 〉1 is Ad-
invariant. Thus the existence of a bi-invariant metric on G follows from Propo-
sition 5.1.2.

Let G be a compact connected Lie group endowed with a bi-invariant Rie-
mannian metric and denote its Lie algebra by g. The Koszul formula for the
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Levi-Cività connection ∇ on G is

〈∇XY,Z〉 =
1

2

(
X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉

+〈[X,Y ], Z〉+ 〈[Z,X], Y 〉+ 〈[Z, Y ], X〉
)
,(5.6.1)

where X, Y , Z ∈ g. The inner product of left-invariant vector fields is constant,
so the three terms in the first line of the right hand-side of (5.6.1) vanish; we
apply ad-invariance of the inner product on g to manipulate the remaining three
terms and we arrive at

∇XY =
1

2
[X,Y ].

In particular, ∇XX = 0 so every one-parameter subgroup of G is a geodesic
through 1. Since there one-parameter groups going in all directions, they com-
prise all geodesics of G through 1 (of course, the geodesics through other points
in G differ from one-parameter groups by a left translation).

5.6.2 Remark The statement about one-parameter groups coinciding with
Riemannian geodesics through 1 is equivalent to saying that the exponential
map of the Lie group coincides with the Riemannian exponential map Exp1 :
T1G → G that maps each X ∈ T1G to the value at time 1 of the geodesic
through 1 with initial velocity X. Now geodesics through 1 are defined for all
values of the parameter; in view of the Hopf-Rinow theorem, this means that
G is complete as a Riemannian manifold, and any point in G can be joined by
a geodesic to 1, or Exp1 is surjective. We deduce that the (group) exponential
map of a compact Lie group is a surjective map.

Now we compute the Riemannian sectional curvature of G. Let X, Y ∈ g

be an orthonormal pair. Then

K(X,Y ) = −〈R(X,Y )X,Y 〉
= −〈∇X∇YX +∇Y ∇XX −∇[X,Y ]X,Y 〉

=
1

4
||[X,Y ]||2,

using again ad-invariance of the inner product.
Finally, let {Xi}ni=1 be an orthonormal basis of g. Then the Ricci curvature

Ric(X,X) =
n∑

i=1

K(X,Xi)

=
1

4

n∑

i=1

||[X,Xi]||2.

It follows that Ric(X,X) ≥ 0 and Ric(X,X) = 0 if and only if X lies in the
center of g.

There are several proofs of the following theorem. Here we use basic Rie-
mannian geometry.
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5.6.3 Theorem (Weyl) Let G be a compact connected semisimple Lie group.
Then the universal covering Lie group G̃ is also compact (equivalently, the fun-
damental group of G is finite).

Proof. The universal covering G̃ has a structure of Lie group so that the
projection G̃ → G is a smooth homomorphism. Equip G with a bi-invariant
Riemannian metric. Since g is centerless, Ric(X,X) > 0 for X 6= 0. By com-
pactness of the unit sphere, Ric(X,X) ≥ a〈X,X〉 for some a > 0. The Bonnet-
Myers theorem yields that G̃ is compact. �

5.7 Cartan-Weyl structural theory

Let g be a real or complex semisimple Lie algebra. A Cartan subalgebra (CSA,
for short) h of g is a maximal Abelian subalgebra such that adH is a semisimple
endomorphism of g for all H ∈ h.

If g is a compact Lie algebra, the CSA’s of g are exactly the Lie algebras
of the maximal tori of the adjoint group of g. In this case, the existence of
CSA is thus obvious, and their uniqueness, up to conjugation, is proved as in
Proposition 2.5.5.

Consider the case g is a complex semisimple Lie algebra. Usually the exis-
tence of a CSA is proved using Lie’s and Engel’s theorem. Then a compact real
form of g is obtained from a delicate construction of the so-called Weyl basis of
g, with a specific form of the structure constants. Alternatively, Cartan noticed
that if a basis {ei} of g minimizes

∑

ijk |ckij |2 over all bases with β(ei, ej) = −δij
(Kronecker delta) for all i, j, where [ei, ej ] =

∑

k c
k
ijek, then {ei} spans over R

a compact real form of g. A proof of the existence of such a basis was accom-
plished by Richardson [39]. An immediate corollary is the existence of CSA of
g, namely, the complexification of a maximal Abelian subalgebra of the compact
real form.

Now fix a complex semisimple Lie algebra g and a CSA h. Then {adH :
H ∈ h} is a commuting family of semisimple endomorphisms of g. The common
eigenspace decomposition is written

g = h+
∑

α∈∆

gα,

where h is the zero-eigenspace, ∆ is a finite set of linear functionals on h, and

gα = {X ∈ g : adHX = α(H)X for all H ∈ h}.

Each α ∈ ∆ is called a root and gα is the associated root space. Since g has
a compact real form gu and h is the complexification of a maximal Abelian
subalgebra t of gu, α ∈ ∆ if and only −α ∈ ∆. The roots take pure imaginary
values on t, and take real values on hR =

√
−1t. The Killing form is real-valued

and positive-definite on hR, so it induces an Euclidean inner product there.
The set of roots ∆ satisfies the following properties:

a. R∆ = h∗R

65



b. aα,β := 2 〈α,β〉
||α||2 ∈ Z for α, β ∈ ∆.

c. sα(∆) = ∆, where sα is the orthogonal reflection on α⊥.

A finite set ∆ of nonzero linear functionals on an Euclidean space satisfying
such properties is called an abstract root system. The second condition in the
definition implies that if α, β ∈ ∆, α = cβ for some c ∈ R then c = ±1 or
± 1

2 or ±2; in fact, acβ,β = 2/c and aβ,cβ = 2c must be integers. An abstract
root system Σ is called reduced if it satisfies the additional condition that if α,
β ∈ ∆, α = cβ for some c ∈ R then c = ±1. The root system ∆ associated to
a complex semisimple Lie algebra g relative to a Cartan subalgebra h is always
reduced.

The group W generated by sα for α ∈ ∆ is a finite reflection group, called
the Weyl group of g relative to h. The connected components of the complement
of the union of the hyperplanes α = 0 in hR are called Weyl chambers. We fix a
Weyl chamber C. A root α is called positive if α > 0 on C. This gives a partition
∆ = ∆+∪̇(−∆+), where ∆+ is the set of positive roots. A root is simple if it is
positive and cannot be written as the sum of two positive roots. The set Π of
simple roots is a basis of h∗, and every α ∈ ∆ has an expression as an integral
linear combination of simple roots, where the coefficients are all nonnegative in
case α ∈ ∆+.

Enumerate the simple roots Π = {α1, . . . , αn}, where n is the rank of g. Put
aij = aαi,αj

(Cartan integer). The Dynkin diagram of g is a kind of graph,
where we take one vertex for each simple root, and we join vertices associated
to αi, αj by aijaji = 0, 1, 2 or 3 lines. It turns out ||αi||2 = ||αj ||2 if aijaji = 1
and ||αi||2 6= ||αj ||2 if aijaji = 2 or 3; in the latter case, we draw an arrow
pointing to the shorter root on the double or triple lines. The Dynkin diagram
is the disjoint union the Dynkin diagrams of the simple ideals of g, and it is
connected if and only if g is simple.

The classification of complex semisimple Lie algebras is thus reduced to
a two-part problem: the classification of connected Dynkin diagrams, and the
realization of each diagram as the diagram of a complex simple Lie algebra. The
first part is a problem in Euclidean geometry, using properties of root systems.
The list of admissible Dynkin diagrams is:
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Cartan type Diagram Condition

An
❡ ❡ ❡♣ ♣ ♣ −

Bn
❡ ❡ ❡ > ❡♣ ♣ ♣ n ≥ 2

Cn
❡ <❡ ❡ ❡♣ ♣ ♣ n ≥ 3

Dn
❡ ❡ ❡

❡

❡

♣ ♣ ♣ ��

❅❅
n ≥ 4

G2
❡ ❡> −

F4
❡ ❡ ❡ ❡> −

E6

❡ ❡ ❡ ❡ ❡

❡
−

E7

❡ ❡ ❡ ❡ ❡ ❡

❡
−

E8

❡ ❡ ❡ ❡ ❡ ❡ ❡

❡
−

Each diagram is realizable and the final list of complex simple Lie algebras,
together with their compact real forms, is as follows (Killing-Cartan classifica-
tion):

Type g gu dim Condition
An sl(n+ 1,C) su(n+ 1) n2 + 2n n ≥ 1
Bn so(2n+ 1,C) so(2n+ 1) 2n2 + n n ≥ 2
Cn sp(n,C) sp(n) 2n2 + n n ≥ 3
Dn so(2n,C) so(2n) 2n2 − n n ≥ 4
G2 gC2 g2 14 −
F4 fC4 f4 52 −
E6 eC6 e6 78 −
E7 eC7 e7 133 −
E8 eC8 e8 248 −

5.7.1 Theorem The simply-connected compact connected simple Lie groups are
SU(n), Spin(n), Sp(n), G2, F4, E6, E7 and E8.
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