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REVIEW

Regression Models in Clinical Studies:
Determining Relationships Between

Predictors and Response”

Frank E. Harrell Jr,’ Kerry L. Lee’ Barbara G.  Pollock’®

Multiple regression models are increasingly being applied
to clinical studies. Such models are powerful analytic tools
that yield valid statistical inferences and make reliable pre-
dictions if various assumptions are satisfied. Two types of as-
sumptions made by regression models concern the distribu-
tion of the response variable and the nature or shape of the
relationship between the predictors and the response. This
paper addresses the latter assumption by applying a direct
and flexible approach, cubic spline functions, to two widely
used models: the logistic regression model for binary re-
sponses and the Cox proportional hazards regression model
for survival time data. [J Natl Cancer Inst 1988;80:1198-1202]

Regression models are being applied to clinical and epi-
demiologic studies with increasing frequency to assess ther-
apeutic efficacy, study risk factors, explore prognostic pat-
terns, and derive predictions for individual patients, among
other uses. Two models have come to the forefront be-
cause they accommodate the types of responses that com-
monly occur in clinical studies: binary responses, for ex-
ample in-hospital death or presence/absence of a certain
condition, and censored continuous responses such as the
time until death or therapeutic response in a sample of pa-
tients not all of whom may have died or responded.

For a given individual, let X,, X,, . . ., X, denote a set
of predictor or descriptor variables. For a binary response
variable Y with values O or 1, the logistic regression model
(1,2) is stated in terms of the probability that the event Y =
1 occurs given the descriptor values X = {X|, .. ., X;}

Prob{Y = 1| X} = [1 + exp{—(B, + B, X, + B,X,
+...+ BX)I,

where By, . . ., B, are weights or regression coefficients for
the descriptors, By is an “intercept,” and exp(u) is the natural
antilogarithm of u. The logistic model has a major advantage
over older methods such as discriminant analysis in that

it is a direct probability model with no assumptions about
distributions of the variables.

Other versions of the logistic model are available for
ordinal or polytomous responses. The logistic models in-
clude as special cases the Pearson Chi-square test, the
Mantel-Haenszel Chi-square test for case-control studies (3),
and the Wilcoxon two-sample rank test (4).

The logistic model can be restated as a linear model in
the logit of the probability p that Y = 1, where logit denotes
loglp/(1—p)] or the natural log of the odds that Y = 1 versus
Y = 0 given the value of X:

logit{Y = 1| X} = logit[Prob{Y = 1| X}] = B, + XB,
where XB denotes the weighted sum of X’s, B;X;, + ... +

B X,

The Cox proportional hazards model (5) is the most widely
used method for analyzing survival data. Let T denote a
response variable representing the time until a clinical end
point. The Cox model can be stated in terms of the survival
function or the probability that the event will not occur before
time t (i.e., that it will occur after time t):

S(t| X) = Prob(T > t| X) = Sy(ty=rXB),

where Sy(t) is the “underlying” survival function or the sur-
vival for a “standard” individual. A significant advantage of
the Cox model is that it is “semiparametric”; the underlying
survival curve Sy(t) is arbitrary and unspecified. The model
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includes as special cases the Mantel-Haenszel log-rank test
(6), Kaplan-Meier survival estimation (6-8), and the condi-
tional (stratified) logistic model (9). The Cox model can al-
ternatively be stated in terms of the hazard function at time
t (also called the force of mortality or instantaneous failure
rate):

h(t | X) = hg(t) exp(XB),

where hy(t) is the hazard function for a “standard” individ-
ual. The two equivalent formulations of the model can be
transformed to yield models that are linear in X:

log{—log[S(t | X)1} = log{—log[Se()]} + XB, or
loglh(t | X0] = loglhg(t)] + XB.

Therefore the Cox regression model is linear in X with

respect to log{—log[S(t| X)]} or the log of the hazard function.
Regression coefficients in Cox and logistic models are

estimated using the method of maximum likelihood.

Types of Assumptions

There are four kinds of regression model assumptions:

1. The study subjects are a random sample from the
population about which inference is to be drawn,
with.independent observations.

2. The distribution of the response variable has cer-
tain properties. [The logistic model has no such
assumption, and the Cox model assumes that the
hazard functions for two individuals are propor-
tional over time or equivalently that the log[—log
survival] or log hazard curves for two individuals
are equidistant over time.]

3. The function relating a predictor to the response
has a certain shape. For example, the logistic model
in its simplest form assumes that a continuous pre-
dictor is linearly related to the log odds of the out-
come.

4. Predictors act in an additive fashion unless “inter-
action” terms are included in the model.

The remainder of the discussion deals only with assump-
tion No. 3.

Determining the Shape of the Regression
Function

Regression models stated in their simplest form assume
that some property of the response variable is linearly related
to the predictors, but there is no a priori justification for
this assumption. There are four major statistical philosophies
for estimating the-true shape of the regression function or
for assessing whether a postulated shape is correct. The
first method involves adding terms to the model that are
powers of the basic predictor variables. For example, one
might add age? to a model containing age as a predictor.
Although polynomials fit some nonlinear relationships well,
there are many relationships (logarithmic or threshold effects,
for example) that are not well described by polynomials (/0).
Additionally, data points in one small region can have undue

Vol. 80, No. 15, October 5, 1988

influence on the global shape of the fitted polynomial, and
high-order polynomials have undesirable peaks and valleys.

The second method for modeling relationships is to fit
a nonparametric regression function with no prespecified
shape (11,12). Although this method has the advantage of
eliminating the need for specifying a functional form, it
allows only for limited statistical inference, does not provide
confidence limits, and produces only tabulated or graphic
estimates (i.e., there is no predictive equation).

The third approach involves fitting a standard (e.g., lin-
ear) relationship and then graphically assessing failures in
the fit of the model using a kind of “residual” or deviation
of observed from estimated responses (/3). Although this
method can be used to identify departures from a hypothe-
sized model, it does not allow formal statistical testing nor
does it lead directly to correcting the model.

The final method is based on piecewise polynomials or
splines to represent the relationship between a predictor and
the response (14,15). Splines are smooth functions that can
take on virtually any shape. The type of spline that is gener-
ally most useful is the cubic spline function that is restricted
to be smooth at the junction of each cubic polynomial. As
an example, consider a cubic spline in the predictor X = age
in years with join points or knots at 6, 21, and 65 years.
A logistic model with age as a predictor, assuming almost
nothing about the shape of the relationship, is as follows:

logit{Y = 1| X} = By + B,X + B,X? + B,X?
+ By(X — 6),3 + Bg(X — 21),3 + Be(X — 65),3,

where (u)} = u3 if u >0, 0 otherwise, e.g., ignore the term
X — 6) if X <6.

Ordinary cubic spline functions do have one undesirable
property, namely instability in the tails of the fit, i.e., before
the first knot or after the last knot. Stone and Koo (/6)
and Devlin and Weeks (/0) advocate placing an additional
restriction that the function be linear in the tails. Although
one usually employs more than three knots, as an example
consider the previous spline function specified with linear tail
restrictions yielding:

logitflY = 1| X} = B, + B;X + B,X,
where
X' = (X—6),3 —59(X—21),3/44 + 15(X—65),3/44.

The constants 15, 44, and 59 come from the spacing be-
tween knots. Aside from the intercept By, a restricted cubic
spline function in k knots requires estimating k—1 regres-
sion coefficients, as opposed to one coefficient if linearity is
assumed or k+3 coefficients if an unrestricted cubic spline
is fitted. Figure 1 displays some of the variety of shapes of
restricted cubic spline functions with only four knots.

Cubic spline regression models have many advantages
over the other three approaches listed earlier:

1. Since they are piecewise polynomials, splines can
be fitted using any existing regression program
once certain derived predictors are constructed.
Thus, flexible forms for the relationship between
predictor and response can be specified with equal
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Figure 1. Some restricted cubic spline functions with 4 knots at x = .05,
.25, .75, .95.

ease in ordinary multiple linear regression, logistic
models, Cox survival models, parametric survival
models, and all other multiple regression models.

2. Estimates of the coefficients of the spline function
are derived using standard techniques, so statisti-
cal inferences can readily be drawn. For example,
if age is modeled with four knots, the null hypoth-
esis that age is related to response (without assum-
ing linearity) can be tested with 3 degrees of free-
dom. The test for whether age affects the response
(or log odds, log hazard) linearly has 2 degrees of
freedom. In addition, confidence limits for the es-
timated spline function are readily computed.

3. The fitted spline function is a direct estimate of
the transformation that a predictor requires to yield
linearity. The graph of the fitted spline function
frequently suggests a simple transformation (e.g.,
logarithm). The predictor can then be replaced with
this transformation and fitted as a single term in
the model. [Adequacy of this transformation can be
tested by fitting a spline function to the transformed
variable and testing its linearity.]

4. When the graph of the fitted spline function does
not suggest a simple predictor transformation, the
spline function itself can be used to represent the
predictor in the overall model, and a predictive
equation is still available.

Splines do assume that the regression function is smooth
unless knots are closely spaced (/5). Splines do have the
disadvantage that the number and location of knots must be
specified. However, four or five knots are usually adequate,
and the fit is not greatly affected by altering knot placement
(17). For the vast majority of cases, knots can be placed
automatically at fixed percentiles of the predictor. If five
knots are used, they can often be placed at the 5th, 25th,
50th, 75th, and 95th percentiles.

Examples

In this section we present examples of how restricted cubic
splines can be used to model the relationship between pre-

logit Prob{TVDLM=1}

dictors and the response in the context of logistic and Cox
proportional hazards models. See references /0 and 16 for
more examples of spline logistic models.

The first example comes from the Duke University Car-
diovascular Disease Databank, which is comprised of data
from patients undergoing cardiac catheterization for chest
pain from 1969 to the present. A sample was drawn from the
databank consisting of 1,518 patients found to have signifi-
cant coronary disease (=75% diameter narrowing of at least
one major coronary artery). The response variable TVDLM
(defined as three-vessel or left main coronary disease) is the
presence or absence of severe coronary disease. TVDLM is
coded as 1 or O for presence and absence of disease, respec-
tively. There were 767 patients with TVDLM = 1. The pre-
dictor is the duration of symptoms of coronary disease. Fig-
ure 2 displays the fitted restricted cubic spline function with
5 knots (at the percentiles listed above and depicted with
vertical lines) along with estimates of the logit {TVDLM =
I | symptom duration} obtained by dividing the sample into
15 groups of equal numbers of patients and computing the
logit of the proportion of TVDLM = 1 within each group.
The estimated spline function suggests the following logistic
model:

logit {TVDLM = 1 | X} = B, + B, log(X),

which when fitted provided a near-perfect fit to the data.

The next two examples demonstrate restricted spline Cox
survival models. Data were simulated from known popula-
tion distributions so that spline estimates can be compared
with true population estimates. First, a uniformly distributed
random number X between O and 1 was generated for each
of 3,000 hypothetical subjects. A failure time T was gener-
ated for each subject, from an exponential distribution with
constant hazard function:

h(t] X) = h(X) = .02 exp(3 |X—.5)) .

Followup time was censored according to a uniform dis-
tribution, resulting in 783 failures out of 3,000 subjects.

o 5 50 73 100 125 150 173 200 225 250

| Months from Onset of CAD

Figure 2. Fitted spline logistic regression model and 95% confidence limits.
Predictor variable is duration of symptoms of coronary artery disease.
Circles represent logit of proportions of patients with severe (left, main,
or three-vessel) coronary disease divided into 15 groups with equal No. of
patients.
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Figure 3. Transformed Kaplan-Meier 5- and 8-year survival estimates by
deciles of X. Data were simulated from an exponential survival distribution
with true (population) hazard function given by h(x) = .02 exp(3{x—.5}).

The log{—log} transformation of the true population survival
function is:

log{—log[S(t| X)]} = log(.02 t) + 3 |X—5| .

If a Cox model with linearity in X were fitted to these
data, the resulting regression equation would be flat instead
of the correct V-shaped function of X.

Figure 3 displays —log{—log} Kaplan-Meier (7) 5- and
8-year survival estimates obtained by stratifying the sample
by deciles of X, i.e., into 10 groups each containing 300 sub-
jects. Although the Kaplan-Meier estimates do not assume a
shape for the regression, the estimates are “noisy” because
subgrouping reduces the sample size. Figure 4 displays a re-

-stricted cubic spline fit to this relationship using five knots
placed at percentiles listed above (here at X = .05, .25, 49,
.75, and .95). Note the more precise fit, as compared with
stratified Kaplan-Meier estimates, in this highly nonlinear
example. Figure 5 shows the Cox estimated 5- and 8-year
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Figure 4. Restricted cubic spline estimate of the effect of X on —log{—log
survival} corresponding to empirical estimates in figure 3.
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Figure 5. Spline Cox model estimates of 5- and 8-year survival as a function
of X. Derived from estimates in figure 4.

survival probability (6) as a function of X based on this fitted
spline function.

In the final example, data were again simulated for 3,000
hypothetical subjects but with true population hazard and
survival functions given by:

h(t | X) = h(X) = .02 exp{ .7 log(X) ]
log{—log[S(t | X1} = log(.02t) + .7 log (X) .

The five-knot restricted cubic spline fit is depicted in figure
6 for t = 8 years. Note the excellent agreement with the true
logarithmic effect of the predictor.

Computer Programs

Many computer programs are available in the IBM main-
frame version of the SAS (/8) for performing the kinds of
analyses discussed in this paper. See references /9, 10, 8, and
4 for more information.

~log(-log(Survival))
o

| =25 v v T . 3
‘ [ 2% 50 75 100 128
X

Figure 6. Restricted cubic spline estimate of the effect of X on transformed
survival. Data were simulated from an exponential survival distribution with
true hazard function given by h(x) = .02 exp(.7 log(x)).
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Summary

Multiple regression models, if used properly, are power-
ful tools in the analysis of data from clinical studies. Of the
four types of regression model assumptions, this paper has
dealt with one, namely the assumption regarding the shape
of the function relating a continuous predictor variable to
the response variable. Restricted cubic spline functions are
useful tools for correctly modeling and extracting available
information from a continuous predictor. More accurate pre-
diction, better control of confounding, and more powerful
statistical tests will result from the application of methods
such as these.
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