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Abstract

We study in detail the so-called beta modified Weibull distribution, motivated by the

wide use of the Weibull distribution in practice, and also for the fact that the generalization

provides a continuous crossover towards cases with different shapes. The new distribution

is important since it contains as special sub-models some widely-known distributions, such

as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential,

modified Weibull and Weibull distributions, among several others. It also provides more flexi-

bility to analyze complex real data. Various mathematical properties of this distribution are

derived, including its moments and moment generating function. We examine the asymptotic

distributions of the extreme values. Explicit expressions are also derived for the characteristic

function, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The

estimation of parameters is approached by two methods: moments and maximum likelihood.

We compare by simulation the performances of the estimates from these methods. We obtain

the expected information matrix. Two applications are presented to illustrate the proposed

distribution.

Keywords: Beta distribution; Exponentiated exponential; Exponentiated Weibull; Fisher

information matrix; Generalized Modified Weibull; Maximum likelihood; Modified Weibull;

Weibull distribution.
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1 Introduction

The Weibull distribution, having exponential and Rayleigh as special sub-models, is a very

popular distribution for modeling lifetime data and for modeling phenomenon with monotone

failure rates. When modeling monotone hazard rates, the Weibull distribution may be an initial

choice because of its negatively and positively skewed density shapes. However, the Weibull

distribution does not provide a reasonable parametric fit for modeling phenomenon with non-

monotone failure rates such as the bathtub shaped and the unimodal failure rates which are

common in reliability and biological studies. Such bathtub hazard curves have nearly flat middle

portions and the corresponding densities have a positive anti-mode. An example of bathtub

shaped failure rate is the human mortality experience with a high infant mortality rate which

reduces rapidly to reach a low level. It then remains at that level for quite a few years before

picking up again. Unimodal failure rates can be observed in course of a disease whose mortality

reaches a peak after some finite period and then declines gradually.

The models that present bathtub shaped failure rate are very useful in survival analysis. But,

according to Nelson (1982), the distributions presented in shape literature with this type of data,

such as the distributions proposed by Hjorth (1980), are sufficiently complex and, therefore,

difficult to be modeled. Later, other works had introduced new distributions for modeling

bathtub shaped failure rate. For example, Rajarshi and Rajarshi (1988) presented a revision

of these distributions and Haupt and Schabe (1992) considered a lifetime model with bathtub

failure rates. But, these models do not present much practicability to be used. However, in the

last few years, new classes of distributions were proposed based on modifications of the Weibull

distribution to cope with bathtub shaped failure rate. A good review of some of these models is

presented in Pham and Lai (2007). Between these, the exponentiated Weibull (EW) (Mudholkar

et al., 1995, 1996), the additive Weibull (Xie and Lai, 1995), the extended Weibull (Xie et al.,

2002), the modified Weibull (MW) (Lai et al., 2003), the beta exponential (BE) (Nadarajah

and Kotz, 2006) and the extended flexible Weibull (Bebbington et al., 2007) distributions. More

recently, extensions are the generalized modified Weibull (GMW) by Carrasco et al. (2008) and

the beta Weibull (BW) (Cordeiro and Nadarajah, 2010) distributions.

In this paper, we introduce a new distribution with five parameters, referred to as the

beta modified Weibull (BMW) distribution, with the hope it will attract wider application in

reliability, biology and other areas of research. This generalization contains as special sub-models

several distributions such as the EW (Mudholkar et al., 1995, 1996), exponentiated exponential

(EE) (Gupta and Kundu, 1999, 2001), MW (Lai et al., 2003), generalized Rayleigh (GR) (Kundu

and Rakab, 2005) and GMW distributions, among several others. The new distribution due to

its flexibility in accommodating all the forms of the risk function seems to be an important

distribution that can be used in a variety of problems in modeling survival data. The BMW

distribution is not only convenient for modeling comfortable bathtub-shaped failure rate data

but it is also suitable for testing goodness-of-fit of some special sub-models such as the EW,

BW, MW and GMW distributions.

The rest of the paper is organized as follows. In Section 2, we define the BMW distribution,

present some special sub-models and provide expansions for its cdf and pdf. Two methods for

simulating BMW variates and an expansion for the quantile function are provided in Section

3. General expansions for the moments are given in Section 4. Expansions for the moment
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generating function (mgf) and characteristic function (chf) are presented in Section 5. Section

6 is devoted to mean deviations about the mean and the median. Bonferroni and Lorenz curves

are given in Section 7. The asymptotic distributions of the extreme values is discussed in Section

8. Estimation methods of moments and maximum likelihood, including the case of censoring,

and the Fisher information matrix are presented in Section 9. The performances of the two

estimation methods (moments and maximum likelihood) are also compared in this section.

Section 10 provides two applications to real data. Section 11 ends with some conclusions. The

paper also contains three appendices giving technical details.

2 Model Definition

The BMW distribution stems from the following general class: if G(x) denotes the cumulative

distribution function (cdf) of a random variable, then a generalized class of distributions can be

defined for a > 0 and b > 0 by

F (x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1dw. (1)

This class of generalized distributions has been receiving increased attention over the last years,

in particular after the works of Eugene et al. (2002) and Jones (2004). The beta normal

distribution obtained by taking G(x) in (1) to be the cdf of the normal distribution was studied

by Gupta and Nadarajah (2004) and Nadarajah and Kotz (2004). Nadarajah and Kotz (2004)

and Barreto-Souza et al. (2009) provided closed form expressions for the moments and discussed

maximum likelihood estimation for the beta Gumbel and beta Fréchet distributions, respectively.

Consider the cdf of the modified Weibull distribution

Gα,γ,λ(x) = 1 − exp {−αxγ exp(λx)} , (2)

due to Lai et al. (2003). Putting (2) into equation (1) yields the cdf of the BMW distribution

(with five positive parameters and x > 0)

F (x) =
1

B(a, b)

∫ 1−exp{−αxγ exp(λx)}

0
wa−1(1 −w)b−1dw. (3)

The probability density function (pdf) and the hazard rate function (hrf) associated with (3)

since Ix(a, b) = I1−x(b, a) are

f(x) =
αxγ−1(γ + λx) exp(λx)

B(a, b)
[1 − exp {−αxγ exp(λx)}]a−1 exp {−bαxγ exp(λx)} , (4)

and

h(x) =
αxγ−1(γ + λx) exp(λx)

B(a, b)Iexp{−αxγ exp(λx)}(b, a)
[1 − exp {−αxγ exp(λx)}]a−1 exp {−bαxγ exp(λx)} , (5)

respectively.

If X is a random variable with pdf (4), we write X ∼ BMW(a, b, α, γ, λ). Plots of the BMW

pdf (4) are shown in Figures 1a, 1b and 1c. Figure 2 illustrates some of the possible shapes of

the hazard function (5).

[Figures 1 and 2 about here.]
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The BMW pdf is important since it includes as special sub-models several well-known distri-

butions (Silva et al., 2010). For λ = 0, it reduces to the BW distribution. If γ = 1 in addition to

λ = 0, it simplifies further to the beta exponential (BE) distribution. The GMW distribution is

also a special case when b = 1. If a = 1 in addition to b = 1, it yields the MW distribution. For

b = 1 and λ = 0, the BMW distribution reduces to the EW distribution. If γ = 1 in addition

to b = 1 and λ = 0, the BMW distribution becomes the EE distribution. For γ = 2, λ = 0

and b = 1, the BMW distribution reduces to the GR distribution. The Weibull distribution

is clearly the simple special case for a = b = 1 and λ = 0. Other special sub-models of the

BMW distribution are: the beta modified Rayleigh (BMR), beta modified exponential (BME),

generalized modified Rayleigh (GMR), generalized modified exponential (GME), beta Rayleigh

(BR), modified Rayleigh (MR) and modified exponential (ME), all sub-models reported in Silva

et al. (2010).

The asymptotes of (3), (4) and (5) as x→ 0,∞ are given by

F (x) ∼ αa

aB(a, b)
xγa

as x→ 0,

F (x) ∼ 1 − 1

bB(a, b)
exp {−bαxγ exp(λx)}

as x→ ∞,

f(x) ∼ γαa

B(a, b)
xγa−1

as x→ 0,

f(x) ∼ α

B(a, b)
xγ−1(γ + λx) exp {λx− bαxγ exp(λx)}

as x→ ∞,

τ(x) ∼ γαa

B(a, b)
xγa−1

as x→ 0, and

τ(x) ∼ αbxγ−1(γ + λx) exp(λx)

as x→ ∞. Note that the lower tails of the pdf are polynomials. The hazard rate always increases

as x→ ∞. The initial hazard rate can be increasing or decreasing depending on whether γa > 1

or γa < 1.

Throughout this paper we use the following representations for (3) and (4) due to Silva et

al. (2010):

F (x) = 1 −
∞∑

j=0

wj

{
1 −Gα(b+j),γ,λ(x)

}
,

and

f(x) =

∞∑

j=0

wjgα(b+j),γ,λ(x), (6)
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where gα(b+j),γ,λ(x) = dGα(b+j),γ,λ(x)/dx and

wj =
(−1)jΓ(a)

B(a, b)Γ(a− j)(b + j)j!
. (7)

Clearly, expansion (6) reveals that the BMW pdf is a mixture of MW densities (holding for

any parameter values). It is very useful to derive the ordinary, central, inverse and factorial

moments of the BMW distribution from a weighted infinite (or finite if a is an integer) linear

combination of those quantities for MW distributions.

We shall also use the following result due to Carrasco et al. (2008, Section 4, equations

(5)-(7)):

∫

A
κ(x)dGα,γ,λ(x) = α

∫

A
κ




∞∑

j=1

ajx
j/γ



 exp(−αx)dx, (8)

for an integrable function κ(·) and for an integrable set A, where

aj =
(−1)j+1jj−2λj−1

(j − 1)!γj−1
. (9)

In fact, using the Lambert W (·) function, which is exactly equal to the F (·) function given in

Carrasco et al. (2008, Section 4), we can rewrite (8) as

∫

A
κ(x)dGα,γ,λ(x) = α

∫

A
κ

(
γ

λ
W

(
λx1/γ

γ

))
exp(−αx)dx. (10)

The shape of the pdf (4) can be described analytically. The critical points of the pdf are the

solutions of the equation:

λ+
γ − 1

x
+

λ

γ + λx
= αxγ−1(γ + λx) exp(λx)

[
b− a− 1

exp {αxγ exp(λx)} − 1

]
. (11)

There may be more than one solution to (11). If x = x0 is a root of (11) then it corresponds

to a local maximum, a local minimum or a point of inflexion depending on whether λ(x0) < 0,

λ(x0) > 0 or λ(x0) = 0, where

λ(x) = λ+
1 − γ

x2 − λ2

(γ + λx)2

+(a− 1)αxγ−2 exp(λx)

[
(λx+ γ − 1)(γ + λx) + λx

exp {αxγ exp(λx)} − 1
− αxγ(γ + λx)2 exp(λx)

{exp {αxγ exp(λx)} − 1}2

]

−bαxγ−2 exp(λx) {(γ + λx− 1)(γ + λx) + λx} .

3 Simulation and Quantile Function

We present two methods for simulation from the BMW distribution in (3). The first uses the

inversion method. Let U be a uniform variate on the unit interval [0, 1]. Setting

I1−exp{−αXγ exp(λX)}(a, b) = U

and solving, we see that BMW variates X can be obtained as roots of the equation

logX + λX + logα− log
[
− log

{
1 − I−1

U (a, b)
}]

= 0,
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where I−1
u (a, b) denotes the inverse of the incomplete beta function ratio.

Our second method for simulation from the BMW distribution is based on the rejection

method. Take h to be the pdf of a gamma random variable with shape parameter γ and scale

parameter λ. Define a constant M by

M =
αΓ(γ)

λγ exp (M∗) ,

where

M∗ = sup
x>0

{log(γ + λx) + 2λx− αxγ exp(λx)} .

Then, the following scheme holds for simulating BMW variates:

1. simulate X = x from the pdf h;

2. simulate Y = VMg(x), where V is a beta random variable with shape parameters a and

b;

3. accept X = x as a BMW variate if Y < f(x). If Y ≥ f(x) return to step 2.

Note that routines are widely available for simulating from the gamma distribution.

We now give an expansion for the quantile function q = F−1(p). First, we have p = F (q) =

Is(a, b), where s = Gα,γ,λ(q) = 1 − exp{−αqγ exp(λq)}. From the W (·) function defined in

Appendix A, we can express q in terms of s

q =
γ

λ
W

(
λ[−α−1 log(1 + s)]1/γ

γ

)
. (12)

The W (·) function can be calculated easily using Mathematica, for example,

W (z) = z − z2 +
3z3

2
− 8z4

3
+

125z5

24
− 54z6

5
+

16807z7

720
− 16384z8

315
+

531441z9

4480
− 156250z10

567
+O

(
z11
)
.

Further, it is possible to obtain s as function of p from some expansions for the inverse of the

beta incomplete function s = I−1
p (a, b). One of them can be found in Wolfram website1 as

s = I−1

p (a, b) = w +
b− 1

a+ 1
w2 +

(b − 1)(a2 + 3ba− a+ 5b− 4)

2(a+ 1)2(a+ 2)
w3

+
(b− 1)[a4 + (6b− 1)a3 + (b+ 2)(8b− 5)a2 + (33b2 − 30b+ 4)a+ b(31b− 47) + 18]

3(a+ 1)3(a+ 2)(a+ 3)
w4 +O(p5/a),

where w = [apB(a, b)]1/a for a > 0. Inserting the last expansion in equation (12), q is expressed

in terms of p.

4 Moments

Let X ∼ BMW(a, b, c, α, γ, λ). Combining (6) and (8), the kth moment of X follows as

E(Xk) =

∞∑

j=0

wjI1(j, k), (13)

1http://functions.wolfram.com/06.23.06.0004.01
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where

I1(j, k) = α(b+ j)

∫ ∞

0

(
∞∑

m=1

amx
m/γ

)k

exp {−α(b+ j)x} dx

= α(b+ j)
∞∑

m1=1

· · ·
∞∑

mk=1

am1 · · · amk

×
∫ ∞

0
x(m1+···+mk)/γ exp {−α(b+ j)x} dx,

and thus

I1(j, k) =
∞∑

m1=1

· · ·
∞∑

mk=1

am1 · · · amk

×{α(b + j)}−(m1+···+mk)/γ Γ

(
m1 + · · · +mk

γ
+ 1

)
, (14)

where wj and aj are defined by (7) and (9), respectively.

A much simpler representation for the kth moment, using (10) and equation (11) in Corless

et al. (1996), can be obtained as

I1(j, k) = α(b+ j)

∫ ∞

0

(
γW

(
x1/γ

γ

))k

exp {−α(b+ j)x} dx

= α(b+ j)k(−γ)k
∞∑

n=1

(−1)nnn−k(n − 1) · · · (n− k + 1)

n!γn

∫ ∞

0
xn/γ exp {−α(b+ j)x} dx

= k(−γ)k
∞∑

n=1

(−1)nnn−k(n − 1) · · · (n− k + 1)

n!γn {α(b+ j)}n/γ
Γ

(
n

γ
+ 1

)
. (15)

Equation (15) gives a representation for E(Xk) involving only a doubly infinite series.

For lifetime models, it is also of interest to know what E(Xk | X > x) is. Using (6) and (8),

one can show that

E
(
Xk | X > x

)
=

1

Iexp{−αxγ exp(λx)}(b, a)

∞∑

j=0

wjI2(j, k),

where

I2(j, k) =

∞∑

m1=1

· · ·
∞∑

mk=1

am1 · · · amk

×{α(b+ j)}−(m1+···+mk)/γ Γ

(
m1 + · · · +mk

γ
+ 1, α(b + j)x

)
,

where wj and aj are defined by (7) and (9), respectively.

A much simpler representation for E(Xk | X > x), using (10) and equation (11) in Corless

et al. (1996), can be obtained as

I2(j, k) = k(−γ)kλ−k
∞∑

n=1

(−λ)nnn−k(n− 1) · · · (n− k + 1)

n!γn {α(b+ j)}n/γ
Γ

(
n

γ
+ 1, α(b + j)x

)
. (16)

Again equation (16) gives a representation for E(Xk | X > x) involving only a doubly infinite

series. The mean residual lifetime function is E(X | X > x) − x.
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[Figures 3 and 4 about here.]

The skewness and kurtosis measures can now be calculated from the ordinary moments using

well-known relationships. Plots of the skewness and kurtosis for some choices of the parameter

b as function of the parameter a, and for some choices of the parameter a as function of the

parameter b, for α = 0.7, γ = 0.8 and λ = 0.2, are shown in Figures 3 and 4, respectively. These

figures immediately reveal that the skewness and kurtosis curves, respectively, as function of a

and b first decrease and then increase, whereas as functions of b and a they always decrease, in

all cases the other parameter being fixed.

5 Moment Generating Function and Characteristic Function

Let X ∼ BMW(a, b, c, α, γ, λ). The moment generating function of X, M(t) = E[exp(tX)], and

the characteristic function, φ(t) = E[exp(itX)], where i =
√
−1, are expressed as

M(t) =

∞∑

k=0

tk

k!
E(Xk) and φ(t) =

∞∑

k=0

(it)k

k!
E(Xk),

where E(Xk) is given by (13). We now give another representation for M(t) which can be

expressed from equation (6) as an infinite weighted sum

M(t) =

∞∑

j=0

wjMj(t), (17)

where Mj(t) is the mgf of the MW(α(b + j), γ, λ) distribution and wj is defined by (7). By

combining (10) and equation (16) in Corless et al. (1996), a simple representation for Mj(t) can

be written as

Mj(t) = α(b+ j)

∫ ∞

0
exp

{
tγ

λ
W

(
λx1/γ

γ

)
− α(b+ j)x

}
dx

= −α(b+ j)tγ

∞∑

n=0

(−1)n(nλ− tγ)n−1

n!γn

∫ ∞

0
xn/γ exp {−α(b+ j)x} dx,

and then

Mj(t) = −tγ
∞∑

n=0

(−1)n(nλ− tγ)n−1

n!γn {α(b+ j)}n/γ
Γ

(
n

γ
+ 1

)
.

The corresponding chf is

φ(t) =

∞∑

j=0

wjφj(t), (18)

where

φj(t) = −itγ

∞∑

n=0

(−1)n(nλ− itγ)n−1

n!γn {α(b+ j)}n/γ
Γ

(
n

γ
+ 1

)
.

Equations (17) and (18) are representations for M(t) and φ(t), respectively, involving only

doubly infinite series.
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6 Mean Deviations

Let X ∼ BMW(a, b, c, α, γ, λ). The amount of scatter in X is evidently measured to some extent

by the totality of deviations from the mean and median. These are known as the mean deviation

about the mean and the mean deviation about the median – defined by

δ1(X) =

∫ ∞

0
|x− µ| f(x)dx and δ2(X) =

∫ ∞

0
|x−M | f(x)dx,

respectively, where µ = E(X) and M = Median(X) denotes the median. The measures δ1(X)

and δ2(X) can be calculated using the relationships

δ1(X) =

∫ µ

0
(µ− x)f(x)dx+

∫ ∞

µ
(x− µ)f(x)dx

= 2µF (µ) − 2µ+ 2

∫ ∞

µ
xf(x)dx,

and

δ2(X) =

∫ M

0
(M − x)f(x)dx+

∫ ∞

M
(x−M)f(x)dx

= 2

∫ ∞

M
xf(x)dx− µ.

Using (6) and (8), one can show that

∫ ∞

µ
xf(x)dx =

∞∑

j=0

wjI3(j) and

∫ ∞

M
xf(x)dx =

∞∑

j=0

wjI4(j).

Here,

I3(j) =

∞∑

m=1

am {α(b+ j)}−m/γ Γ

(
m

γ
+ 1, α(b + j)µ

)
,

and

I4(j) =

∞∑

m=1

am {α(b+ j)}−m/γ Γ

(
m

γ
+ 1, α(b + j)M

)
,

where wj and aj are defined by (7) and (9), respectively. So, it follows that

δ1(X) = 2µF (µ) − 2µ+ 2

∞∑

j=0

wjI3(j),

and

δ2(X) = 2
∞∑

j=0

wjI4(j) − µ.

7 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves have applications not only in economics to study income and

poverty, but also in other fields like reliability, demography, insurance and medicine. For X ∼
BMW(a, b, c, α, γ, λ), they are defined by

B(p) =
1

pµ

∫ q

0
xf(x)dx and L(p) =

1

µ

∫ q

0
xf(x)dx, (19)
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respectively, where µ = E(X) and q = F−1(p) is calculated by (12). Using (6) and (8), we can

show that
∫ q

0
xf(x)dx =

∞∑

j=0

wjI5(j),

where

I5(j) =

∞∑

m=1

am {α(b+ j)}−m/γ γ

(
m

γ
+ 1, α(b + j)q

)
,

and the constants wj and aj are defined by equations (7) and (9), respectively. So, we can

reduce the curves in (19) to

B(p) =
1

pµ

∞∑

j=0

wjI5(j) and L(p) =
1

µ

∞∑

j=0

wjI5(j),

respectively.

8 Extreme Values

If X = (X1 + · · · + Xn)/n denotes the sample mean then by the usual central limit theorem
√
n(X−E(X))/

√
V ar(X) approaches the standard normal distribution as n→ ∞ under suitable

conditions. Sometimes one would be interested in the asymptotics of the extreme values Mn =

max(X1, . . . ,Xn) and mn = min(X1, . . . ,Xn).

Let g(t) = t−γ exp(−λt)/(λαb), a strictly positive function. Take the cdf and the pdf as

specified by (3) and (4), respectively. It can be seen that

1 − F (t+ xg(t))

1 − F (t)
= exp [αbtγ exp(λt) − αb {t+ xg(t)} exp [λ {t+ xg(t)}]]

= exp

[
αbtγ exp(λt)

{
1 −

(
1 +

xg(t)

t

)γ

exp (λxg(t))

}]

= exp

[
αbtγ exp(λt)

{
1 −

(
1 +

γxg(t)

t
+ · · ·

)
(1 + λxg(t) + · · · )

}]

= exp [−λαbxtγ exp(λt)g(t) + o(1)]

= exp {−x+ o(1)} ,

as t→ ∞. It can also be seen using L’Hospital’s rule that

lim
t→0

F (tx)

F (t)
= lim

t→0

xf (tx)

f(t)
= xγa.

Hence, it follows from Theorem 1.6.2 in Leadbetter et al. (1987) that there must be norming

constants an, bn, cn > 0 and dn such that

Pr {an (Mn − bn) ≤ x} → exp {− exp(−x)} ,

and

Pr {cn (mn − dn) ≤ x} → 1 − exp (−xγa) ,

as n → ∞. The form of the norming constants can also be determined. For instance, using

Corollary 1.6.3 in Leadbetter et al. (1987), one can see that bn = F−1(1−1/n) and an = 1/g(bn),

where F−1(·) denotes the inverse function of F (·).
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9 Estimation

Here, we consider estimation by the methods of moments and maximum likelihood and provide

expressions for the associated Fisher information matrix. We also consider estimation issues for

censored data.

Suppose x1, . . . , xn is a random sample from the BMW distribution (4). For the moment

estimation, let mk = (1/n)
∑n

j=1 x
k
j for k = 1, · · · , 5. By equating the theoretical moments of

(4) with the sample moments, one obtains the equations:

∞∑

j=0

wjI1(j, k) = mk, (20)

for k = 1, · · · , 5, where wj and I1(j, k) are given by (7) and (14), respectively. The method

of moment estimators (MMEs) are the simultaneous solutions of the equations: (20) for k =

1, · · · , 5.
Now consider estimation by the method of maximum likelihood. The log likelihood (LL)

function logL = logL(a, b, α, λ, γ) of the five parameters is:

logL = n logα− n logB(a, b) + (γ − 1)

n∑

j=1

log xj +

n∑

j=1

log(γ + λxj) + λ

n∑

j=1

xj

+(a− 1)
n∑

j=1

log
[
1 − exp

{
−αxγ

j exp (λxj)
}]

− bα
n∑

j=1

xγ
j exp (λxj) . (21)

It follows that the maximum likelihood estimators (MLEs) are the simultaneous solutions of the

equations:

n∑

j=1

log
[
1 − exp

{
−αxγ

j exp (λxj)
}]

= nψ(a) − nψ(a+ b),

α
n∑

j=1

xγ
j exp (λxj) = nψ(a+ b) − nψ(b),

n

α
+ (a− 1)

n∑

j=1

xγ
j exp (λxj)

exp
{
αxγ

j exp (λxj)
}
− 1

= b
n∑

j=1

xγ
j exp (λxj) ,

n∑

j=1

xk

γ + λxk
+ α(a− 1)

n∑

j=1

xγ+1
j exp (λxj)

exp
{
αxγ

j exp (λxj)
}
− 1

= bα

n∑

j=1

xγ+1
j exp (λxj)

and
n∑

j=1

log xj +

n∑

j=1

1

γ + λxk
+ α(a− 1)

n∑

j=1

log xjx
γ
j exp (λxj)

exp
{
αxγ

j exp (λxj)
}
− 1

= bα

n∑

j=1

log xjx
γ
j exp (λxj) .

For interval estimation of (a, b, α, λ, γ) and tests of hypotheses, one requires the Fisher informa-

tion matrix. The elements of this matrix for (21) are given in Appendix B.

Often with lifetime data, one encounters censored data. There are different forms of censor-

ing: type I censoring, type II censoring, etc. Here, we consider the general case of multicensored

data: there are n subjects of which

11



• n0 are known to have failed at the times x1, . . . , xn0 .

• n1 are known to have failed in the interval [sj−1, sj], j = 1, . . . , n1.

• n2 survived to a time rj , j = 1, . . . , n2 but not observed any longer.

Here, n = n0 + n1 + n2. Note too that type I censoring and type II censoring are contained

as particular cases of multi-censoring. The LL function logL = logL(a, b, α, λ, γ) of the five

parameters for this multi-censoring data is:

logL = n0 log α− n0 logB(a, b) + (γ − 1)

n0∑

j=1

log xj +

n0∑

j=1

log(γ + λxj) + λ

n0∑

j=1

xj

+(a− 1)

n0∑

j=1

log
[
1 − exp

{
−αxγ

j exp (λxj)
}]

− bα

n0∑

j=1

xγ
j exp (λxj)

+

n1∑

j=1

log
[
I1−exp{−αsγ

j exp(λsj)}(a, b) − I1−exp{−αsγ
j−1 exp(λsj−1)}(a, b)

]

+

n2∑

j=1

log Iexp{−αrγ
j exp(λrj)}(b, a). (22)

It follows that the MLEs are the simultaneous solutions of the five equations given in Appendix

C. The Fisher information matrix corresponding to (22) is too complicated to be presented here.

[Table 1 about here.]

We now compare the performances of the two estimation methods. For this purpose, we

generated samples of size n = 20 from (4) for a, b = 1, 2, . . . , 6 and α, γ, λ fixed as α = λ = 1

and γ = 1. For each sample, we computed the MLEs and the MMEs, following the procedures

described before. We repeated this process 100 times and computed the average of the estimates

(AE) and the mean squared error (MSE). The results are reported in Table 1. It is clear that

the MLE performs consistently better than the MME for all values of a, b and with respect to

the AE and MSE. This is expected of course.

10 Applications

10.1 Voltage Data

Here, we compare the results of the fits of the BMW, BW, GMW, MW and EW distributions

to the data set studied by Meeker and Escobar (1998, p. 383), which gives the times of failure

and running times for a sample of devices from a field-tracking study of a larger system. At a

certain point in time, 30 units were installed in normal service conditions. Two causes of failure

were observed for each unit that failed: the failure caused by an accumulation of randomly

occurring damage from power-line voltage spikes during electric storms and failure caused by

normal product wear.

[Table 2 about here.]

In many applications, there is a qualitative information about the failure rate function shape,

which can help in selecting a particular model. In this context, a device called the total time

on test (TTT) plot (Aarset, 1987) is useful. The TTT plot is obtained by plotting G(r/n) =

[(
∑r

i=1 Ti:n) + (n − r)Tr:n]/(
∑n

i=1 Ti:n), where r = 1, . . . , n and Ti:n, i = 1, . . . , n, are the order

12



statistics of the sample, against r/n (Mudholkar et al., 1996). Figure 5a shows that the TTT-

plot for the data set has first a convex shape and then a concave shape. It indicates a bathtub-

shaped hazard rate function. Hence, the BMW distribution could be an appropriate model for

the fitting of these data. Table 2 gives the MLEs (and the corresponding standard errors in

parentheses) of the parameters and the values of the following statistics for some models: AIC

(Akaike Information Criterion) due to Akaike (1974), BIC (Bayesian Information Criterion) due

to Schwarz (1978), and CAIC (Consistent Akaike Information Criterion) due to Bozdogan (1987).

The computations were done using the NLMixed procedure in SAS. These results indicate that

the BMW model has the lowest AIC, BIC and CAIC values among all fitted models, and hence

it could be chosen as the best model.

In order to assess if the model is appropriate, Figure 5b gives the empirical and estimated

survival functions of the BMW, BW, GMW, MW and EW distributions. Plots the histogram

of the data and the fitted BMW, BW, GMW, MW and EW distributions are given in Figure

5c. We conclude that the BMW distribution provides a good fit for these data. In addition, the

estimated hazard rate function in Figure 5d is a bathtub-shaped curve.

[Figures 5 and 6 about here.]

The conclusion based on the fitted pdfs, the histogram of the data and survival functions can

also be verified by means of the probability plots given in Figures 6a-e. A probability plot (as

recommended by Chambers et al. (1983)), consists of plots of the observed probabilities against

the probabilities predicted by the fitted model. For example, for the BMW model,

F (x(j)) =
1

B(â, b̂)

∫ 1−exp{−α̂xγ̂

(j)
exp(λ̂x(j))}

0
wâ−1(1 − w)b̂−1dw

was plotted versus (j − 0.375)/(n + 0.25), j = 1, . . . , n, where x(j) are the sorted values of the

observed fracture toughness. For each plot, we calculate the sum of squares

SS =

n∑

j=1

{
F (x(j)) −

(j − 0.375)

(n+ 0.25)

}2

,

which is a measure of the closeness of the plot to the diagonal line. It is clear that the BMW

model has the points closer to the diagonal line corresponding to the smallest SS.

10.2 Serum Reversal Data

The data set refers to the serum-reversal time (days) of 148 children contaminated with HIV

from vertical transmission at the university hospital of the Ribeirão Preto School of Medicine

(Hospital das Cĺınicas da Faculdade de Medicina de Ribeirão Preto) from 1986 to 2001 (Silva,

2004). More details, see, for example, in Carrasco et al. (2008). We assume that the lifetime are

independently distributed, and also independent from the censoring mechanism. Considering

right-censored lifetime data (censoring random). Figure 7a shows that the TTT-plot for the data

set has first a convex shape and then a concave shape. It indicates a bathtub-shaped hazard

rate function. Hence, the BMW distribution could be an appropriate model for the fitting of

such data. Table 3 gives the MLEs (and the corresponding standard errors in parentheses) of

the parameters and the values of the AIC, BIC and CAIC statistics. These results indicate that

the BMW model has the lowest AIC, BIC and CAIC values among all fitted models, and hence

it could be chosen as the best model.

13



[Table 3 and Figure 7 about here.]

In order to assess if the model is appropriate, plots of the empirical and estimated survival

functions of the BMW, BW, GMW, MW and EW distributions are given in Figure 7b. We

conclude that the BMW distribution provides a good fit for these data. Additionally, the

estimated hazard rate function in Figure 7c is a bathtub-shaped curve.

11 Conclusions

In this paper, we study some mathematical properties of the beta modified Weibull (BMW) dis-

tribution which is quite flexible in analyzing positive data. It is an important alternative model

to several models discussed in the literature since it contains the Weibull, exponentiated expo-

nential, exponentiated Weibull, beta exponential, modified Weibull (MW), generalized modified

Weibull and beta Weibull distributions, among others, as special sub-models. We demonstrate

that the pdf of the BMW distribution can be expressed as a mixture of MW pdfs. We provide

their moments and two closed form expressions for its moment generating function. We examine

the asymptotic distributions of the extreme values. Explicit expressions are also derived for the

characteristic function, mean deviations and Bonferroni and Lorenz curves. The pdf of the order

statistics can also be expressed in terms of an infinite mixture of MW pdfs. We obtain a closed

form expression for their moments and for the L moments. The estimation of parameters is

approached by two methods: moments and maximum likelihood. We compare by simulation

the performances of the estimates from these methods. The expected information matrix is

derived. The usefulness of the BMW distribution is illustrated in two analyses of real data.

Appendix A

The calculations in this paper involve the following special functions: the gamma function

defined by

Γ(α) =

∫ ∞

0
wα−1 exp(−w)dw,

the digamma function defined by

ψ(α) =
d log Γ(α)

dα
,

the incomplete gamma function defined by

γ(α, x) =

∫ x

0
wα−1 exp(−w)dw,

the complementary incomplete gamma function defined by

Γ(α, x) =

∫ ∞

x
wα−1 exp(−w)dw,

the beta function defined by

B(a, b) =

∫ 1

0
wa−1(1 − w)b−1dw,
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the incomplete beta function ratio defined by

Iy(a, b) =
1

B(a, b)

∫ y

0
wa−1(1 − w)b−1dw,

and the 3F2 hypergeometric function defined by

3F2(a, b, c; d, e;x) =
Γ(d)Γ(e)

Γ(a)Γ(b)Γ(c)

∞∑

j=0

Γ(a+ j)Γ(b+ j)Γ(c + j)

Γ(d+ j)Γ(e + j)

xj

j!
.

We shall also need the Lambert W (z) function defined as the inverse of z = x exp(x), say

x = W (z). The properties of these special functions can be found in Prudnikov et al. (1986)

and Gradshteyn and Ryzhik (2000). The Lambert W (z) function is the series expansion F (z) =

ProductLog[z] provided by the software Mathematica.

Appendix B

The elements of the Fisher information matrix corresponding to the log likelihood function in

(21) are:

E

(
−∂

2 logL

∂a2

)
= nψ

′

(a) − nψ
′

(a+ b), E

(
−∂

2 logL

∂a∂b

)
= −nψ′

(a+ b),

E

(
−∂

2 logL

∂a∂α

)
= −nT (γ, 0, 1, 0, 1), E

(
−∂

2 logL

∂a∂λ

)
= −nαT (γ + 1, 0, 1, 0, 1),

E

(
−∂

2 logL

∂a∂γ

)
= −nαT (γ, 1, 1, 0, 1), E

(
−∂

2 logL

∂b2

)
= nψ

′

(b) − nψ
′

(a+ b),

E

(
−∂

2 logL

∂b∂α

)
= nT (γ, 0, 1, 0, 0), E

(
−∂

2 logL

∂b∂λ

)
= nαT (γ + 1, 0, 1, 0, 0),

E

(
−∂

2 logL

∂b∂γ

)
= nαT (γ, 1, 1, 0, 0), E

(
−∂

2 logL

∂α2

)
=

n

α2 + n(a− 1)T (2γ, 0, 2, 1, 2),

E

(
−∂

2 logL

∂α∂λ

)
= nbT (γ + 1, 0, 1, 0, 0) − n(a− 1) {T (γ + 1, 0, 1, 0, 1) − αT (2γ + 1, 0, 2, 1, 2)} ,

E

(
−∂

2 logL

∂α∂γ

)
= nbT (γ, 1, 1, 0, 0) − n(a− 1) {T (γ, 1, 1, 0, 1) − αT (2γ, 1, 2, 1, 2)} ,

E

(
−∂

2 logL

∂λ2

)
= nαbT (γ + 2, 0, 1, 0, 0) − nα(a− 1) {T (γ + 2, 0, 1, 0, 1) − αT (2γ + 2, 0, 2, 1, 2)} ,

E

(
−∂

2 logL

∂λ∂γ

)
= nS(1, 2) + nαbT (γ + 1, 1, 1, 0, 0)

−nα(a− 1) {T (γ + 1, 1, 1, 0, 1) − αT (2γ + 1, 1, 2, 1, 2)}
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and

E

(
−∂

2 logL

∂γ2

)
= nS(0, 2) + nαbT (γ, 2, 1, 0, 0) − nα(a− 1) {T (γ, 1, 1, 0, 1) − αT (2γ, 1, 2, 1, 2)} ,

where

T (i, j, k, l,m) = E

[
Xi(logX)j exp(kλX) exp {lαXγ exp (λX)}

[exp {αXγ exp (λX)} − 1]m

]

and

S(i, j) = E

[
Xi

(γ + λX)j

]

.

The expectations in T (i, j, k, l,m) and S(i, j) can be computed numerically.

Appendix C

The following five equations can be solved simultaneously to obtain the MLEs of the parameters

of the log likelihood function given by (22):

n0∑

j=1

log
[
1 − exp

{
−αxγ

j exp (λxj)
}]

+

n1∑

j=1

∂I1−exp{−αsγ
j exp(λsj)}(a, b)/∂a − ∂I1−exp{−αsγ

j−1 exp(λsj−1)}(a, b)/∂a

I1−exp{−αsγ
j exp(λsj)}(a, b) − I1−exp{−αsγ

j−1 exp(λsj−1)}(a, b)

+

n2∑

j=1

∂Iexp{−αrγ
j exp(λrj)}(b, a)/∂a

Iexp{−αrγ
j exp(λrj)}(b, a)

= n0ψ(a) − n0ψ(a+ b),

α

n0∑

j=1

xγ
j exp (λxj) −

n1∑

j=1

∂I1−exp{−αsγ
j exp(λsj)}(a, b)/∂b − ∂I1−exp{−αsγ

j−1 exp(λsj−1)}(a, b)/∂b

I1−exp{−αsγ
j exp(λsj)}(a, b) − I1−exp{−αsγ

j−1 exp(λsj−1)}(a, b)

−
n2∑

j=1

∂Iexp{−αrγ
j exp(λrj)}(b, a)/∂b

Iexp{−αrγ
j

exp(λrj)}(b, a)
= n0ψ(a + b) − n0ψ(b),

n0

α
+ (a− 1)

n0∑

j=1

xγ
j exp (λxj)

exp
{
αxγ

j exp (λxj)
}
− 1

− b

n0∑

j=1

xγ
j exp (λxj)

+
α

B(a, b)

n1∑

j=1

U (sj) − U (sj−1)

I1−exp{−αsγ
j

exp(λsj)}(a, b) − I1−exp{−αsγ
j−1 exp(λsj−1)}(a, b)

=
α

B(a, b)

n2∑

j=1

U (rj)

Iexp{−αrγ
j exp(λrj)}(b, a)

,

n0∑

j=1

xk

γ + λxk
+ α(a− 1)

n0∑

j=1

xγ+1
j exp (λxj)

exp
{
αxγ

j exp (λxj)
}
− 1

− bα

n0∑

j=1

xγ+1
j exp (λxj)

+
1

B(a, b)

n1∑

j=1

V (sj) − V (sj−1)

I1−exp{−αsγ
j exp(λsj)}(a, b) − I1−exp{−αsγ

j−1 exp(λsj−1)}(a, b)

=
1

B(a, b)

n2∑

j=1

V (rj)

Iexp{−αrγ
j exp(λrj)}(b, a)

,
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and

n0∑

j=1

log xj +

n0∑

j=1

1

γ + λxk
+ α(a− 1)

n0∑

j=1

log xjx
γ
j exp (λxj)

exp
{
αxγ

j exp (λxj)
}
− 1

+
α

B(a, b)

n1∑

j=1

Z (sj) − Z (sj−1)

I1−exp{−αsγ
j exp(λsj)}(a, b) − I1−exp{−αsγ

j−1 exp(λsj−1)}(a, b)

=
α

B(a, b)

n2∑

j=1

Z (rj)

Iexp{−αrγ
j

exp(λrj)}(b, a)
+ bα

n0∑

j=1

log xjx
γ
j exp (λxj) ,

where U(s) = sγ+1 exp(λs) exp{−αbsγ exp(λs)}[1− exp{−αsγ exp(λs)}]a−1, V (s) = sγ exp(λs)

exp{−αbsγ exp(λs)}[1−exp{−αsγ exp(λs)}]a−1 and Z(s) = sγ log s exp(λs) exp{−αbsγ exp(λs)}
[1 − exp{−αsγ exp(λs)}]a−1. The partial derivatives of the incomplete beta function ratio can

be computed using the facts

Ix(a, b)

∂a
= {log x− ψ(a) + ψ(a+ b)} Ix(a, b) −

Γ(a)Γ(a+ b)

Γ(b)
xa

3F2 (a, a, 1 − b; a+ 1, a + 1;x)

and

Ix(a, b)

∂b
=

Γ(b)Γ(a+ b)

Γ(a)
(1 − x)b3F2 (b, b, 1 − a; b+ 1, b + 1; 1 − x)

+ {ψ(b) − ψ(a+ b) − log(1 − x)} I1−x(b, a),

see, for example, http://functions.wolfram.com/GammaBetaErf/BetaRegularized/20/01/02/0001/

and http://functions.wolfram.com/GammaBetaErf/BetaRegularized/20/01/03/0001/.
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Table 1: Comparison of MLE versus MME.

a b MLE MME

AE(â) AE(̂b) MSE(â) MSE(̂b) AE(â) AE(̂b) MSE(â) MSE(̂b)

1 1 1.153 1.176 0.160 0.183 1.323 1.279 0.188 0.184

1 2 1.145 2.428 0.136 0.901 1.415 2.725 0.155 1.083

1 3 1.171 3.626 0.254 2.588 1.184 4.155 0.290 2.941

1 4 1.133 4.735 0.169 4.571 1.179 5.075 0.187 4.702

1 5 1.069 5.659 0.107 4.639 1.218 5.811 0.114 5.098

1 6 1.169 7.400 0.143 9.206 1.286 8.028 0.151 11.346

2 1 2.251 1.160 0.638 0.155 2.716 1.297 0.725 0.179

2 2 2.288 2.221 0.647 0.591 2.714 2.486 0.726 0.609

2 3 2.384 3.507 0.893 1.721 2.405 3.534 1.088 2.021

2 4 2.359 4.733 0.924 4.415 2.429 4.997 1.058 5.118

2 5 2.416 6.192 0.906 6.626 2.465 7.049 1.056 7.560

2 6 2.349 7.191 0.727 8.410 2.839 7.451 0.880 8.588

3 1 3.498 1.157 1.882 0.184 3.628 1.223 1.890 0.187

3 2 3.563 2.282 1.940 0.673 4.200 2.667 2.228 0.724

3 3 3.791 3.860 3.112 3.339 4.029 4.124 3.222 3.539

3 4 3.662 4.918 2.191 4.337 3.886 5.138 2.510 4.424

3 5 3.398 5.668 1.485 4.088 3.642 5.899 1.518 4.355

3 6 3.557 7.251 1.642 9.438 4.191 8.253 1.667 9.461

4 1 4.567 1.098 2.792 0.129 5.119 1.287 3.027 0.159

4 2 5.018 2.423 5.577 0.966 6.258 2.913 6.366 0.994

4 3 4.523 3.350 2.632 1.240 4.966 3.664 3.007 1.402

4 4 4.660 4.679 3.496 3.556 4.915 5.783 3.814 4.200

4 5 4.443 5.639 1.978 3.220 5.062 6.926 2.205 3.524

4 6 4.688 7.258 3.379 8.353 5.466 8.888 3.770 8.949

5 1 5.665 1.091 5.085 0.094 6.853 1.279 5.665 0.096

5 2 5.655 2.264 4.997 0.729 6.697 2.531 5.300 0.883

5 3 6.422 3.699 11.912 3.118 7.762 4.554 14.488 3.157

5 4 5.753 4.625 5.192 2.907 6.468 5.152 5.645 3.301

5 5 5.546 5.654 4.699 4.232 6.406 7.048 5.439 4.901

5 6 5.995 6.964 4.289 5.064 7.164 8.530 4.803 5.358

6 1 7.081 1.122 6.199 0.099 7.885 1.167 7.588 0.122

6 2 7.096 2.349 5.842 0.619 8.070 2.781 6.301 0.720

6 3 6.750 3.407 4.688 1.251 8.432 3.665 5.003 1.425

6 4 7.322 4.888 8.134 3.520 7.663 5.937 8.737 3.582

6 5 7.291 6.085 10.064 8.308 9.008 7.043 10.470 9.896

6 6 7.039 6.820 6.703 6.015 7.734 8.353 8.099 7.098
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Table 2: MLEs of the model parameters for the voltage data, the corresponding SE (given in

parentheses) and the measures AIC, BIC and CAIC.

Model a b α γ λ AIC BIC CAIC

Beta Modified 0.068 0.099 4.9e-17 4.266 0.0528 345.1 347.6 352.2

Weibull (BMW) (0.016) (0.049) (0.000) (0.011) (0.002)

Beta 0.203 0.083 8.9e-7 2.967 0 363.1 368.7 364.7

Weibull (BW) (0) (0) (0) (0) -

Generalized Modified 0.099 1 3.7e-16 3.597 0.048 353.0 358.6 354.6

Weibull (GMW) (0.019) - (0.000) (0.233) (0.006)

Modified 1 1 0.018 0.4536 0.007 362.1 366.3 363.1

Weibull (MW) - - (0.018) (0.220) (0.002)

Exponentiated 0.139 1 3.9e-17 6.540 0 360.5 364.7 361.4

Weibull (EW) (0.025) - (0.000) (0.0001) -

Table 3: MLEs of the model parameters for the serum-reversal data, the corresponding SE

(given in parentheses) and the measures AIC, BIC and CAIC.

Model a b α γ λ AIC BIC CAIC

Beta Modified 0.147 0.184 1.8e-15 0.057 2.636 769.9 784.9 770.4

Weibull (BMW) (0.020) (0.072) (0.000) (0.001) (0.014)

Beta 0.508 0.117 9.8e-10 3.960 0 801.7 813.7 802.0

Weibull (BW) (0.091) (0.021) (0.000) (0.012) -

Generalized Modified 0.491 1 7.4e-06 0.649 0.023 779.8 795.7 795.8

Weibull (GMW) (0.116) - (1.5-07) (0.471) (0.006)

Modified 1 1 0.002 0.356 0.014 781.4 790.4 781.6

Weibull (MW) - - (0.000) (0.297) (0.002)

Exponentiated 0.385 1 5.5e-17 6.361 0 808.2 820.1 820.2

Weibull (EW) (0.046) - (0.000) (0.022) -
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Figure 1: Plots of the BMW pdf for some parameter values. (a) Parameter values α = 1, γ = 0.5

and λ = 0.5. (b) Parameter values α = 0.1, γ = 0.5 and λ = 1.
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Figure 2: Plots of the hazard rate function (5) (increasing, decreasing, unimodal, bathtub

shaped) for some parameter values.
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Figure 3: Skewness and kurtosis of the BMW distribution as a function of the parameter a for

some values of b.
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Figure 4: Skewness and kurtosis of the BMW distribution as a function of the parameter b for

some values of a.
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Figure 5: (a) TTT-plot on voltage data. (b) Estimated survival functions and the empirical

survival for voltage data. (c) Estimated pdfs of the BMW, BW, GMW, MW and EW models

for voltage data. (d) Estimated hazard rate function for the voltage data.
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Figure 6: Probability plots of the fitted models to the voltage data. (a) BMW distribution. (b)

BW distribution. (c) GMW distribution. (d) MW distribution. (e) EW distribution.
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Figure 7: (a) TTT-plot on serum-reversal data. (b) Estimated survival function and the empir-

ical survival for serum-reversal data. (c) Estimated hazard rate function for the serum-reversal

data.
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