
MEASURES OF DEPENDENCE AND TESTS 
OF INDEPENDENCE 
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Measures of dependence and resulting tests of independence are surveyed. Measures arising 
both from linear and nonlinear modeling are examined. Test< based on chaos theory are hriefly 
discussed. The main emphasis, however, is on some recently developed nonparametric tests 
using estimated distribution and density functions. Most of the paper 1s phrased in terms of 
serial dependence for a univariate stationary time series. but it is indicated how more general 
situations can be analysed. The bootstrap is an essential tool for determining the critical value 
of the new tests. 

1. INTRODUCTION 

In virtually every field of statistics there is a need for measuring dependence 
between stochastic variables and for constructing accompanying tests of inde- 
pendence. A traditional measure of dependence is the correlation function. It 
is suitable for measuring dependence in Gaussian models and to some degree 
in general linear models. With the strong recent emphasis on nonlinear and 
non-Gaussian models it is not surprising that there has been a search for 
alternative dependence measures and tests of independence. In this paper 1 
will give a brief and somewhat subjective survey of parts of these develop- 
ments. Having myself mainly worked in a time series setting. I will stress the 
aspect of serial dependence, but many of the results are relevant for looking 
at dependencies between arbitrary stochastic variables or stochastic pro- 
cesses. Also the emphasis is on the testing aspect, and measures of depend- 
ence are often only considered as an intermediate step in obtaining the tests. 
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Roughly, applications can be subdivided into two groups: First, the 
need for tests of independence may originate from the mcdel formula~ion 
in a particular problem. F o r  example in many physical systems the noise 
is assumed to consist of independent identically distributed (i id) random 
variables, and such a hypothesis should be testable. Another csamplc 
can be found in econon~etrics. where it may be postulated that  certain 
variables are  exogenous, whereas others are endogenous resulting in one 
sided dependence structures which one would like to test. Moreover. for 
certain financial time series economic theories have been put forward 
which predict that logarithmic differences should be iid (cf. F-ama 1965, 
1970). 

The other main area of application is that of statistical model fitting. 
Often it is a goal to obtain a model whel-e there is no structural information 
left in the residuals, i.e. where these are iid. Once more a lest of indepen- 
dence is needed. but here the situation is mol-e complex as the estimated 
residuals are influenced by errors in the parameter estimatcs. Only to a very 
little degree have these effects been incorporated i n  recent theory. 

Finally, it should be mentioned that there are connections between indc- 
pendence tests and linearity tests. We can test linearity by testing for inde- 
pendence of the residuals from a linear model fit. Vice versa linearity tests 
involving the conditional mean and the conditional variance can be ex- 
ploited to test implications of an  iid hypothesis. 

A short summary of the paper is as follows: In section 2 we look at  
correlation based measures and  generalizations to higher order moment 
measures and tests. The correlation integral of chaos theol-y and the so- 
called BDS test are discussed in Section 3. Independence be~ween stochas- 
tic variables is defined in terms of distribution functions. or, if they exists. 
in terms of density functions. It is na t~l ra l  to try to  exploit this in con- 
structing tests. Both historic and some more recent work in this area are 
summarized in Sections 4 and 5. The main thrust of  he paper lies here. 
and many of the results are  from Skaug and Tjdstheim (1993 a, b and 
1994). The tests we look at  are  nonparametric, and they are designed to 
have fairly decent power properties against a wide range of alternatives. It' 
one wants to test against a specific alternative, onc should use a test 
designed for such an alternative, e.g. an  ARCH test (Engle 1982) for 
ARCH type dependence. Some such tests are discussed by Pagan and Hall 
(1983) and White (1987). General asymptotic theory for functionals ap- 
pearing in nonparametric testing and estimation is briefly outlined in the 
Appendix. 
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M E A S U R E  OF DEPENDENCE 25 1 

2. CORRELATION BASED MEASURES AND THEIR EXTENSIONS 

2.1. The Correlation Function 

Consider two random variables X  and Y having second order moments. 
The correlation function is defined by 

and - 1 6 p  6 1 with p = O if X and Y are independent. If X and Y are 
Gaussian, independence is equivalent to X  and Y being uncorrelated. 

For a vector - X = [ X ,  ... . . X , ]  of random variables the dependencies as 
expressed in terms of correlations are summed up by the correlation matrix 
p  = (pi ,) .  The dependencies are completely described by puirwise relation- 
ships, as are all partial and multiple correlations of interest. Also. of course, 
for Gaussian random variables the entire dependence structure is described 
by the pairwise covariances and the individual variances. Unfortunately. the 
reduction to pairwise relations cannot in general be attained for other 
dependence measures and non-Gaussian variables. 

The correlation is estimated by 

where ( ( X , ,  Y , )  ,..., ( X , ,  Y,)J are pairs of observations having the same 
distribution as ( X ,  Y ). 

For  a stationary process (X,1 whose second moment exists. the autocor- 
re!ation function at lag k  is defined by 

p ( k )  = corr ( X , ,  X I - , )  
and is estimated by 

Tests of independence can be based on the asymptotic distribution of f i .  In 
the case of two stationary processes { X , )  and Y,] assume that 
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where Zlccjl < x. Il,!ljl < r,. where p, = E(X,), p, = E( y), and where ( Z , , , )  
and {Z,.,j are independent sequences of iid random variables having second 
moments. Then p,.,(k)"ls pxJk) = 0 as n -+ x. Here px,,(k) is the cross corre- 
lation between { X , )  and {Y,) at lag k. Moreover. (Brockwell and Davis 
1987. p. 400) bx , (k )  is asymptotically normal with zero mean and variance 

where p,, and p,, arc thc autocorrelation functions of (X,] and (k;),  re- 
spectively. If the pairs ((X,, I: ), t = 1,. . ., n) are iid, then it is a classical result 
of multivariate analysis (Anderson 1958. p. 77) that 

However, it is well known that the sampling distribution is appreciably 
skewed for quite substantial sample sizes, and a better approximation to 
normality is obtained by looking at the ratio 

where now &(o - U) -5 . I(0. I ) .  It does not seem. though, that this trans- 
formation is much used in general time series analysis. 

One might think that an alternative way of picking up the skewness of 
the sampling distribution is to use the bootstrap since it typically includes 
the second order term of the Edgeworth expansion (Hall 1992, p. 83). But it 
is known that the correlation function is problematic to handle with the 
ordinary bootstrap (Efron 1982 Hall 1992). as pivoting is difficult due to 
large variance in the variance estimate of fi (Hall 1992, p. 141, p. 150) and 
rather careful analysis involving an iterated bootstrap and/or a bias correc- 
tion should be done in the construction of confidence intervals. 

In the case of serial correlation similar results are: For a linear process 
{ X , )  given by 
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M E A S U R E  OF D E P E N D E N C E  253 

with Zitij/ < x. and C Ij 1 ti: < x, and with (2,; being iid and having a 
second moment, the estimated autocorrelation b ( k )  at lag k is a strongly 
consistent estimator of p(k) ,  and ( b ( k ) .  k  = 1 ,. . . m )  are jointly asymptotically 
normal with asymptotic means (,)(A). k = 1 .. . . r n )  and covariance matrix 
W= ( w i j )  with 

which is Barlett's formula. Alternatively such a result can be proved under 
mixing assumptions. 

One of the prime uses of the autocorrelation function is in the test of fit. 
Traditionally this is done in the context of ARMA models, i.e. { X , )  is given 

by 

where the series {e,) consists of iid zero-mean random variables having a 
second moment. I i  we denote by e, the estimated residuais and iei 

then the Box-Pierce statistic for testing of fit is given as 

Under the assumption that h = h,-, x as 11 -+ x and the conditions of 
Box-Pierce (1970):  a)  4 j  = O ( K 1  ') for j 2 h,, where 4 j  are the coefficients 
in the expansion X, = C>,4jr , - ,  and b) 12, = O ( n l  ') as n+ x.. 9 is asymp- 
totically distributed as a z2-variable with h - p - q degrees of freedom. 
One should note that there is a modification of the Box-Pierce statistic due 
to Ljung and Box (1978)  and further one due to Dufour and Roy (1986) .  
The first is discussed in Brockwell and Davis (1987,  p. 301).  If 3 (or its 
Box-Ljung modified version) exceeds the upper x 2  critical value, one con- 
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cludes that the model is not well fitted. and specific deviations in the resi- 
duals can be used to suggcst changes in the modcl. 

In recent years this way of model fitting has come under rather heavy 
criticism. the core of the critique being that the statistic is a measure of 
correlation rather than denendewe. The test has a too large tendency to let 
through models with interesting structure in the residuals. It suffices to 
mention one such example: P'or tinancial series it is of interest to model the 
risk structure as we!l as the expected future value of the series. The risk is 
modeled in tcrnls of the conditional variance of the residuals ( r , ) .  For  the 
sirnolest (pure ARCHI case this is done with the model 

where u and h are nonnegative constants. and ( I / , ]  is another series of iid 
zero-mean variables with variance 1.  Then 

and hence i f  large fluctuations (large r,'s) have occurred, then large fluctu- 
ations (high risk) can be expected in the future. However. it is easy to see 
that corr(r,. r: . ,) = 0 for all k # 0. so that the Box-Pierce-Ljung test will fail 
to pick 11n this structure. The ARCH model was introduced by Engle 11982) 
and is cl.wrently extensively used by econometricians. The fact that the 
Box-Pierce-L.iune statistic does not detect this structure has undermined its 
credibility. There emerges the need for alternative statistics. 

2.2. The Rank Correlation 

Replacing observations by ranks generally robustifies the analysis to del~i-  
arions from normality. The idea of rank correlation goes back at least to 
Spearman 1 l9O4!. Given observations IX ,  ..... X,)  we denote by R?' the 
rank of X, among X,  ..... X,. The estimated rank correlation function given 
n pairwise observations of two random variables X and Y is given by 

The rank correlation is thought to be especially effective in picking up 
linear trends in the data. It is obvious how it can be modified to  a rank 
autocorrelation measure for time series (Knnke 1977, Rartels 1982 and 
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Hallin and Mklard 1988). The asymptotic norrnaiity mas established early. 
Some of the theory is rzviewed in Kendall (1970). I t  can now be viewed as a 
special case of much more general results established by Hallin or 111. ( 1985). 

Although not much applied in a t m e  se~ies context. rank pi-oceuures 
have recently been systematically pursued by Hall~n and Puri and their 
coworkers in a series of papers. See Hallin and Puri (1993) and the reier- 
ences therein. In particular they have h i k e d  a1 a number of theoretical 
properties of rank tests for testing iid ap ins t  ARMA type alternatives. They 
have shown that these tests possess optimality properties using Pitman 
efficiency as a measure of optimality and using Le Cam's theory of local 
asymptotic normality (LAN). Moreover. Ha!lin (1494) shows, extending a 
classical result by Chernoff and Savage (1958), that except for the normal 
distribut~on case. where they are asymptotically equivalent, tradiiional cor- 
relation tests will have lower power asytrlpiotically than the opiimal normal 
score rank test. In this sense the correlation test is inadmissib!e. 

I t  will lead ton far froin the main topic if I were l o  give ii de~ailed account 
of this work, and I will only sketch a few points. Hallin and Puri typically 
look at linear serial rank statistics of the form 

where u'"'(i, .... i,, ,) is a collection of scores defined over the set of all 
r 7 . . 

(k  + ])-tuples of distinct integers in ( 1,. . .. i l l .  1 akiilg a(i, .. . .i,+ , )  = I ,I, , , 
essentially gives the Spearman rank correlatioc function. Note that Wald- 
Wolfowitz (1943) proposed a circular verslon of this. To handle time scries 
problems satisfactorily it is necessary to introduce the linear serial signed 
rank statistics 

where R':'., is the rank of JX,J among J X ,  1,. ..,JX,J and s, the sign of X,, and 
LII:' is again a score function. An asymptotic theory can be derived in the 
general case. but as far as the rank cor~elation is ciii~cerncd. it is sufficient to 
look at 
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256 

and 

Under conditions essentially involving a) smoothness, b) strong mixing on 
{ X , ) ,  and c) symmetry and absolute continuity with respect to Lebesgue 
measure for the distribution of X,, consistency and a symptotic normality of 
S'"' and S'ii' can be established. Moreover, using LeCam type LAN theory 
locally most powerful tests can be obtained for testing randomness against 
ARMA models, with recent extensions to bilinear models (Benghabrit and 
Hallin 1992). It is not yet clear to which degree these tests remain optimal 
and practical to use against a wider class of nonlinear alternatives such as 
those considered in Skaug and Tjdstheim (1994). 

Related to rank tests are permutation tests. They have been considered in 
Dufour and Roy (1985, 1986) and Dufour and Hallin (1991). 

2.3. Higher Moments and Derived Measures 

An ad-hoc procedure for increasing the power of the correlation test in 
situations where it has little or no power, the ARCH process of Section 2.1 
being one example, is to square the observations and compute the correla- 
tions of the squares. This is a well known device. and in the time series case 
it results in the McLeod-Li (1983) test based on 

If fourth order moments exist, and if (X,) = (6,) are the estimated residuals 
from an ARMA model of known order, then it can be shown (McLeod and 
Li 1983) that the asyn~ptotic distribution of P,,(k)  is normal and a x 2 -  
statistic analogous to the Box-Pierce-Ljung statistic can be constructed. 

For the ARCH example of Section 2.1, e,? = ( a  + be:- The e:'s are 
correlated variables, and hence the McLeod-Li test will be able to pick up 
this type of dependence. which is one reason this test has gained popularity 
among econometricians. It should be noted, however, that the higher mo- 
ments involved incur larger estimation errors. and that for linear models the 
squaring operation generally leads to a loss of power compared to the 
ordinary correlation based test. Moreover. its usefulness is of course limited 
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MEASURE O t  DEPENDENCE 257 

to those models where the dependence structure can be expressed as a 
detectable correlation between squares of variables. 

Lawrance and Lewis (1987) argue specifically that in case one has resid- 
uals from non-linear models, the autocorrelation of the squared residuals 
may be difficult to handle since i t  involves fourth order moments, and they 
suggest computing correlations between r ,  and e:, which should be one- 
sided for the ARCH model, or between r ,  and (X, - or r,: and X, - p. 
They illustrate the use of these quantities for a few classes of nonlinear 
models, mainly random coeficienr models. Lawrance's (1991) work on re- 
versibility may also be relevant, as independence implies reversibility, and a 
good test of reversibility would presumably also constitute a good test of 
independence for a wide class of process. 

2.4. Frequency Based Tests 

If ( X , )  consists of uncorrelated random variables, then its spectral density 

is a constant independent of the frequency 2.  Hence, the estimated spectral 
derxity, or rather the c ~ m a l a t i v e  spectral distribution function. can be 
used as a test of independence and as a test of fit statistic (cf. Brockwell 
and Davis 1987, Ch. 9.4). Roughly speaking, if properly estimated. it will 
have many of the same weaknesses and strengths as the Box-Pierce-Ljung 
test. 

For non-Gaussian and nonlinear models one can look at the bispectrum 
B,(E,,, i,), which is the Fourier transform of the third order cumulant 
function. For a zero mean process ( X , ) ,  

For a linear process X ,  = CixiZ,..i it can be shown that 

where S, is the spectral density of { X , j ,  and ,u,,~ and o i  are the third 
moment and the variance of [ Z , ) .  respectively. The above relationship is 
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used primarily as a basis for testing of linearity (Hinich 1982. Subba Rao 
and Gabr  1980). If 1 X,j  consists of iid random variables, then the bispec- 
trum itself is a constant ( = E(X:)). and it  is zero if /i, = 0. This is testable. 
and will in general produce information in addition to the test based on the 
cumulative spectral distribution. Hinich (1993) prefers to look at  the bi- 
covariances G(k ,  rn) = EIX,X, - ,X ,  ,,,I. k < kn. themselves and uses a test 
statistic. which is related to the Lawrence and Lewis (1987) approach, with 

and where under the null hypothesis of independence, for k and 171 # 0. 
~ [ ( C ( l i ,  i l l ) )  = 0. A rest based on this quantlty would have zero power for 
processes for which G ( k .  l i t )  = 0, e.g. the pure ARCH process. Hinich also 
proposes a test based on G 2 ( k .  171). The test is based on sixth order 
moments, and,  not surprisingiy, requires clipping in order to work. The 
asymptotic theory requires rrloments of order 12. A number of simula- 
tions as well as experiments on  a large real da ta  set are given in Hinich 
(1993). 

3. THE CORRELATlON INTEGRAL OF CHAOS THEORY 

In Grassberger and Procaccia (1983) the correlation integral was introduced 
as a means of measuring the fractal dimension of deterministic data.  It 
measures serial dependence patterns in the sense that i t  keeps track of the 
frequency with which temporal patterns are repeated in a data sequence. 
Let (s ,,..., r,) be a sequence of numbers and let 

Then the correlation integral for embedding dimension k is giben by 

where = max,b,k,,,js,/. where I ( . )  is the indicator function and r: > O is a 
cut off threshold which could be a multiple of the standard deviation in the 
case of a stationary process. The parameter E might also be considered to be 
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M E A S U R E  OF D E P E N D E N C E  

a "fudge" or a "tuning" parameter. Let 

If ( X , )  is an absolutely regular (Bradley 1986. p. 169) stationary process, the 
above limit exists and is given by 

where F ,  is the joint cumulative distribution function of xr!. Since 
1 ( l ( . ~ ! ~ '  - - 4, 'h ' / (  - <c) = rI;,, l(lxi - yi( < c) it is easily seen that if { X , )  consists of 
iid random variables, then 

and this expression can be used as a basis for a test of independence. Note 
that no moments of {X,) need exist. 

The sampling properties of C,., can be derived by exploiting that C,,, is a 
generaiized ii-siaiistic (Srrfliiig 1986, Ch. 5,  an3 Denke: and Ke!!er 1983) 
with a symmetric kernel l(l1x - - y/I  - < 6). See also Brock et ul. (1991). Under 
the hypothesis of independence, and excluding the case of uniformly distrib- 
uted random variables, Brock et ul. (1991) have established that 

where 

with 
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and 

I " " "  
K,, = ;;i 1 Z l(jX,. - X ,  < i : ) l ( / X ,  - X ,  < 6). 

r Z l . s = l 1 = l  

Here we have stated the test in terms of a data series iX,). In Brock t.t al. 
(1991) it is shown how this can be adapted in principle and asymptotically 
to a test of fit situation involving estimated residuals. 

The test is called the BDS test after its originators (Brock, Dechert and 
Scheinkman 1987). It is now reasonably well-tried. It is effective against 
quite a wide range of alternatives including ARCH and its generalization 
GARCH (Bollerslev 1986). There are problems with obtaining the right 
level though. For small, moderate and even quite large sample sizes cases of 
large over-estimation of the level have been reported giving the test a high 
false alarm rate (Brock rt al. 1991 and Mizrach 1991). In power experiments 
on simulated data as a generai rule the level has been determined by simula- 
tions, so that is does not influence the power comparisons of those experi- 
ments. For real data this cannot be done. and one has to be careful in 
applying the test in the form given above. Its small sample properties have 
been discussed in Hsieh and LeBaron (1988). In the light of the results to be 
reported in Section 5 the bootstrap should be a natural alternative to using 
the asympt~ t ic  distrihtions in bctcmining critical values. 

In a recent contribution Wolff (1994) obtains a Poisson law for the corre- 
lation integral under the null hypothesis of independence, and he uses non- 
parametric methods to specify the test precisely. His paper also incluudes a 
numerical comparison with the methods to be presented in Sections 4 and 
5. Howell Tong and his coworkers have recently worked intensively on 
various aspects of chaos theory and nonlinear time series. The reader is 
referred to Tong (1995) and references therein. 

4. MEASURES AND TESTS BASED ON THE 
DISTRIBUTION FUNCTION 

4.1. Classes of Measures 

Let X and Y be stochastic variables with distribution functions F, and F,, 
respectively. The problem of measuring the dependence between X and Y 
can be formulated as a problem of measuring the distance between the two 
bivariate distribution functions F,,, and F,@F,. where F,,, is the joint 
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MEASURE OF DEPENDENCE 26 1 

distribution function of (X, I.) and FX@Fy(x, y) = Fx(x)Fy(~). (An alterna- 
tive would be to use characteristic functions. Pinkse (1993) has explored this 
possibility in an interesting contribution.) Let A(.;) be a candidate for such a 
distance functional. It will not be assumed that A is a metric, but it is 
natural to require (Skaug and Tj4stheim 1994) that 

4F.y.p Fx@Fy) 2 0 and A(F,,,, FX@Fy) = 0 iff F,,, = F,@F,. (4.1) 

Moreover, one may require invariance under transformations, or more pre- 
cisely 

where F:(x) = FX{h-'(x)) and Ff.,(s,y) = F,,, , ' h -  '(x), h -  '(4')). Here h is an 
increasing function, and F:, F:, Ff., are the marginal and bivariate dis- 
tribution functions of the random variables h(X). h(Y) and (h(X), h(Y)), 
respectively. 

For distance functionals not satisfying (4.2) we can at least obtain scale 
and location invariance by standardizing such that E(X) = E(Y) = 0 and 
var(X) = var(Y) = 1, assuming that the second moments exist. In practice 
empirical averages and variances must be employed, but asymptotically the 
difference between using empirical and theoretical quantities is a second 
order effect. We have used such a standardizaiion lor. all of our functionals. 

The measures of dependence introduced in Sections 2 and 3 can be 
expressed as functionals on F,, F, and F,,, although not generally as 
distance functionals depending on F,,, and Fx@Fy. For example, with X 
and Y standardized, the correlation squared can be written. 

Similarly, the Spearman rank correlation is based on an estimate of 

Neither p2 nor pi , .  satisfy either of the conditions (4.1), (4.2). Similarly. from 
(3.1) it is clear that CJE) of the BDS statistic can be written 
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and likewise for C, (c ) .  A distance functional can be constructed based on 
C,(t;) - ( C , ( t ; ) ) 2 .  The relationships (4.1)  and (4.2) will in general not be 
satisfied for such a functional. 

Conventional distance measures between two distribution functions F, 
and F ,  are the Kolmogorov-Smirnov distance 

and the Cramer-von Mises type distance 

Here A ,  satisfies (4.1)  afid (4.2). whereas A2 satisfies (4.1)  but not (4.2). A 
third distance measure is the Mallows measure 

2 112 A3(F, .  F, )  = inf jE(Xl - X , )  ) 

where the infimum is taken over all pair of random variables X ,  and X ,  
having marginal distributions F, and F,, respectively. This measure is much 
used in bootstrap asymptotics. 

By letting F ,  = F,., and F ,  = F,@F, these distance functions can be 
taken as measures of dependence. An and Cheng (1990) have used the 
Kolmogorov-Smirnov distance in connection with a linearity test of theirs. 
It could be converted into an independence test, but apart from this, as far 
as I know, all the work pertaining to measuring dependence and testing of 
independence has been done in terms of the Cramer-Von Mises distance 
(Hoeffding 1948, Blum rt al. 1961, Rosenblatt 1975, Rosenblatt and Wahlen 
1992, and Skaug and Tjp(stheim 1993b). 

I have only considered a pair of random variables. In principles one can 
extend the procedure to the general vector case [ X  ,,. . . ,Xk] with 
F ,  = F x  ,.,,,,, and F,  = IIf=,@Fx. .  In piactice, however, F ,,,., will be diffi- 
cult to estimate due to  the curse of dimensionality. Instead, for a stationary 
process { X , )  Skaug and Tjostheim (1993b) have considered functionals A'&' 
based on pairwise measures 
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M E A S U R E  OF DEPENDENCE 263 

but. obviously. unlike the correlation structure. the full joint dependence 
structure is not described by all pairwise relationships. 

4.2. Estimation of Distance Functionials and Tests of  Independence 

A natural estimate A of a distance functional A is obtained by setting 

where is the empirical distribution function given by 

for given observations : (XI ,  Y,)  ,..., (X,, y,)). Similarly for a stationary 
times series { X , } ,  

I t  is noted that if this method is used in (4.3) (4.4) (4.3, it leads to the 
classical estimates of the correlation function and to the familiar estimate of 
the correlation distance used in the BDS statistic. Again, we standardize 
with p = E(X,) and CJ = S D ( X , ) ,  or rather X = n - ' E X ,  and 6 = {(n - I ) - '  
C ( X f  - x)2)112. 

The work centered around the Cramer-von Mises type statistic (4.6) was 
started already by Hoeffding (1948). who studied finite sample distributions 
in some special cases. An asymptotic theory was provided by Blum, Kiefer 
and Kosenblatt (1961) in the case of having observations (Xi, Y,) where the 
pairs ( ( X I ,  Y, )  ,.... (X,. Y,)) are iid. This was extended to the time series case 
with a resulting test of serial independence in Skaug and Tjdstheim (1993b). 
I now give a brief review of that work. 

In the time series case the Cramer-von Mises distance at lag k is given by 

where F, and F are the joint and marginal distributions of ( X , ,  X , - , )  and 
X,, respectively. Replacing theoretical distributions by empirical ones leads 
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DAG TJBSTHEIM 

to the estimate 

1 0 =- (Pk(xl ,  X, . k) - F ( X J R X ~ - ~ ) ~ .  
Fk n -k  , = , + ,  

Assuming (X,) to be ergodic, we have Skaug and Tjdstheim (1993b, Th.1,) 
that B F k v ~ F k  as n + x. 

To construct a test of serial independence we need the distribution of bFk 
under the assumption of {XI) being iid. Let Z, = (Zj", Zj?') A (XI, X , -  ,). Then 

where Vn = K2C,".,= ,h(Z,7, Z,) is a von Mises statistic in the technical sense 
of Denker and Keller (1983) with a degenerate symmetric kernel function. 
Using asymptotic theory (Carlstein 1988. Denker and Keller 1983 and 
Skaug 1993a) of this statistic or the related U-statistic we have (Skaug and 
Tjqktheim 1993b. Th.2) the convergence in distribution 

where (Yj ]  is an independent identically distributed sequence of ..V(O, 1) 
variables, and where the (u],) are the eigenvalues of the eigenvalue problem 

with 

If the distribution of each XI is continuous, then DFkis distribution free, 
i.e., its distribution does not depend on F. Then all calculations can be 
carried out with F being the uniform [O,l] distribution in which case 
y(x, V )  = - max(x, y) + 1/2(x2 + y2) + 113 and q m  = ( r n ~ ) - ~ ,  and the distribu- 
tion in (4.7) can be tabulated by truncating it for a large value of the 
summation index. 
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When the distribution of X, contains a discrete component, the distribu- 
tion free property is lost. and the complexity increases considerably (Skaug 
and Tjgstheim 1993b). 

A test of the null hypothesis of independence. or rather pairwise indepen- 
dence at  lag k ,  can now be constructed. In the l~gh t  of our prevlous results it 
is reasonable to rqject H,, i f  large values of bFk is observed. Thus a test of 
level t: is: 

reject H ,  if nbFk > u,,, 

where u,,,, is the upper ?;-point in the null distribution of 1 1 ~ ~ ~ .  Since the 
exact distribution of DFk is unknown, we can use the asymptotic approxi- 
mation furnished by (4.7). For n = 50. 100 and k small this works well. 
However, as k increases. in general (Skaug and Tj4stheim 1993b) the level is 
seriously overestimated. 

Under the hypothesis of ;X, j  being iid the bootstrap is a natural tool to 
use for constructing the null distribution and critical values. For  moderate 
and large A's boot strapping gives a much better approximation to the level 
and is to be recommended. 

Under the alternative hypothesis that X ,  and X,-, are dependent, the test 
statistic bFk will in general be asymptotically normal with a different rate 
from that. ir! (4.7). hut the power f~unrtinn will he very conlplicated. and we 
have not tried to obtain an asymptotic expression for it. 

To extend the scope to testing of serial independence among [X,,. ... X , , ]  
or alternatively between several random variables for which there are iid 
observations for each of them. one might use a functional 

The asymptotic theory under the null hypothesis of independence for such a 
test has been examined by Delgado (1996), but due to the curse of dimen- 
sionality, problems can be expected for moderately large k's. As an  alterna- 
tive Skaug and T j~s the im (1993b) used a "Box-Pierce-Ljung analogy", test- 
ing for pairwise independence in all of the pairs ( X , .  X , ) .  ( X 2 )  ,..., ( X , ,  
X ,  _ , )  using the statistic 

k 

D$I = 2: i)F, 
r = l  

Of course examples can be found with pairwise independence in all of the 
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266 DAG T.IOSTH El M 

pairs. but dependence among [ X , .  X , -  ,,..., X , - , I .  but i do not think that 
such examples are very important in practice. The asymptotic theory of 
such a test is given in Skaug (1993a). and corresponding to (4.7). under the 
null hypothesis of independence, we obtain 

where the (q,, m 1; are as in (4.7) and {wj(k)) is an iid sequence of 
z2-variables with k degrees of freedom. Again, better approximations to the 
nominal level of the test is obtained by bootstrapping. 

Since our test is an omnibus test against a non-specified alternative of 
dependence. it will obviously have lower power for a fully specified alterna- 
tive than a test designed explicitly for that alternative. To give an idea of the 
power properties of the test we have considered k = 1 and the processes 

a) Moving average (MA): X ,  = e, + a e , - ,  
b) Nonlinear moving average (NLMA): X, = e l -  ,(a + e,) 
c) Bilinear (BL): X ,  = (a  + be,  _ , )X ,  - , + e,, a2 + b2 < I 

where { e , }  consists of iid . 1.'(0,11 random variables. The bilinear model is 
from Chan and Tran (1992), whereas the NLMA model is from Skaug and 
Tjgistheim (1993a). In Figure 1 is shown the simulated power for the tests as 
a function of a  for n = 100. We have used 8000 independent realizations for 
each model. The test is compared to the correlation test based on 

and two tests based on estimated densities to be described in the next 
section. The parameter ,4 is held fixed at = 0.4. To get a fair comparison 
between the tests, critical values found by simulation were used for all of 
them. 

For the MA model it is seen that b, = b,, comes surprisingly close in 
performance to the correlation functional, which is optimal in this situation. 
The same was the case for an AR(1) model in Skaug and Tjdstheim (1993b). 
Significantly better power than for the tests based on densities is obtained. 
For the BDS test for a = 0.5 Mizrach (1991) reports about a power of 0.63 
for the MA(1) case, whereas the power of the b,-test is approximately 0.96. 
For the nonlinear MA. B, does not perform well in the middle region of cr, 
but otherwise it outperforms the correlation test. But it is itself clearly 
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MEASURE OF DEPENDENCE 

BL(1,l.l) with P = 0.4 

FIGURE 1 Power of tests (significance level is 0.05) as a funct~on of r for the models a), b) 
and c). 
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beaten by the two tests based on the density functions. The results fol- the 
bilinear model are similar. As explained in the introduction econometricians 
are especially concerned with ARCH-like deviations from independence, 
but unfortunately the f i ,  statistic did very poorly for this type of dcpend- 
ence with virtually no power. An ARCH example as well as other examples 
are given in Skaug and Tjqistheim (1993b). 

5. MEASURES AND TESTS BASED ON DENSITY FUNCTIONS 

I n  t h ~ s  section density funct~onc of all var~ables concerned will be assumed 
to  exist Most of the mater~al  1s taken from Skaug and T~Qstheim (1994). to 
w h ~ c h  we refer for more deta~ls.  

5.1. Measures of Dependence 

We use the same principle as in the preceding section. For  two random 
variables X and Y having a joint density f,., and marginals f ,  and fl we 
measure the degree of dependence by A(&,, ,  f, &j J,) where A now is a 
distance measure between two bivariate density functions. The requirements 
(4.1) and (4.2) discussed in Section 4.1 will be natural to consider here too. 
Again, the variables are normalized so that the mean and the standard 
deviation are equal to 0 and I ,  respeclively. 

All of the functionals that I consider will be of the type 

where B is a real-valued function. I f  B is of the form U(z,, z,, z,)= 
D(z,/z,z,) for some function D. we have 

which by the change of variable formula for integrals is seen to have the 
property (4.2). Moreover, If D ( u )  3 0 and D ( u )  = 0 iff u = 1, then (4.1) is ful- 
filled. Several well known distance measures for density functions are of this 
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MEASURE OF DEPENDENCE 269 

type. For instance letting D(u) = (1 - u - l i 2 )  we obtain the Hellinger distance 

between f,., and j i@ f,. The Hellinger distance is a metric and thus satisfies 
(4.1). I t  is seen to be a special case, for y = 112, of the so-called directed 
divergence of degree y (y # 0, 1) (Chung et al. 1987): 

Clearly (4.2) is fulfilled and for 0 < y < 1, using Holder's inequality 

with equality iff fx , ,  = , r x ~ f y .  Hence A, satisfies (4.1) for 0 < y < 1. 
The familiar Kullback-Leibler information (entropy) distance is obtain- 

able as a limiting case as y -+ 1: 

Since it is of type (5.2), it satisfies (4.2), and it can be shown to satisfy (4.1) 
(see Robinson 1991). For y = 2 the Bickel and Rosenblatt (1973) test of fit 
distance emerges. 

A generalization of the entropy measure is the Renyi entropy measure 
defined for I # 0, - 1 by D
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270 DAG TJOSTHEIM 

The Renyi distance has recently been considered by Parzen (1993) and 
zhang and Taniguchi (1994), who obtained higher robustness than with the 
ordinary Kullback-Leibler statistic when measuring goodness of fit between 
spectral densities. As far as I know, it has not been tried for the kind of 
problems considered in this paper. 

Other distance functionals, not of the form (5.2), have also been sugges- 
ted. Thus Chan and Tran (1992) have looked at a distance functional 

and examined it by simulations in the serial dependence case. A squared 
distance functional has been considered by Rosenblatt (1975) and Rosen- 
blatt and Wahlen (1992) 

Both of these satisfy (4.1) but not (4.2), i.e they are not transformation 
invariant. The latter is not even scale invariant, and it seems essential that 
some sort of normalization is introduced. 

A weighted difference functional was introduced in Skaug and Tjdstheim 
(1993a). It is related to a series expansion of I, and it is given by 

The distance measure J has neither of the properties (4.1) or (4.2). Thus, 
there are obvious arguments for dismissing J offhand. The reason this has 
not been done, is that it has worked consistently well on examples used in 
the literature for comparing seriel independence tests. Moreover, its simple 
structure is ideal for exemplifying the asymptotic structure for the estimated 
functionals. 

All of the above measures are conceptually based on the distance between 
two arbitrary multivariate densities f,(x) and.f,(x). - It is therefore, as was the 
case for the distribution functions, obvious how one can extend the above 
formulae to the case of measuring distance between f,,. ,,,, and f,, 
@.. Qf,,. However, estimating such a measure would involve estimating 
higher dimensional densities which is difficult due to the curse of dimen- 
sionality. Therefore we again look at functionals built up from measuring 
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MEASURE OF DEPENDENCE 27 1 

pairwise dependencies. For a stationary time series and serial dependence 
we introduce 

withh = , f X , , , ,  , and.f =A,, and for a set of random variables [XI ...., X,] 

The first construction has been implemented for tests of serial indepen- 
dence in Skaug and Tj@stheim (1994). whereas to my knowledge the second 
one has not been tried. 

5.2. Estimation and Sampling Properties. Tests of Independence 

For a given functional A = A( j; g)  depending on two densities j' and g we 
estimate A by $ = 4(.f: 4). There are several ways of estimating the densities 
f and g, but I will only consider nonparametric kernel estimates, i.e. 

for given observations {X ,,. ..,&,). Here Kbn (-5 - X,) = h i %  K(b,-'(.! - X,)), 
where b, is the bandwidth, K is the kernel function, and d is the dimension 
of &. The kernel function was taken to be a product of one-dimensional 
kernels in Skaug and Tjqktheim (1994). i.e. K(x) = llKi(xi), where each K, 
generally is non-negative and satisfies 

The product form is convenient but not necessary. In Skaug and 
Tjdstheim (1993a and 1994) we have used a Gaussian kernel, i.e. 
K ( . u ) = ( 2 ~ ) - ' ' ~  exp(-+.u2), but there are many other possibilities, e.g. 
K(x) = 15/16 (1 - x2)21(lxl< 1 )  and similar kernels having a compact sup- 
port. 

In optimality theory of density estimation (see e.g. Silverman 1986) b, will 
depend on both the sample size n. the dimension d and the covariance 
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272 DAG TJOSTHEIM 

matrix or a similar scatter measure for x. Such an optimality theory has 
not been extended to the type of functionals we are considering. and in our 
experiments involving pairs of random variables (X,. X,-,) we have taken a 
rather simple minded approach: We have scaled all variables involved so 
that they have E(X,) = U and var(X,) = 1 (or rather the corresponding em- 
pirical quantities satisfy these identities). and we have chosen b, = n - '  ' 
which is roughly optimal asyn~ptotically in the sense of Silverman (1985, p. 
86) in case of the bivariate estimate f;.,,(x, J) but not for the univariate 
density estimate fx(x). Using the same bandwidth b, for the bivariate and 
univariate density estimates simplifies the asymptotic analysis (cf. Skaug 
and TjQstheim 1994) and is consistent with Rosenblatt's approach (1975). 
Robinson (1991) uses different bandwidths and introduces a kernel function 
which is allowed to take on negative values to get the asymptotic theory to 
go through in his case. 

Once estimates for ,ti,,, fi and , f ;  have been obtained in the integral 
expression (5.1) for A. the integral could have been computed by numerical 
integration, but we have opted for taking empirical averages. Then in effect 
we replace f (x ,  y)dxdy = dF(x, y) by dF(x, J) so that corresponding to (5.1) 

for given pairs of observations { ( X  ,, Y,),.  . ., (X,? Y,,)], and 

in case we are considering serial dependence for a stationary process with 
observations {XI,  ..., X,). From now on we will concentrate on the latter, 
the former being similar and simpler in case of iid series {X,) and { T I ,  and 
more difficult when one has serial dependence in the individual series (X,) 
and {Y,). We have found it convenient to introduce a weight function w(X,, 
XI-,) such that 

Typically w(..c, j) = 1 {lxj < j. sd (X)) 1{1~1 6 j. sd ( Y  )) where j. usually is be- 
tween 2 and 3. The purpose of the weighting is twofold: We want to screen 
off outliers, and the asymptotic theory simplifies with this device. In effect it 
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means that we are only measuring the dependence within the support of rz,. 
We could let the support of us tend to infinity as n- K. but such an 
n-dependence would lead to complications in the asymptotic analysis (cf. 
Robinson 1991 for a related case). Moreover. it is not clear how the n- 
dependence should be chosen In practice for a given finite sample. 

When a weight function w is included, then the theoretical counterpart is 

which is what the estimate L, should be measured against. In Skaug and 
Tjqktheim (1994) an asymptotic theory is derived for the weighted func- 

A A 

tionals I,,,,, J,, , ,  and H , , ~  corresponding to the functionals (5.3), (5.4) and 
(5.6),  the weighting being as above. Then (4.1) and (4.2) are only approxi- 
mately fulfilled. Similar derivations can be done for more general func- 
tional~, and it is indicated how an asymptotic theory can be developed in 
these more general cases in the Appendix. 

Under a precise set of regularity conditions stated in Skaug and 
Tjdstheim (1994) consistency and asymptotic normality can be obtained for 
the test functionals. It should be noted that the leading term in an asymp- 
totic expansion of the standard deviation is of order n-'I2 for all of the 
three functionals H'". I"" and J'k'. This is the same as the standard deviation 
of parametric estimates in a regular parametric estimation problem, where- 
as the standard deviation for the estimators j'(s) and ,fk(x, y) are of order 
( I I ~ , ) - " ~  or (nb:)-'I2, respectively. In the regular parametric case the next 
term of the Edgeworth expansion is of order n ' ,  and for moderately large 
values of n the first order term of order n ' I 2  will dominate. Similarly 
(Hall, 1992 Ch. 4.4)) for,j'(x) andh (x ,  y) the next terms are typically of order 
(nbJ1 and (nb:)-'. However, for the functionals constructed above the 
next terms are generally much closer in order. For 3 it is shown in Skaug 
and TjQstheim (1993a) that the next terms are of order n-'12h, and (nh,)-', 
and since h, = O(n -'Ih) or O(n - I,'), n must be very large in order for the 
first order term to dominate in the asymptotic expansion. Hence first 
order asymptotic theory based on the normal approximation can be 
expected to be inaccurate except when n is very large. Basing a test 
of independence directly on such a theory may be hazardous as the real 
level will typically deviate substantially from the nominal level. This is 
amply demonstrated in Skaug and TjQstheim (1993a and 1994) where some- 
times the level was twice that of the nominal level for a sample size of 100 
observations. Similar problems has been reported for the other functionals, 
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and in linearity testing with nonparametric functionals (Hjellvik and 
Tjgsthe~rn 1995). 

A n  obvious remedy is to include higher order terms in the asymptotic 
expansion. but this is problematic, as they are diflicult to compute analyti- 
caiiy and would invoive compiicaied expressions which have io be 
estimated. This suggests use of the bootstrap or  permutations as an alterna- 
tive for constructing the 11~111 distribution. One may anticipate that it picks 
up higher order terms of the Edgeworth expansion (cf. Hall 1992, Ch. 3 and 
('h. 4) although no rigorous analysis to confirm this has been carried 
through for the present functionals. Simulations in Skaug and Tjdstheim 
(1993a, 1994) d o  indicate that much better appromixation to the level is 
obtained. It is my belief that the potential for bootstrap methods is larger 
here than in the purely paramctiic or  nonparamctric casc. sincc in thosc 
cases the tirst order asymptotics work quite well for modest sample sizes. 

As in Section 4 it is quite difficult to d o  asymptotic power studies. Such 
studies would also be unreliable unless n is rather large for the reasons just 
mentioned. For 3 linear AR(1 j alternative analytic expressions are obtain- 
able, and it can be shown that the Pitman efliciency of .l̂  has a lower rate 
than the correlation function ( n  against R ' ! ~ ) .  This type of result can 
also be expected for the other functionals and for general classes of alterna- 
tives, as it is closely tied to the nonparametric approach. For  a finite sample 
size (n  = IOU), the test functionals H ,  Î  and J^ are inferior to the correlation 
functional and to the functional derived from the empirical distribution 
function for the MA model of Figure 1 and for an AR(I) process considered 
in Skaug and Tjqstheim (1994). However, for a number of other examples of 
nonlinear character, including the ARCH model. the functionals H ,  I^ and J^ 
are far superior to the correlation functional, and comparable, and in some 
cases superior, to the RDS functional. This is illustrated in a few special 
cases on Figure 1 .  A much more thorough documentation and a real data 
example involving exchange rates are given in Skaug and Tjdstheim (1994). 

6. DISCUSSION AND WORK IN PROGRESS 

In a test of fit situation one is interested in subjecting the residuals to an 
independence test. One should then compensate for the fact that the rcsi- 
duals only are estimates o f  the true residuais, which in turn are independent 
if the model is correct. In linear model checking one adjusts for this in the 
Box-Pierce-Ljung statistic via the reduction of the degrees of freedom of the 
X2-test according to the number of estimated parameters. 
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M E A S U R E  OF DE1'lrNL)ENC'E 375 

In Brock ct a/.  (1991) it is discussed how the fitting aspect can be handled 
asymptotically for the RDS test. Rut as 1 1 -  -/, under the assumption that 
the model is correct, the estimated residuals will converge towards the 
theoretical residuals. and the peculiar features of the fitting process tend to 
disappear. 

I believe that a bootstrap approach could give better results in a finite 
sample situation, but the bootstrap procedure should be adjusted for the 
fitting process with the probable loss of some power. 

Another aspect I have not touched much on, is the possibility of con- 
structing tests along the lines suggested in Sections 4 and 5, when one wants 
to test independence between processes {X,) and (x). This can be done 
pairwise by imposing the assumption of joint stationarity on j X , ,  I.;) and by 
looking at pairs of random variables {X,, I: ,). An asymptotic theory can 
be built in analogy to the one discussed in Sections 4 and 5. The bootstrap 
can be used in case jX , j  and ( are each iid. If there is serial dependence, 
the ordinary bootstrap will fail, but possibly a block bootstrap (Kiinsch 
1989, Riihlmann 1993) may work. This is under investigation. So far the 
results are preliminary, but the block bootstrap seems to be rather more 
unstable than the ordinary bootstrap. 

Another set of problems are those connected with conditional indepen- 
dence and causality tests. A dificulty is that in more complicated dependence 
relationships, one need to estimate conditional probabilities Pr (Y,, ...,% 1 
XI, ... X,) and unless the sample size is very large this estimation problem 
could be rendered impossible by the curse of din~ensionality if k + / is lal-ger 
than 3--4. A semi-parametric approach to the problem may be better in this 
case, but it is not clear how one should proceed most effectively. 

Ackno wledgernmt 

1 am grateful to Hans J. Skaug for providing the plots of Figure 1. 

Appendix: A Framework for the Asymptotic Analysis of a Class 
of Nonparametric Functionals 

The asymptotic analysis for the functionals of Section 5 is of limited practi- 
cal applicability. This appendix is therefore perhaps mostly of theoretical 
interest. In practice we d o  not often expect to have a t  our disposal the very 
large sample sizes required for the first order asymptotic expansions to be 
accurate. Nevertheless, I will outline a framework for an asymptotic analy- 
sis of somewhat larger generality than that discussed in Section 5 .  
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276 DAG 1 JOSTH t l M 

1 write in the language of a univariate stationary series { X , ] ,  but it will be 
clear how it can be generalized to other situations. I assume that the quan- 
tity we want to estimate is of the form 

Here B and g are known functions, but g depends on an unknown vector 
parameter HE@. The vector function u is unknown and is estimated non- 
parametrically. In Section 5, u(x) = (ul(x, ,x2),  u,(w,,x,), u,(x,,x,)) = {,/I 
(xl,.u,)J,,(x,), .f,,(x2)) and z. is absent. Finally, w(x) is a weight function 
having support on a compact set S and F(.x) = F(.Y,, . ..,x,) is the cumulative 
distribution function of [ X , ,  X ,  i,,..., X ,  i p  , ) .  In this manner we could dis- 
cuss a test of fit problem examining if the density ,f(.u) belongs to a certain 
parametric class (Skaug 1993b). or test the difference between the non- 
parametric nonlinear predictor and a linear parametric predictor (H-jellvik 
and Tjqistheim 1995)(see also Hiirdle and Mammen 1993), or perform a test 
of independence. The function B can be thought of as measuring the distance 
between the functions g and !1 or, if g is missing, between the components of u. 
In Section 5 B{Q(x, !I))- = In ~u, ( .Y,  g),/u,(x)u,(g)) = In {f,,,(.x, y)/f&r)fY(y)) in 
case the information measure is used. In a univariate test of fit problem 
u(.Y) = f (x), where J'(.Y) is the true unknown density and ?(.~,(1) = g(x, (1) where 
g is a known candidate family of densities depending on a parameter (i. 

We can estimate A by 

where is the empirical distribution function o f  (X,, X, ,,.. ,,X( - i k - ,  ), zj(&) 
is a non-parametric estimate of g(.~).  and 0 is an (e.g. maximum likelihood) 
estimate of @. 

One can obtain consistency by essentially requiring: 

AO) {X,) is ergodic. 
A I) s ~ p ( . - u ( s ) 1 ' ~  0 

i s u p (  @ - ~ ( u .  H )  < M I H ^  - HI and 10- UlYO. 
A2) There exists an open set A>Kange,,,(g(.u), r(r,g)j such that for 

i = 1 ,..., dim (u), j = I ,  ..., dim(@) and each UE@ 
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where C, and C, are constants. There are a number of sufficient conditions 
guaranteeing the uniform almost sure convergence of nonparametric esti- 
mates on a compact set needed under A1 i). To satisfy A1 ii) it will in 
general suffice to require that g is differentiable with respect to t j  such that 
supxEs &(x, o)jddi d M and io esiabiish g+ 0 as., and many cor,diti~r,s are 
known to imply the latter. Usually more than A0 is required to satisfy A l ,  
so that in practice this condition must be strengthened to yield some form 
of mixing (strong mixing or absolute regularity). Again, since S is assumed 
to be a compact set, A2 will in general be a mild condition when specified 
jointly with A l .  

Under AO-A2 strong consistency can be obtained as follows: 

Here I "4. 0 due to the ergodic theorem. By A1 there exists for each realiz- 
ation an integer N such that 

for n 3 N. Therefore, showing 11 "4 0 is equivalent to showing K,II "4 0. 
By the mean value theorem there exists a random function g'(x) and a 
random vector parameter Q'EO such that 

and the result follows from A1 and A2. 
It is rather more difficult to establish the asymptotic distribution. If 

dBjaui{g(x), g(x, 6))) and aB/aO,{u(x), g(.g,O)) # 0, for at least one i and one j, 
then asymptotic normality can be obtained under a set of regularity condi- 
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278 DAG TJOSTHEIM 

tions to be discussed. If this is not true, then higher order terms contribute. 
and typically U-statistic theory must be employed. In special cases this 
situation has been considered in papers by Hall (1984) and Rosenblatt 
(1975). If there is n-dependence in the kernel. one can still get asymptotic 
normality. Otherwise one usually obtains a 1'-type distribution or so-called 
Kiefer processes. (see e.g. Denker and Keller 1983). Here I will only treat the 
case where the first order terms are non-zero covering most of the cases 
mentioned in Section 5, and 1 will indicate the type of regularity conditions 
which can produce asymptotic normality then. 

The following lemma is useful in such an analysis. I use the notation 
O(.!) = 12' l 2  {E(.J - ~ ( 5 ) ) .  

LEMMA A1 (Skaug and Tjdstheim 1994) 
Let ( D n ( x ,  q), I7 3 1) he LI sequenc~~ of possihlj. comp1e.u-riulurd, uniformly 
hountled functions. i.e. there exists a constunt C such that 

Further, let { X , )  he a strongl~. mixing process with mixing. coqficienr cx(j). I f  
Xy(,j) < x,  then 

sup El Dn(x ,  ~ ~ ) d O ( ~ ) l '  = O(1) . S  - 

and i f  X,,jx( ,j) < X. then 

This is only proved for k = 2 in Skaug and Tj9stheirn (1994), but it can be 
extended. 

We now make an assumption on rates 

where ghjx) = E{e(x)) and f3, = E(@). These assumptions are not very re- 
strictive, and one can quite easily find conditions under which they are 
satisfied. For example for nonparametric kernel estimates, there are a 

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 0
1:

06
 0

8 
N

ov
em

be
r 

20
13

 



MEASURE OF DEPENDENCE 

number of sufficient conditions resulting in '-optimal" almost sure rates 

and (In n)"2h;k!2 = ~ ( n ' ' ~ )  would then suffice. For example the familiar rate 
h, = O{n - ' '"") in the standard situation (Silverman 1986, p. 86) would be 
enough for k < 3. 
Concerning A3 ii), under wide restrictions 16- Q,la~.0{n-"2(ln n)"2}. 
We also impose the quite mild condition 

A4) : for each 0 there exists an open set A 3 Range,,,y{u(.u),g(x, t))) such that 

C'B g c;'g 
sup - - - < C. 
!.!~.4 C u . 6 ~ .  duiCOjr (?Oid f~ ,  

1 '  J 

Under A(rA4 and Lemma A1 we can obtain the following linearization: 

1 will indicate a very rough proof of this result: Assumption A4 means that 
we can Taylor expand up to second order: We write (omitting the .I-de- 
pendence) 
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DAG TJOSTHEIM 

where g', 8' are stochastic quantities depending on n and determined by the 
mean value theorem. Subtracting and adding terms in the expression ( A . l )  
for 6, using the Taylor expansion and the notation o($) = nli2{&) - F ( s ) )  
we obtain 

+ n- l i 2 S [ ~ ~ { ( r b , j r )  d a ,  en))(ai - u ~ . L )  

Using A3 and A4 we have that the term involving second order derivatives 
of B is of order o(n1I2) almost surely, and therefore the same is true in 
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MEASURE OF DEPENDENCE 28 1 

probability. Lemma A1 and Condition A3 can be used to show that the 
terms involving the first order derivative of B in the fourth and fifth line of 
(A.2) are of order ~ , ( n - ~ ' ~ ) .  and we then obtain the desired linearization. 

The linearization can be used to prove asymptotic normality under the 
null situation of Big(%), g(.u. Q)) = 0 if BjuhJ.y),  c(s, U , ) ;  = 0. in the test of 
independence this is the case (4. missing). Otherwise, under rather weak 
conditions B{g,jr), g(.u, Q,) J-, + B{u(x), p(.y, 0)) = 0 uniformly in x, and 
Lemma A1 will then yield that the term 

and the asymptotic distribution is then determined by 

which is generally of order 0,(n-1'2). In the kernel estimation case for 
example, with k = dim(%), eventhough lii - u ~ , ~ ,  = 0,{(n1b,k)'!2), we obtain 
using Lemma A I ,  Bochner's Lemma and representations of type 

(cf. Skaug and Tjdstheim 1994 for an example) a term of order O,(n-'I2). 
Here g is a function determined by the representation. Moreover, a mixing 
argument can be used to show asymptotic normality of 

Similarly, asymptotic normality of the term 
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will in general follow from asymptotic normality of 0, and the arguments 
can be extended to obtain joint asymptotic normality of the two terms in 
(A.3). 

Finally. in the non-null situation the term 

will (cf. Lemma A l )  be of order O,(n-'I2) and will contribute to the asymp- 
totic distribution, which, again using a mixing theorem, can be shown to be 
asymptotically normal under quite weak conditions. The outline given in 
this appendix is exemplified on special models with rigorous proofs and 
precise conditions in Skaug and Tjplstheim (1994), and related work is pres- 
ented in Masry and Tjgistheim (1995 and 1997). 
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