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Parallel Lines in Residual Plots 
SHAYLE R. SEARLE" 

Attention is drawn to a little-known feature of residuals 
plotted against predicted values: When observed values of 
y are repeated in the data, then the plot exhibits a series of 
parallel lines having slope - 1. 

It is common practice after fitting a model to data to make 
a plot of residuals, of y - j ,  say, against predicted values 
j .  The utility of doing so is promoted and described in many 
textbooks (e.g., Draper and Smith 1981, p. 147). Figure 1 
shows an example of such a plot. It is for data that consist 
of 80 records of an observer's visual assessment of the 
percentage of a plot of potato plants infected with a leaf 
disease. The 80 plots consist of 4 plots on each of 20 va- 
rieties of potatoes. 

At first sight the startling feature of Figure 1 is the oc- 
currence of parallel lines. But, in fact, this is not startling. 
Pathologists eyeballing the percentage of a plot of potato 
plants that has leaf disease record their assessment as a code, 
A, B, C, . . ., and later convert that code to a preassigned 
percentage of disease, in these data to just the six percent- 
ages lo%, 25%, 50%, 75%, 90%, and 97%. Furthermore, 
these data had 6, 9, 8, 14, 18, and 25 plots recorded with 
those percentages, respectively. And the six parallel lines 
of Figure 1 correspond precisely to these six groups of data. 
(Points in the figure labeled x, 2, and 3 represent 1, 2 ,  and 
3 observations, respectively, and those with a thick-looking 
symbol represent two or more sets of closely adjacent points.) 

The reason for this characteristic is very simple. The plot 
is of y - j against 9 .  Consider that plot just for y of some 
particular value, c say. Then it is a plot of conditional 
variables, of [(y - j ) ly  = c] against ( j ly  = c), that is, 
of c - ( j ly  = c) against ( j ly  = c). Clearly, this is a 
straight line, one for each c, every such line having a slope 
of - 1. Although this result is so simple, it seems to have 
largely evaded the literature, both books and journals; for 
example, Draper and Smith (1981) do not mention it. One 
place where it has been seen is in McCullagh and Nelder 
(1983, p. 216), as kindly pointed out by H. V. Henderson. 

Five general properties of this feature of plots of residuals 
against predicted values are worthy of note: 

1. When analyzing data that include a new observation 
y = c, that new observation will give rise to a point on the 
line already established by the y = c data without the ad- 
ditional observation. 

2. Even with data having many different observed values, 
these parallel lines do exist, although they may not be readily 
apparent. A vivid illustration of this would be with truncated 
data, as suggested by M. P. Meredith: If several observa- 
tions were truncated to the same value and most other ob- 
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served values each occurred only once, then the straight 
line corresponding to the truncated value would be patently 
apparent in the residual-predicted plot. In general, though, 
it is the presence of only a few and clearly different values 
that makes the lines very apparent; for example, Figure 1 
has only six different values. A special case of this would 
be for y being a dichotomous variable [e.g., the data of 
Neter, Wasserman, and Kutner (1984, p. 358)]: There would 
be just two distinct lines in the residual-predicted plot. 

3 .  Even when a data value occurs only once, it implicitly 
gives rise to a line that would be evident were there more 
than one datum with that value. 

4. Parallel lines of this nature occur no matter what model 
is fitted to y, and correspondingly no matter how 9 is cal- 
culated, be it based on linear or nonlinear estimation. So 
long as y - j is plotted agsinst 9, the parallel lines will 
exist either explicitly, for repeated y-values, or implicitly, 
for single y-values. 

5. The slope of all such lines is always - 1, and the line 
correspoinding to y = c crosses the line y - y  ̂ = 0 at j 
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