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In this department The American Srurisriciun publishes articles, reviews, 
and notes of interest to teachers of the first mathematical statistics course 
and of applied statistics courses. The department includes the Accent on 
Teaching Materials section; suitable contents for the section are described 

under the section heading. Articles and notes for the departpent, but not 
intended specifically for the section, should be useful to a substantial 
number of teachers of the indicated types of courses or should have the 
potential for fundamentally affecting the way in which a course is taught. 

Nearly Parallel Lines in Residual Plots 
J. A. NELDER" 

A generalized linear model (GLM) extends classical 
regression models in two ways. First, the assumption of 
normal errors is widened to that of errors from an expo- 
nential family. This allows, for example, Poisson, binom- 
inal, gamma, and inverse Gaussian errors as alternatives. 

When the residuals from a generalized linear model are to 
be plotted against the fitted values, the plot can be made to 
resemble that for a normal error model by transforming the 
fitted values to the constant-information scale. 

KEY WORDS: Constant-information scale; Generalized 
linear model. 

In this journal Searle (1988) recently pointed out that if 
the residuals y - fi from a model are plotted against the 
fitted values f i ,  then the contours for constant y are parallel 
lines with slope - 1. The lines show up most clearly when 
the y values are discrete and repeated. 

Such plots are commonly made to check for homosce- 
dasticity (constant variance) of errors or presence of non- 
linearity in the systematic part of the model. To check for 
constancy of variance we look at variation in the range of 
residuals for varying values of f i ,  that is, we examine ver- 
tical cross-sections. To check for nonlinearity in the sys- 
tematic part we look for a systematic trend in the mean. If 
the data are discrete then for fixed f i ,  points will appear 
grouped at values y - f i ,  and the positions will change as 
we change f i .  If the data are, for example, counts and so 
nonnegative, the contour for y = 0 is a boundary below 
which no points can lie. 

against f i  is mainly used in checking 
regression models with normal errors. For data from such 
a model we expect the vertical cross-sections to look like a 
sample from the normal distribution with variance indepen- 
dent of f i .  A practical problem of interpretation arises if the 
local density of points varies widely with f i .  For the values 
of f i  with high local density will on average show a wider 
range of residuals than values with low local density, and 
the eye may find this hard to allow for. 

The graph of residuals against fitted values has much 
wider uses than checking the fit of regression models. This 
note deals with the corresponding graph for the more general 
class of generalized linear models (McCullagh and Nelder 
1989), the aim being to make the graph in the general case 
look as much like that for the normal error case as possible. 

The plot of y - 
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Second, the assumption that the mean p is linear in the 
explanatory variables is replaced by the assumption that 
some (monotonic) function of p is linear. Familiar quantities 
in regression analysis have their analogs in GLM analysis; 
for instance, the residual sum of squares, which measures 
the discrepancy of the data with respect to the model, is 
replaced by the deviance D = Ed; ,  where 

!', y;  - 
du 

In this formula V(  ) is the variance function of the dis- 
tribution assumed for the errors; thus for the Poisson, V(  p)  
= p. Because, in general, the variance changes with the 
mean, we must amend the definition of residuals to allow 
for this. Two kinds of generalized residual are common. 
The first is the Pearson residual r,, = (y  - fi)/<V(fi), 
where V( ) is the variance function of the error distribution; 
the other is the deviance residual r, = sgn(y - f i )  <d, 
where d is defined as before. In general, deviance residuals 
look more normal than Pearson residuals, so it is better to 
use r,. If we look at the plot of r, against f i  we find that 
the contours for constant y are curves, unless V ( p )  = 1. 
Can these curves be made approximately straight and par- 
allel by transforming the f i  scale? Suppose that we look for 
a transformation that makes the slope of the curve at r = 0 
equal to - 1 for all y as in the normal case [we cannot hope 
to make it -1  everywhere, unless V ( p )  = 11. We show 
that the required transformation is the constant-  
information scale, which, for the one-parameter exponential 
families that underlie GLMs, is given by J"-"'(p) dp.  The 
scales for the standard GLM distributions are thus as fol- 
lows. 

Distribution Transformation 

Normal 

Binomial arcsin(<p) 
Gamma log CL 
Inverse Gaussian 

Poisson k 
- El.- ' I 2  
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The proof of the foregoing rule for transformations is as 
follows. First we show it for the Pearson residual r,,. We 
want to find f(p) such that dr,,ldf(p) = - 1 at p = y ;  
that is, f ’ ( p )  = -drp ldp  at p = y .  Now rp = ( y  - 
CL)dK.4r so 

[ d ~ , , l d p . l p = y  = - V-”’( y ) .  

Thus 

For the deviance residual, we begin with the formula for 
the deviance 

Thus 

From a Taylor expansion of D about p = y we get 

Thus d r D / d p  = - V-”’ (y )  as before. 

Figure 1. Contours of Constant y = 0, 1, 2, 4, 8, 16 for Poisson 
Variables When Deviance Residual Is Plotted Against Fitted Value 
on the Square-Root Scale. 
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Figure 2. Deviance Residuals Versus Fitted Values on the An- 
gular Scale for Binary Data. 

The transformation produces near-linearity, and in prac- 
tice one often finds that these transformations also improve 
the plot by spreading out the f i s  fairly uniformly; this aids 
interpretation, as discussed previously. Figure 1 shows the 
form of the contours for constant y for Poisson errors, and 
Figure 2 shows the two contours for the extreme case of 
binary data with binomial errors. In any particular plot all 
points will lie on these contours. 

Clearly, the plot for binary data will be uninformative 
about heteroscedasticity. It may be used to look for nonlin- 
earity, however, if the plot is accompanied by a smoothed 
line obtained, for example, from Cleveland’s algorithm 
(Cleveland 1979). For counts it is useful to mark the y = 
0 boundary on the plot, below which points cannot occur. 
This shows where, for small f i ,  it is unreasonable to expect 
the vertical cross-sections to look like a normal sample. 

[Received October 1988. Revised September 1989.1 
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