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The Weibull distribution is one of the most important distributions in reliability. For the first time, we
introduce the beta exponentiated Weibull distribution which extends recent models by Lee et al. [Beta-
Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Statist. Meth. 6
(2007), pp. 173–186] and Barreto-Souza et al. [The beta generalized exponential distribution, J. Statist.
Comput. Simul. 80 (2010), pp. 159–172]. The new distribution is an important competitive model to the
Weibull, exponentiated exponential, exponentiated Weibull, beta exponential and beta Weibull distributions
since it contains all these models as special cases. We demonstrate that the density of the new distribution
can be expressed as a linear combination of Weibull densities. We provide the moments and two closed-form
expressions for the moment-generating function. Explicit expressions are derived for the mean deviations,
Bonferroni and Lorenz curves, reliability and entropies. The density of the order statistics can also be
expressed as a linear combination of Weibull densities. We obtain the moments of the order statistics.
The expected information matrix is derived. We define a log-beta exponentiated Weibull regression model
to analyse censored data. The estimation of the parameters is approached by the method of maximum
likelihood. The usefulness of the new distribution to analyse positive data is illustrated in two real data sets.

Keywords: beta exponentiated Weibull distribution; beta Weibull distribution; exponentiated Weibull
distribution; information matrix; maximum likelihood; moment-generating function; Weibull distribution

1. Introduction

The Weibull distribution is a very popular model, and has been extensively used over the past
decades for modelling data in reliability, engineering and biological studies. In this article, we
introduce and study several mathematical properties of a new model refereed to as the beta
exponentiated Weibull (BEW) distribution. The Weibull distribution represents only a special case
of the new model. We provide a comprehensive description of some mathematical properties of
the BEW distribution with the hope that it will attract wider applications in reliability, engineering
and in other areas of research.

The exponentiated distribution is constructed by raising a baseline cumulative distribution
function (cdf) G(x) to an arbitrary power α > 0, and then a new cdf F(x) = G(x)α emerges with
one additional parameter. In this construction, F(x) may be referred to as the exponentiated G
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2 G. M. Cordeiro et al.

distribution. The relation between the corresponding density functions is f (x) = αG(x)α−1g(x).
We note that for α > 1 and α < 1 and for larger values of x, the multiplicative factor αG(x)α−1

is greater and smaller than 1, respectively. The reverse assertion is also true for smaller values of
x. The latter immediately implies that the ordinary moments associated with the density f (x) are
strictly larger (smaller) than those associated with the density g(x) when α > 1 (α < 1).

Based on this idea, Gupta and Kundu [1] introduced the exponentiated exponential (EE) distri-
bution as a generalization of the exponential distribution, and Nadarajah and Kotz [2] proposed
four more exponentiated-type distributions to extend the gamma, Weibull, Gumbel and Fréchet
distributions in the same way as the EE distribution extends the exponential distribution. They also
provided some mathematical properties for each exponentiated distribution. In the same way, Mud-
holkar and Srivastava [3] generalized the Weibull distribution by introducing the exponentiated
Weibull (EW) cumulative distribution defined as

Gλ,α,c(x) = {1 − exp[−(λx)c]}α , x > 0. (1)

The two parameters α > 0 and c > 0 in Equation (1) represent shape parameters and λ > 0 is a
scale parameter. Clearly, the exponential distribution is a particular case of the EW distribution
when α = c = 1. The EW distribution (which extends the EE distribution) was studied by Mud-
holkar et al. [4], Mudholkar and Hutson [5] and Nassar and Eissa [6]. The EW distribution is a
special case of the beta Weibull (BW) distribution proposed by Lee et al. [7].

Generalized Weibull distributions (with additional shape parameters) are usually developed in
order to introduce skewness and to vary tail weights and to improve the fit of the model in the non-
central probability regions. More recently, Gusmão et al. [8] introduced the generalized inverse
Weibull distribution. In this article, we consider a generalization of the Weibull distribution by
introducing three extra shape parameters which provide greater flexibility in the form of the new
distribution and consequently in modelling observed positive data. If G denotes the baseline cdf
of a random variable, then the beta-G distribution is defined as

F(x) = IG(x)(a, b) = 1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1 dw, (2)

for a > 0 and b > 0. Here, Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio,
By(a, b) = ∫ y

0 wa−1(1 − w)b−1 dw is the incomplete beta function and B(a, b) = �(a)�(b)/�(a +
b) is the beta function, where �(·) is the gamma function. The class of generalized distributions
(2) has been receiving considerable attention over the last years, in particular, after the studies by
Eugene et al. [9] and Jones [10].

Eugene et al. [9], Nadarajah and Kotz [11], Nadarajah and Gupta [12], Nadarajah and Kotz [2]
and Barreto-Souza et al. [13] proposed the beta normal, beta Gumbel, beta Fréchet, beta expo-
nential (BE) and beta exponentiated exponential (BEE) distributions by taking G(x) in Equation
(2) to be the cdf of the normal, Gumbel, Fréchet, exponential and EE distributions, respectively.
Another distribution that happens to belong to Equation (2) is the beta logistic distribution, which
has been around for over 20 years [13], even if it did not originate directly from this equation.

The properties of F(x) for any beta-G distribution defined from a parent G(x) in Equation (2)
could, in principle, follow from the properties of the hypergeometric function which are well
established in the literature; see, for example, Section 9.1 of Gradshteyn and Ryzhik [14].

The probability density function (pdf) corresponding to Equation (2) has the form

f (x) = 1

B(a, b)
G(x)a−1{1 − G(x)}b−1g(x). (3)

Here, f (x) will be most tractable when the cdf G(x) and the pdf g(x) = dG(x)/dx have simple
analytic expressions. Except for some special choices for G(x) in Equation (3), as is the case when
G(x) is given by Equation (1), it seems that the pdf f (x) will be difficult to deal with in generality.
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Journal of Statistical Computation and Simulation 3

We define the five-parameter BEW distribution by taking G(x) in Equation (2) to be the cdf
(1). The BEW cumulative distribution then becomes

F(x) = I[1−e−(λx)c ]α (a, b) = 1

B(a, b)

∫ [1−e−(λx)c ]α

0
ωa−1(1 − ω)b−1 dω, x > 0, (4)

for α > 0, λ > 0, a > 0, b > 0 and c > 0. The pdf and the hazard rate function corresponding to
Equation (4) are

f (x) = αcλc

B(a, b)
xc−1e−(λx)c

(1 − e−(λx)c
)αa−1{1 − (1 − e−(λx)c

)α}b−1, x > 0, (5)

and

h(x) = αcλcxc−1e−(λx)c
(1 − e−(λx)c

)αa−1{1 − (1 − e−(λx)c
)α}b−1

B(a, b)I1−(1−e−(λx)c )α (b, a)
, x > 0, (6)

respectively. If X is a random variable with density (5), then we write X ∼ BEW(α, λ, a, b, c).
Plots of the density (5) and failure rate function (6) for selected values of α, λ, a, b and c are

given in Figures 1 and 2, respectively. The BEW failure rate function can be bathtub-shaped,
monotonically decreasing or increasing and upside-down bathtub depending on the values of its
parameters.

The rest of the article is organized as follows. In Section 2, we present some special sub-
models. In Section 3, we demonstrate that the BEW density function can be expressed as a linear
combination of Weibull densities. This result is important to provide mathematical properties of
the BEW model directly from those properties of the Weibull distribution.A range of mathematical
properties is considered in Sections 4–6. These include quantile function, simulation, moment-
generating and characteristic functions, mean deviations and Bonferroni and Lorenz curves. In
Section 7, the density function of the BEW order statistics is expressed as a linear combination
of Weibull densities. Explicit formulae for the moments of BEW order statistics and L-moments
are derived in Section 8. The reliability and the Rényi and Shannon entropies are calculated in
Sections 9 and 10, respectively. Maximum likelihood estimation is investigated in Section 11. In

x

f(
x)
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Figure 1. Plots of the BEW density function. (I): α = 1.00, λ = 0.10, a = 1.00, b = 2.50, c = 2.50. (II): α = 2.00,
λ = 0.10, a = 30.00, b = 2.50, c = 2.50. (III): α = 3.35, λ = 0.02, a = 0.20, b = 54.00, c = 3.00.
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4 G. M. Cordeiro et al.

x

H
az

ar
d 

ra
te

 fu
nc

tio
n

0 1 2 3 4

0

1

2

3

4

(IV)

(III)

(II)(I)

Figure 2. Plots of the BEW hazard rate functions. (I): α = 1.0, λ = 1.5, a = 0.8, b = 0.5, c = 0.5. (II): α = 3.0,
λ = 3.0, a = 3.5, b = 2.5, c = 0.8. (III): α = 1.2, λ = 1.0, a = 1.1, b = 1.0, c = 1.5. (IV): α = 0.7, λ = 1.0, a = 0.8,
b = 0.9, c = 1.3.

Section 12, we propose a log-beta exponentiated Weibull (LBEW) regression model, which can
be useful for lifetime analysis. In Section 13, we fit the LBEW model to two real data sets to
illustrate its usefulness. Finally, concluding remarks are addressed in Section 14.

2. Special sub-models

The BEW density (5) allows for greater flexibility of its tails and can widely be applied in
many areas of engineering and biology. We study mathematical properties of this distribution
because it extends several distributions previously considered in the literature. In fact, the Weibull

BER-4BER-4BER-4
Your TextYour Text

Your Text Your Text

Your Text Your Text
Your Text

Your Text Your Text Your Text

BER-4BER-4BER-4BER-4

Your TextYour TextYour Text

Your Text
Your TextYour Text

Your TextYour Text

Your Text Your Text
BER-4BER-4BER-4BER

EWR

EEEWER

BEBW

BEW BEE

Figure 3. The BEW distribution and its sub-models as listed in Table 1.
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Journal of Statistical Computation and Simulation 5

Table 1. Exponentiated and beta exponentiated type distributions.

BEW

Distribution a b c λ α Main reference

BEE a b 1 λ α [13]
BW a b c λ 1 [7]
BE a b 1 λ 1 [2]
ER 1 1 2 λ 1 [17,18]
EW(αa, λ, c) a 1 c λ α [4]
EW(α, λ, c) 1 1 c λ α [4]
EE(αa, λ) a 1 1 λ α [1]
R(s) 1 1 2 1/

√
2s 1 [19]

W(λb1/c, c) 1 b c λ 1 [20]
E 1 1 1 λ 1 [21]

Note: B, Beta; EE, exponentiated exponential; E, exponential; W, Weibull and R, Rayleigh.

model (with parameters c and λ) is clearly a special case for α = a = b = 1, with a continuous
crossover towards models with different shapes (e.g. a particular combination of skewness and
kurtosis). The BEW distribution also contains as sub-models the EW [4–6,15], EE [16], BW
[7] and BEE [13] distributions for α = b = 1, α = b = c = 1, α = 1 and c = 1, respectively.
When α = a = 1, Equation (5) yields the Weibull distribution with parameters λb1/c and c. The
BE distribution [2] is also a sub-model for α = c = 1. Moreover, while the transformation (2)
is not analytically tractable in the general case, the formulas related with the BEW distribution
turn out manageable (as shown in the rest of this article), and with the use of modern computer
resources with analytic and numerical capabilities, may turn into adequate tools comprising the
arsenal of applied statisticians. Figure 3 and Table 1 summarize some sub-models of the BEW
distribution. We hope that the general results in the paper will make the BEW model attract even
more applications in reliability, engineering, biology and statistics.

3. Expansion for the density function

Here and henceforth, let X be a random variable having the BEW density function (5). Equations
(4) and (5) are straightforward to compute using any software with algebraic facilities. However,
we can obtain expansions for F(x) and f (x) in terms of infinite (or finite) weighted sums of
cdf’s and pdf’s of Weibull distributions, respectively. First, for b > 0 real non-integer, we replace
(1 − w)b−1 under the integral by the power series and integrate to obtain∫ x

0
wa−1(1 − w)b−1 dw =

∞∑
j=0

(−1)j
(b−1

j

)
(a + j)

xa+j,

where the binomial term

(
b − 1

j

)
= �(b)/�(b − j)j! is defined for any real b. From Equation

(4), we have

F(x) = 1

B(a, b)

∞∑
j=0

(−1)j
(b−1

j

)
(a + j)

{1 − exp[−(λx)c]}α(a+j).

Again using the binomial expansion and (1), we can write

F(x) =
∞∑

j,k=0

(−1)j+k
(b−1

j

)(
α(a+j)

k

)
(a + j)B(a, b)

[1 − Gλk ,1,c(x)], (7)
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6 G. M. Cordeiro et al.

where Gλk ,1,c(x) is the Weibull cdf with scale parameter λk = k1/cλ and shape parameter c. Note
that λ0 = 0 implies the degenerate case for which Gλ0,1,c(x) = 0. Differentiating Equation (7)
yields a useful expansion for the BEW density function

f (x) =
∞∑

k=1

w+,kgλk ,1,c(x), (8)

where gλk ,1,c(x) = dGλk ,1,c(x)/dx denotes the Weibull density with scale parameter λk and shape
parameter c, w+,k = ∑∞

j=0 wj,k and the quantities wj,k are given by

wj,k = (−1)j+k+1
(b−1

j

)(
α(a+j)

k

)
(a + j)B(a, b)

. (9)

Clearly,
∑∞

k=1 w+,k = 1. The linear combination form (8) is a useful representation for the BEW
distribution and holds for any parameter values. If b > 0 is an integer, the index j in the sum
stops at b − 1, and if both α and a are integers, then the index k in the sum stops at α(a + j). The
ordinary, incomplete, inverse and factorial moments, generating function and mean deviations of
the BEW distribution can be expressed as functions of those quantities for Weibull distributions.
For example, the sth moment of the Weibull distribution with parameters λ and c, say μ′

s =
�(s/c + 1)λ−s, and Equation (8) yield the sth moment of X (for both a and α real non-integers)

E(Xs) = �
( s

c
+ 1

) ∞∑
k=1

w+,kλ
−s
k . (10)

For a = b = α = 1, Equation (10) yields precisely the sth moment of the Weibull distribu-
tion. Figures 4–6 show great flexibility in the values of the skewness and kurtosis of the BEW
distribution.
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Figure 4. Skewness of the BEW distribution as function of a for some values of b and α = 2.1, λ = 1.7 and c = 1.5.
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Figure 5. Kurtosis of the BEW distribution as function of a for some values of b and α = 2.1, λ = 1.7 and c = 1.5.
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Figure 6. Skewness and kurtosis of the BEW distribution as function of b for fixed values α = 2.0, λ = 0.8, a = 3.0
and c = 3.0.

4. Quantile function and simulation

The quantile function corresponding to Equation (4) is

x = Q(u) = F−1(u) = 1

λ
(− log{1 − [I−1

u (a, b)]1/α})1/c, (11)
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8 G. M. Cordeiro et al.

where I−1
u (a, b) denotes the inverse of the incomplete beta function with parameters a and b. The

following expansion for the inverse of the beta incomplete function I−1
u (a, b) can be found on the

Wolfram website1

I−1
u (a, b) = w + b − 1

a + 1
w2 + (b − 1)(a2 + 3ab − a + 5b − 4)

2(a + 1)2(a + 2)
w3

+ (b − 1)[a4 + (6b − 1)a3 + (b + 2)(8b − 5)a2]
3(a + 1)3(a + 2)(a + 3)

w4

+ (b − 1)[(33b2 − 30b + 4)a + b(31a − 47) + 18]
3(a + 1)3(a + 2)(a + 3)

w4

+ O(p5/a),

where w = [a B(a, b) u]1/a for a > 0.
Simulation of X is straightforward from Equation (11) by

X = 1

λ
{− log(1 − V 1/α)}1/c,

where V is a beta variate with shape parameters a and b.

5. Moment-generating function

We derive two closed-form expressions for the moment-generating function (mgf), M(t) =
E[exp(tX)], of X. Setting ξk = λ(k + 1)1/c, we obtain

M(t) = αcλc

B(a, b)

∫ ∞

0
etxxc−1e−(λx)c [1 − exp{−(λx)c}]αa−1{1 − [1 − exp{−(λx)c}]α}b−1 dx

= αcλc

B(a, b)

∞∑
j=0

(
b − 1

j

)
(−1)j

∫ ∞

0
etxxc−1 exp{−(λx)c}[1 − exp{−(λx)c}]α(a+j)−1 dx

= αcλc

B(a, b)

∞∑
k=0

fk

∫ ∞

0
etxxc−1 exp{−(k + 1)(λx)c} dx

and then

M(t) = α c λc

B(a, b)

∞∑
k=0

fk

∞∑
m=0

tm

m!
∫ ∞

0
xm+c−1 exp{−(ξkx)c} dx, (12)

where

fk =
∞∑

j=0

(−1)j+k

(
b − 1

j

)(
α(a + j) − 1

k

)
.

If b ≥ 1 is an integer, then the index j in the last sum stops at b − 1, and if both α and a are
integers, the index k in Equation (12) stops at α(a + j) − 1. A simple representation for the

D
ow

nl
oa

de
d 

by
 [

In
st

itu
to

 D
e 

C
ie

nc
ia

s 
M

at
em

at
ic

as
] 

at
 0

9:
43

 2
2 

Se
pt

em
be

r 
20

11
 



Journal of Statistical Computation and Simulation 9

integral in Equation (12) can be obtained using the Wright-generalized hypergeometric function

p�q

[
(α1, A1), . . . , (αp, Ap)

(β1, B1), . . . , (βq, Bq)
; x

]
=

∞∑
n=0

∏p
j=1 �(αj + Ajn)∏q
j=1 �(βj + Bjn)

xn

n! .

We assert that

I =
∞∑

m=0

tm

m!
∫ ∞

0
xm+c−1 exp{−(ξkx)c} dx = 1

cξ c
k

∞∑
m=0

(t/ξk)
m

m! �
(m

c
+ 1

)

= 1

cξ c
k

1�0

[
(1, c−1)

− ;
t

ξk

]
(13)

provided that c > 1. Combining Equations (12) and (13) yields the first representation for M(t)

M(t) = αλc

B(a, b)

∞∑
k=0

fk
ξ c

k
1�0

[
(1, c−1)

− ;
t

ξk

]
. (14)

A second representation for M(t) comes from the Meijer G-function defined as

Gm,n
p,q

(
x

∣∣∣∣a1, . . . , ap

b1, . . . , bq

)
= 1

2π i

∫
L

∏m
j=1 �(bj + t)

∏n
j=1 �(1 − aj − t)∏p

j=n+1 �(aj + t)
∏p

j=m+1 �(1 − bj − t)
x−t dt,

where i = √−1 is the complex unit and L denotes an integration path; see Section 9.3 in
Gradshteyn and Ryzhik [14] for a description of this path. Using the result exp{−g(x)} =
G1,0

0,1

(
g(x) | −

0

)
for g(·) an arbitrary function, the integral in Equation (12) can be written as

I =
∫ ∞

0
xc−1 exp{tx − (ξkx)c} dx =

∫ ∞

0
xc−1 exp(tx)G1,0

0,1

(
ξ c

k xc
∣∣−

0

)
dx.

We now assume that c = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers. By (2.24.1.1) in vol.
3 of Prudnikov et al. [22], I can be calculated as

I = pc−1/2(−t)−c

(2π)(p+q)/2−1
Gp,q

q,p

⎛
⎜⎝ (ξkc)qpp

(−t)pqq

∣∣∣∣
1 − c

p
,

2 − c

p
, . . . ,

p − c

p

0,
1

q
, . . . ,

q − 1

q

⎞
⎟⎠ .

From Equation (12) and the last two equations, we obtain

M(t) = αcλcpc−1/2(−t)−c

(2π)(p+q)/2−1B(a, b)

∞∑
k=0

fkGp,q
q,p

⎛
⎜⎝ (ξkc)qpp

(−t)p qq

∣∣∣∣
1 − c

p
,

2 − c

p
, . . . ,

p − c

p

0,
1

q
, . . . ,

q − 1

q

⎞
⎟⎠ . (15)

Note that the condition c = p/q in Equation (15) is not restrictive since every real number can be
approximated by a rational number.

Clearly, special formulas for the mgf of the Weibull, BW, BE, EW and EE distributions can be
obtained immediately from Equations (14) and (15) by substitution of known parameters.
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10 G. M. Cordeiro et al.

The characteristic function φ(t) = E[exp(itX)] of X corresponding to Equation (14) is

φ(t) = αλc

B(a, b)

∞∑
k=0

fk
ξ c

k
1�0

[
(1, c−1)

− ;
it

ξk

]

provided that c > 1.
The characteristic function of X corresponding to Equation (15) is

φ(t) = αcλcpc−1/2(−it)−c

(2π)(p+q)/2−1B(a, b)

∞∑
k=0

fkGp,q
q,p

⎛
⎜⎝ (ξkc)qpp

(−it)pqq

∣∣∣∣
1 − c

p
,

2 − c

p
, . . . ,

p − c

p

0,
1

q
, . . . ,

q − 1

q

⎞
⎟⎠ ,

provided that c = p/q and p ≥ 1 and q ≥ 1 are co-prime integers.

6. Mean deviations

The amount of scatter in a population is evidently measured to some extent by the totality of
deviations from the mean and the median. If X has the BEW distribution, then we can derive the
mean deviations about the mean μ = E(X) and about the median M from

δ1 =
∫ ∞

0
| x − μ | f (x) dx and δ2 =

∫ ∞

0
| x − M | f (x) dx,

respectively. The mean μ is obtained from Equation (10) with s = 1 and the median M is the
solution of the non-linear equation I[1−e−(λM)c ]α (a, b) = 1

2 .
These measures can be calculated using the following relationships:

δ1 = 2[μF(μ) − J(μ)] and δ2 = μ − 2J(M), (16)

where J(a) = ∫ a
0 xf (x) dx can be obtained from Equation (5). We have

J(a) = c
∞∑

k=1

λc
kw+,k

∫ a

0
xc exp{−(λkx)c} dx =

∞∑
k=1

w+,k

λk
γ (c−1 + 1, (λka)c), (17)

where γ (α, x) = ∫ x
0 wα−1e−w dw (for α > 0) is the incomplete gamma function. Hence, the

measures in Equation (16) can be directly obtained from Equation (17).
The quantity J(a) can also be used to determine Bonferroni and Lorenz curves which have

applications not only in economics to study income and poverty, but also in other fields like
reliability, demography, insurance and medicine. They are given by

B(π) = J(q)

πμ
and L(π) = J(q)

μ
,

respectively, where q = Q(π) is calculated from Equation (11) for a given probability π .
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7. Order statistics

The density function fi:n(x) of the ith order statistic for i = 1, . . . , n from data values X1, . . . , Xn

having the BEW distribution is given by

fi:n(x) = 1

B(i, n − i + 1)
f (x) F(x)i−1 {1 − F(x)}n−i,

where F(·) is the cdf (4) and f (·) is the pdf (5). The binomial expansion yields

fi:n(x) = 1

B(i, n − i + 1)
f (x)

n−i∑
l=0

(−1)l

(
n − i

l

)
F(x)i−1+l

= cxc−1

B(i, n − i + 1)

( ∞∑
k=0

w+,kλ
c
ke−(λkx)c

)
n−i∑
l=0

(−1)l+1

(
n − i

l

)

×
( ∞∑

k=0

w+,ke−(λkx)c

)i−1+l

.

Setting u = exp{−(λx)c}, we can write from Equations (7) and (8)

fi:n(x) = cλcxc−1

B(i, n − i + 1)

( ∞∑
s=0

sw+,s us

)
n−i∑
l=0

(−1)l+1

(
n − i

l

)( ∞∑
k=0

w+,kuk

)i−1+l

.

We use an equation of Gradshteyn and Ryzhik [14, Section 0.314] for a power series raised to
a positive integer r given by ( ∞∑

k=0

akuk

)r

=
∞∑

k=0

dr,kuk , (18)

where the coefficients dr,k (for k = 1, 2, . . .) can be determined from the recurrence equation

dr,k = (ka0)
−1

k∑
m=1

[m(r + 1) − k]amdr,k−m (19)

and dr,0 = ar
0. Hence, dr,k comes directly from dr,0, . . . , dr,k−1 and, therefore, from a0, . . . , ak .

Using Equations (18) and (19), it follows that

fi:n(x) = cλcxc−1

B(i, n − i + 1)

( ∞∑
s=0

sw+,su
s

)
n−i∑
l=0

(−1)l+1

(
n − i

l

)( ∞∑
k=0

ci−1+l,kuk

)
,

where

ci−1+l,k = (kw+,0)
−1

k∑
m=1

[m(i + l) − k]w+,mci−1+l,k−m

and ci−1+l,0 = wi−1+l
+,0 = (−1)i−1+l. Here, ci−1+l,k follows from ci−1+l,0, . . . , ci−1+l,k−1 and,

therefore, from w+,0, . . . , w+,k−1. Combining terms, we obtain

fi:n(x) = cλcxc−1

B(i, n − i + 1)

n−i∑
l=0

∞∑
k=0

∞∑
s=1

(−1)l+1

(
n − i

l

)
sci−1+l,kw+,su

k+s.
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12 G. M. Cordeiro et al.

Substituting λk,s = (k + s)1/cλ into the above expression gives

fi:n(x) = c

B(i, n − i + 1)

n−i∑
l=0

∞∑
k=0

∞∑
s=1

(−1)l+1
(n−i

1

)
sci−1+l,kw+,sλ

c
k,s

(k + s)
xc−1 exp{−(λk,sx)

c},

and then

fi:n(x) =
∞∑

k=0

∞∑
s=1

q(k, s)gλk,s ,1,c(x), (20)

where the coefficients q(k, s) are given by

q(k, s) = sw+,s

(k + s)B(i, n − i + 1)

n−i∑
l=0

(−1)l+1

(
n − i

l

)
ci−1+l,k .

Equation (20) reveals that the density function of the BEW order statistics is expressed as a linear
combination of Weibull densities. We can obtain some mathematical quantities of the BEW order
statistics such as ordinary and incomplete moments, mgf, mean deviations, among others, directly
from those quantities of the Weibull distribution. For example, when c = p/q and p ≥ 1 and q ≥ 1
are co-prime integers, the mgf of the BEW order statistics immediately follow from Equations
(15) and (20).

8. Moments of order statistics and L-moments

The moments of BEW order statistics can be written directly in terms of the moments of Weibull
distributions from the mixture form (20). We have

E(Xr
i:n) = �

(
r

c + 1

) ∞∑
k=0

∞∑
s=1

q(k, s)λ−r
k,s , (21)

where λk,s and q(k, s) are defined in Section 7.
L-moments [23] are summary statistics for probability distributions and data samples but have

several advantages over ordinary moments. For example, they apply for any distribution having
a finite mean and no higher-order moments need be finite. The rth L-moment is computed from
linear combinations of the ordered data values by

λr =
r−1∑
j=0

(−1)r−1−j

(
r − 1

j

)(
r − 1 + j

j

)
βj, (22)

where βj = E[XF(X)j]. In particular, λ1 = β0, λ2 = 2β1 − β0, λ3 = 6β2 − 6β1 + β0 and λ4 =
20β3 − 30β2 + 12β1 − β0. In general, βk = (k + 1)−1E(Xk+1:k+1), so it can be computed from
Equation (21) with i = n = k + 1 and r = 1.

9. Reliability

In the context of reliability, the stress–strength model describes the life of a component which has
a random strength X1 that is subjected to a random stress X2. The component fails at the instant
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that the stress applied to it exceeds the strength, and the component will function satisfactorily
whenever X1 > X2. Hence, R = P(X2 < X1) is a measure of component reliability [24]. It has
many applications especially in engineering concepts such as structures, deterioration of rocket
motors, static fatigue of ceramic components, fatigue failure of aircraft structures and the aging
of concrete pressure vessels.

We derive the reliability R when X1 and X2 have independent BEW(α1, λ, a1, b1, c) and
BEW(α2, λ, a2, b2, c) distributions, respectively, with the same shape parameter c and scale param-
eter λ. The cdf F1 of X1 and pdf f2 of X2 are obtained from Equations (7) and (8), respectively.
For s = 1 and 2, we define

w(s)
i,r = (−1)i+r+1

(bs−1
i

)(
αs(as+i)

r

)
(as + i) B(as, bs)

.

Then,

R = P(X1 > X2) =
∫ ∞

0

∫ ∞

y
f1(x)f2(y) dx dy =

∫ ∞

0
f2(y)[1 − F1(y)] dy

= 1 −
∫ ∞

0
f2(y)F1(y) dy = 1 +

∞∑
j,k=0

w(1)

j,k

∫ ∞

0
f2(y)[1 − Gλk ,1,c(y)] dy

= 1 +
∞∑

j,k=0

w(1)

j,k

∫ ∞

0
f2(y) e−(λky)c

dy.

The above integral K can be calculated as

K = E{exp[−(λk X2)
c]} = E{exp[−k(λX2)

c]}

= cα2 λc

B(a2, b2)

∫ ∞

0
xc−1e−(k+1)(λx)c [1 − e−(λx)c ]α2a2−1{1 − [1 − e−(λx)c ]α2}b2−1 dx

= cα2λ
c

B(a2, b2)

∞∑
m=0

(−1)m

(
b2 − 1

m

)∫ ∞

0
xc−1e−(k+1)(λx)c [1 − exp{−(λx)c}]α2(a2+m)−1 dx

= α2

(k + 2)B(a2, b2)

∞∑
m,p=0

(−1)m+p

(
b2 − 1

m

)(
α2(a2 + m) − 1

p

)

= − 1

(k + 2)

∞∑
m,p=0

[α2(a2 + m) − p]w(2)
m,p

and thus

R = 1 −
⎛
⎝ ∞∑

j,k=0

w(1)

j,k

k + 2

⎞
⎠

⎛
⎝ ∞∑

m,p=0

[α2(a2 + m) − p] w(2)
m,p

⎞
⎠ .

10. Entropy

The entropy of a random variable X with density f (x) is a measure of variation of the uncertainty.A
large value of entropy indicates the greater uncertainty in the data. The Rényi entropy is defined as

IR(ρ) = 1

1 − ρ
log

{∫
f (x)ρ dx

}
,
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14 G. M. Cordeiro et al.

where ρ > 0 and ρ �= 1. For the BEW distribution, the integral in IR(ρ) can be reduced to∫ ∞

0
f (x)ρ dx =

(
cαλc

B(a, b)

)ρ ∫ ∞

0
xρ(c−1)e−ρ(λx)c [1 − exp{−(λx)c}]ρ(αa−1)

× {1 − [1 − exp{−(λx)c}]α}ρ(b−1) dx

=
(

cαλc

B(a, b)

)ρ ∞∑
j=0

(−1)j

(
ρ(b − 1)

j

)∫ ∞

0
xρ(c−1) exp{−ρ(λx)c}

× [1 − exp{−(λx)c}]ρ(αa−1)+jα dx

=
(

cαλc

B(a, b)

)ρ ∞∑
j,k=0

(−1)j+k

(
ρ(b − 1)

j

)(
ρ(αa − 1) + αj

k

)

×
∫ ∞

0
xρ(c−1) exp{−(k + ρ)(λx)c} dx.

Setting u = (k + ρ)(λx)c, we obtain

IR(ρ) = ρ

1 − ρ
log

{
α

log B(a, b)

}
− log(cλ)

+ 1

1 − ρ
log

⎧⎨
⎩�

(
ρ(c − 1) + 1

c

)

×
∞∑

j,k=0

(−1)j+k

(k + ρ)ρ−(ρ−1)/c

(
ρ(b − 1)

j

)(
ρ(αa − 1) + jα

k

)⎫⎬
⎭ .

The Shannon entropy is given by

E[− log f (X)] = − log(cαλc) + log B(a + b) − (c − 1)E[log(X)] + E[(λX)c]
− (αa − 1)E{log[1 − e−(λX)c ]} − (b − 1)E{log[1 − (1 − e−(λX)c

)α]}. (23)

The expectations in Equation (23) can easily be obtained. Setting u = (λkx)c, we have

E[log(X)] =
∫ ∞

0
log(x)f (x) dx

=
∞∑

k=1

w+,k

∫ ∞

0
log(x)gλk ,1,c(x) dx.

The last integral, say T , is given by

T = 1

c

∫ ∞

0
log(u)e−u du − log(λk)

∫ ∞

0
e−u du

= 1

c
ψ(1) − log(λk) = −

[γ

c
+ log(λk)

]
,

where ψ(z) = d log[�(z)]/dz is the digamma function and γ is Euler’s constant. Since λk = k1/cλ,
we obtain

E[log(X)] = −γ

c
− 1

c

∞∑
k=1

w+,k log(k) − log(λ).
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Further,

E[(λX)c] =
∞∑

k=1

w+,k

∫ ∞

0
(λx)cgλk ,1,c(x) dx = λc

∞∑
k=1

w+,k

∫ ∞

0
xcgλk ,1,c(x) dx

=
∞∑

k=1

k−1w+,k .

In the last expression in Equation (23) are obtained from Equations (24) and (25) given below.
Hence,

E{− log[f (X)]} = − log(c α λc) + log[B(a + b)]

+ (c − 1)

[
γ

c
+ 1

c

∞∑
k=1

w+,k log(k) + log(λ)

]

+
∞∑

k=1

k−1w+,k − (αa − 1)

α
[ψ(a) − ψ(a + b)] − (b − 1)[ψ(b) − ψ(a + b)].

11. Estimation

Let θ = (α, λ, a, b, c)T be the parameter vector of the BEW distribution (5). We consider the
method of maximum likelihood to estimate θ. The log-likelihood function for the five parameters
from a single observation x > 0, say �(α, λ, a, b, c), is

�(α, λ, a, b, c) = log(α) + log(c) + c log(λ) − log[B(a, b)] + (c − 1) log(x)

− (λx)c + (αa − 1) log{1 − exp[−(λx)c]}
+ (b − 1) log{1 − [1 − exp{−(λx)c}]α}.

The components of the unit score vector U = (∂�/∂α, ∂�/∂λ, ∂�/∂a, ∂�/∂b, ∂�/∂c)T are

∂�

∂α
= 1

α
+ a log{1 − exp[−(λx)c]} − (b − 1)

{1 − exp[−(λx)c]}α log{1 − exp[−(λx)c]}
1 − {1 − exp[−(λx)c]}α ,

∂�

∂λ
= c

λ
− cλc−1xc + (αa − 1)

cxcλc−1 exp[−(λx)c]
1 − exp[−(λx)c]

− (b − 1)
α{1 − exp[−(λx)c]}α−1xccλc−1 exp[−(λx)c]

1 − {1 − exp[−(λx)c]}α ,

∂�

∂a
= ψ(a + b) − ψ(a) + α log{1 − exp[−(λx)c]},

∂�

∂b
= ψ(a + b) − ψ(b) + log(1 − {1 − exp[−(λx)c]}α),

∂�

∂c
= 1

c
+ log(λ) + log(x) − (λx)c log(λx) + (αa − 1)

(λx)c log(λx) exp{−(λx)c}
1 − exp(−(λx)c)

− (b − 1)α
{1 − exp[−(λx)c]}α−1(λx)c log(λx) exp(−(λx)c)

1 − [1 − exp{−(λx)c}]α .
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16 G. M. Cordeiro et al.

The expected value of the score vanishes and then

E{log[1 − e−(λX)c ]} = ψ(a) − ψ(a + b)

α
, (24)

E{log[1 − (1 − e−(λX)c
)α]} = ψ(b) − ψ(a + b),

E

{ [1 − e−(λX)c ]α log[1 − e−(λX)c]
1 − [1 − e−(λX)c]α

}
= 1 + a [ψ(a) − ψ(a + b)]

α (b − 1)
. (25)

For a random sample (x1, . . . , xn) of size n from X, the total log-likelihood is �n =
�n(α, λ, a, b, c) = ∑n

i=1 �(i), where �(i) is the log-likelihood for the ith observation (i = 1, . . . , n).
The total score function is Un = ∑n

i=1 U(i), where U(i) has the form given before for i = 1, . . . , n.
The maximum likelihood estimate (MLE) θ̂ of θ is obtained numerically from the nonlinear
equations Un = 0.

We maximize the log-likelihood using the nlm function in R [25]. The nlm function was executed
for a wide range of initial values. This procedure usually leads to more than one maximum. In
these cases, we take the MLEs corresponding to the largest value of the maxima. For a few initial
values, no maximum was identified. In those cases, a new initial value was tried to obtain a
maximum.

The existence and uniqueness of the MLEs is also of theoretical interest. This issue has been
studied by many authors for different distributions, see, for example, Xia et al. [26], Zhou [27],
Santos Silva and Tenreyro [28] and Seregin [29]. We hope to study this problem for the BEW
distribution in a future research.

For interval estimation and tests of hypotheses on the parameters in θ , we require the expected
unit information matrix

K = K(θ) =

⎛
⎜⎜⎜⎜⎝

κα,α κα,λ κα,a κα,b κα,c

κλ,α κλ,λ κλ,a κλ,b κλ,c

κa,α κa,λ κa,a κa,b κa,c

κb,α κb,λ κb,a κb,b κb,c

κc,α κc,λ κc,a κc,b κc,c

⎞
⎟⎟⎟⎟⎠ ,

the elements of which are given in Appendix 2.
Under conditions that are fulfilled for parameters in the interior of the parameter space but

not on the boundary, the asymptotic distribution of
√

n(θ̂ − θ) is N5(0, K(θ)−1). The asymp-
totic multivariate normal N5(0, K(θ)−1) distribution of θ̂ can be used to construct approximate
confidence intervals and confidence regions for the parameters and for the hazard and survival
functions. An asymptotic confidence interval with significance level γ for each parameter θr is
given by

ACI(θr , 100(1 − γ )%) = (θ̂r − zγ /2

√
κθr ,θr , θ̂r + zγ /2

√
κθr ,θr ),

where κθr ,θr is the rth diagonal element of Kn(θ)−1 = [nK(θ)]−1 for r = 1, . . . , 5 and zγ /2 is the
quantile 1 − γ /2 of the standard normal distribution.

The likelihood ratio (LR) statistic can be used for comparing the BEW distribution with some
of its special sub-models. Considering the partition θ = (θT

1 , θT
2 )T, tests of hypotheses of the

type H0 : θ1 = θ
(0)
1 versus H0 : θ1 �= θ

(0)
1 can be performed using LR statistics given by w =

2{�(θ̂) − �(θ̃)}, where θ̂ and θ̃ are the MLEs of θ under HA and H0, respectively. Under the null

hypothesis, w
d−→ χ2

q , where q is the dimension of the vector θ1 of interest. The LR test rejects
H0 if w > ξγ , where ξγ denotes the upper 100γ % point of the χ2

q distribution. For example, we
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can verify whether the fit using the BEW distribution is statistically ‘superior’ to a fit using the
BW distribution (for a given data) by testing H0 : α = 1 versus H0 : α �= 1.

12. The log-beta exponentiated Weibull regression model

If X is a random variable having the BEW density function (5), then Y = log(X) has a LBEW
distribution. The density function of Y , parameterized in terms of σ = c−1 and μ = − log(λ),
can be expressed as

f (y; α, μ, σ , a, b)

= α

σB(a, b)
exp

{(
y − μ

σ

)
− exp

(
y − μ

σ

)}{
1 − exp

[
− exp

(
y − μ

σ

)]}αa−1

×
{

1 −
(

1 − exp

[
− exp

(
y − μ

σ

)])α}b−1

, (26)

where −∞ < y < ∞, σ > 0 and −∞ < μ < ∞. Plots of the density function (26) for selected
parameter values are given in Figures 7 and 8. These plots show great flexibility for different
values of the shape parameters α, a and b. If Y is a random variable having density function (26),
then we write Y ∼ LBEW(α, μ, σ , a, b).

Thus,

if X ∼ BEW(α, λ, a, b, c) then Y = log(X) ∼ LBEW(α, μ, σ , a, b).

The survival function corresponding to Equation (26) is

S(y) = 1 − 1

B(a, b)

∫ {1−exp[− exp(y−μ/σ)]}α

0
wa−1(1 − w)b−1 = 1 − I{1−exp[− exp(y−μ/σ)]}α (a, b).

We define the standardized random variable Z = (Y − μ)/σ with density function

π(z; a, b) = α

B(a, b)
exp[z − exp(z)]{1 − exp[− exp(z)]}αa−1

× {1 − (1 − exp[− exp(z)])α}b−1, −∞ < z < ∞. (27)
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Figure 7. Plots of the LBEW densities: (a) a and α increasing, b = 0.5, μ = 0 and σ = 1 and (b) a increasing and α

decreasing, b = 0.5, μ = 0 and σ = 1.
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Figure 8. Plots of the LBEW densities: (a) b and α increasing, a = 0.5, μ = 0 and σ = 1 and (b) b increasing and α

decreasing, a = 0.5, μ = 0 and σ = 1.

The special case a = b = 1 gives the log-exponentiated Weibull (LEW) distribution. If α = 1,
then we have the log-beta Weibull (LBW) distribution. The special case α = a = b = 1 reduces
to the log-Weibull (LW) or extreme-value distribution.

The kth ordinary moment of the standardized distribution (27) is

μ′
k = E(Zk) = α

B(a, b)
×

∫ ∞

−∞
zk exp[z − exp(z)]

× {1 − exp[− exp(z)]}αa−1{1 − (1 − exp[− exp(z)])α}b−1 dz.

By expanding

G(x)a−1[1 − G(x)a]b−1 =
∞∑

i=0

(−1)i

(
b − 1

i

)
G(x)a(i+1)−1

and setting w = ez, we obtain

μ′
k = α

B(a, b)

∞∑
i=0

(−1)i

(
b − 1

i

)∫ ∞

0
logk(w)e−w[1 − e−w]a(α+i)−1 dw. (28)

By expanding the binomial in power series, we obtain

μ′
k = α

B(a, b)

∞∑
i,j=0

(−1)i+j

(
b − 1

i

)(
a(α + j) − 1

j

)∫ ∞

0
logk(w) exp[−(j + 1)w] dw. (29)

By Equation (2.6.21.1) in Prudnikov et al. [22, volume 1], this integral can be calculated as

I(k, j) =
(

∂

∂p

)k

[(j + 1)−p�(p)]
∣∣∣∣∣
p=1

and then

μ′
k = 1

B(a, b)

∞∑
i,j=0

(−1)i+j

(
b − 1

i

)(
a(α + j) − 1

j

)
I(k, j). (30)

Equation (30) gives the moments of the LBEW distribution.
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In many practical applications, the lifetimes xi are affected by explanatory variables such as
the cholesterol level, blood pressure and many others. Let vi = (vi1, . . . , vip)

T be the explanatory
variable vector associated with the ith response variable yi for i = 1, . . . , n. Consider a sample
(y1, v1), . . . , (yn, vn)of n independent observations, where each random response is defined by yi =
min{log(xi), log(ci)}, and log(xi) and log(ci) are the log-lifetime and log-censoring, respectively.
We consider non-informative censoring such that the observed lifetimes and censoring times are
independent.

For the first time, we construct a linear regression model for the response variable yi based on
the LBEW distribution given by

yi = vT
i β + σ zi, i = 1, . . . , n, (31)

where the random error zi has the density function (27), β = (β1, . . . , βp)
T, σ > 0, a > 0 and

b > 0 are unknown scalar parameters and vi is the vector of explanatory variables modelling
the location parameter μi = vT

i β. Hence, the location parameter vector μ = (μ1, . . . , μn)
T of the

LBEW model has a linear structure μ = vβ, where v = (v1, . . . , vn)
T is a known model matrix.

The LW (or the extreme value) regression model is defined by Equation (31) with a = b = 1.
Let F and C be the sets of individuals for which yi is the log-lifetime or log-censoring, respec-

tively. The total log-likelihood function for the model parameters θ = (α, a, b, σ , βT)T can be
obtained from Equations (27) and (31) as

l(θ) = q{log(α) − log[σB(a, b)]} +
∑
i∈F

{(
yi − vT

i β

σ

)
− exp

(
yi − vT

i β

σ

)}

+ (a α − 1)
∑
i∈F

log

{
1 − exp

[
− exp

(
yi − vT

i β

σ

)]}

+ (b − 1)
∑
i∈F

log

{
1 −

(
1 − exp

[
− exp

(
yi − vT

i β

σ

)])α}

+
∑
i∈C

log
{

1 − I{1−exp[− exp(yi−vT
i β/σ)]}α (a, b)

}
, (32)

where q is the observed number of failures. The MLE θ̂ of θ can be obtained by maximizing
the log-likelihood function (32). From the fitted model (31), the survival function for yi can be
estimated by

Ŝ(yi; α̂, â, b̂, σ̂ , β̂
T
) = 1 − I{1−exp[− exp(yi−vT

i β̂/σ̂ )]}α̂ (â, b̂). (33)

Under general regularity conditions, the asymptotic distribution of
√

n(θ̂ − θ) is multivariate
normal Np+4(0, K(θ)−1), where K(θ) is the expected information matrix. The asymptotic cova-
riance matrix K(θ)−1 of θ̂ can be approximated by the inverse of the (p + 4) × (p + 4) observed
information matrix J(θ) and then the inference on the parameter vector θ can be based on the nor-
mal approximation Np+4(0, J(θ)−1) for θ̂. This multivariate normal Np+4(0, J(θ)−1) distribution
can be used to construct approximate confidence regions for some parameters in θ and for the
hazard and survival functions. In fact, an 100(1 − α)% asymptotic confidence interval for each
parameter θr is given by

ACIr = (θ̂r − zα/2

√
−Ĵ r,r , θ̂r + zα/2

√
−Ĵ r,r),
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20 G. M. Cordeiro et al.

where −Ĵ r,r represents the rth diagonal element of the inverse of the estimated observed infor-
mation matrix J(θ̂)−1 and zα/2 is the quantile 1 − α/2 of the standard normal distribution. The
LR statistic can be used to discriminate between the LEW and LBEW regression models since
they are nested models. In this case, the hypotheses to be tested are H0 : (a, b)T = (1, 1)T versus
H1 : H0 is not true, and the LR statistic reduces to w = 2{l(θ̂) − l(θ̃)}, where θ̃ is the MLE of θ

under H0. The null hypothesis is rejected if w > χ2
1−α(2), where χ2

1−α(2) is the quantile of the
chi-square distribution with two degrees of freedom.

13. Applications

In this section, we illustrate the usefulness of the BEW distribution applied to two real data sets.

13.1. Cigarettes data

First, we work with carbon monoxide (CO) measurements made in several brands of cigarettes
in 1998. The data have been collected by the Federal Trade Commission (FTC), an independent
agency of the United States government, whose main mission is the promotion of consumer
protection.

For three decades, the FTC has regularly released reports on the nicotine and tar content of
cigarettes. The reports show that nicotine levels, on average, had remained stable since 1980,
after falling in the preceding decade. The report entitled ‘Tar, Nicotine, and Carbon Monoxide
of the Smoke of 1206 Varieties of Domestic Cigarettes for the year of 1998’ at http://www.
ftc.gov/reports/tobacco includes the data sets and some information about the source of the data,
smoker’s behaviour and beliefs about nicotine, tar and CO contents in cigarettes.

The CO data set can be found at http://home.att.net/ rdavis2/cigra.html. The data include n =
384 records of measurements of CO content, in milligrams, in cigarettes of several brands. Some
summary statistics for the CO data are: mean = 11.34, median = 12.00, minimum = 0.05 and
maximum = 22.00.

We fitted the BEW, BEE and BE distributions to these data by the method of maximum like-
lihood. The MLEs of the parameters (with their standard errors) and the Akaike information
criterion (AIC) for the fitted models are displayed in Table 2.

The LR statistics for testing the hypotheses H0 : BEE × Ha : BEW and H0 : BE × Ha : BEW
are 31.75273 (p-value = 1.7510339e − 08) and 166.1401 (p = 0), respectively. So, we reject the
null hypotheses in both cases in favour of the BEW distribution. The plots of the fitted BEW, BEE
and BE densities are shown in Figure 9. They indicate that the proposed distribution provides a
better fit than the other two sub-models. The required numerical evaluations were implemented
by using an R program (sub-routine nlminb can be found at http://cran.r-project.org).

Table 2. MLEs of the model parameters for the cigarretes data, the corresponding SEs (given in
parentheses) and the AIC measures.

Model a b λ α c AIC

BEW 0.2086 54.0078 0.0414 3.3583 2.9977 1950.53
(0.0042) (2.4282) (0.0005) (0.1398) (0.0731)

BEE 0.2032 75.2096 0.0772 14.4885 1 1980.28
(0.0025) (1.4950) (0.0007) (0.1997) (−)

BE 4.3680 3.1425 0.0847 1 1 2112.67
(0.0182) (0.0365) (0.0008) (−) (−)
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Figure 9. Fitted BEW, BEE and BE densities for CO contents in cigarettes of different brands.
Source: FTC (2000).

13.2. Class-H insulation data

As an application of the LBEW regression model, we consider the data set given in Nelson [30, p.
115], concerning ‘hours to failure of motorettes with a new Class-H insulation’. An experiment
has been designed in order to evaluate the effect of temperature on the failure time. Four test tem-
peratures were considered: 190, 220, 240 and 260◦C, and 10 motorettes were randomly assigned
to each test temperature. The motorettes were periodically examined for insulation failure. The
failure time (in hours) of observation i, ti, was defined as the midway between the inspection time
when the failure was found and the time of the previous inspection, and xi1 is the temperature (for
other details, see [30]).

We adopt the model

yi = β0 + β1xi1 + σ zi,

where the random variable yi = log(ti) follows the LBEW distribution (26) for i = 1, . . . , 40.
The MLEs of the model parameters are calculated using the procedure NLMixed in SAS. The

initial values for the parametersβ andσ in the iterative algorithm were taken as the estimated values
obtained from the fitted LW regression model (α = a = b = 1). The MLEs of the parameters and
the maximized log-likelihood for the fitted models are listed in Table 3.

These results indicate that the LBEW model has the lowest AIC value among those of the
fitted models. The values of these statistics indicate that LBEW model provides the best fit for
the data. Further, we note from the fitted LBEW regression model that x1 is significant at 1%
and that there is a significant difference between the temperatures levels 190, 220, 240 and
260 for the failure times. A graphical comparison of the fitted LBEW, LBW and LW models (see
Figure 10) indicates that the model LBEW provides a superior fit.The curves displayed in Figure 10
represent the empirical survival function and the estimated survival functions obtained from
Equation (33).
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Table 3. MLEs of the parameters from some fitted regression models to the class-H insulation life data set, the
corresponding SEs (given in parentheses), p-value in [.] and the AIC measure.

Model α σ a b β0 β1 AIC

LBEW 70.6776 2.2205 70.7983 1.2809 10.2313 −0.0317 16.9
(0.0431) (0.1902) (0.0429) (0.5179) (2.3136) (0.0018)

[<0.0001] [<0.0001]

LBW 1 0.7738 13.0544 1.2110 13.8269 −0.0298 18.7
(−) (0.3033) (4.3069) (0.4013) (0.5974) (0.0021)

[<0.0001] [<0.0001]

LW 1 0.2720 1 1 14.3024 −0.0279 22.4
(−) (0.0315) (−) (−) (0.3176) (0.0014)
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Figure 10. Estimated survival functions and the empirical survival for class-H insulation life data. (a) LBEW versus
LBW regression model. (b) LBEW versus LW regression model.

14. Conclusion

We study general mathematical properties of a new model called the BEW distribution because
of the wide usage of the Weibull distribution and the fact that the current generalization provides
means of its continuous extension to still more complex situations. The new distribution represents
a generalization of several models previously considered in the literature such as the Weibull, EW
[4–6,15], EE [16], BE [2], BW [7] and beta-generalized exponential [13] distributions. This
generalization provides a continuous crossover towards distributions with different shapes (e.g.
skewness and kurtosis). The new distribution is quite flexible to analyse positive data and is an
important alternative model to the sub-models mentioned before.

The BEW density can be represented as a linear combination of Weibull densities which allow
us to derive several of its structural properties. The properties studied include ordinary moments,
generating and quantile functions, mean deviations about the mean and about the median, Bonfer-
roni and Lorenz curves, Rényi entropy, Shannon entropy, moments of order statistics, L moments
and reliability. The density of the BEW order statistics can also be expressed as a linear combina-
tion of Weibull densities. The estimation of parameters is approached by the method of maximum
likelihood. The expected information matrix is derived. Further, we define a LBEW distribution
and derive an expansion for its moments. Based on this new distribution, we propose a LBEW
regression model as an alternative to model lifetime censored data when the hazard rate func-
tion presents bathtub, unimodal, increasing and decreasing shapes. The usefulness of the BEW
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distribution is illustrated in two applications to real data sets. In conclusion, we introduce a rather
general and flexible lifetime model, which provides a rather flexible mechanism for fitting a wide
spectrum of real world data sets.

Note

1. http://functions.wolfram.com/06.23.06.0004.01.
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Appendix 1

Lemma Let X be a random variable with density function (5). Then,

E[(λX)j{log(λX)}k exp{−l(λX)c}]

= α

ckB(a, b)

∞∑
m,r=0

k∑
p=0

(−1)m+r+k−p
(

b − 1
m

)(
α(a + m) − 1

r

)

×
(

k
p

) {log(l + r + 1)}k−p

(l + r + 1)j/c+1
�(p)

(
j

c
+ 1

)

= 1

ck

∞∑
m,r=0

wm,r [α(a + m) − r]
(l + r + 1)j/c+1

k∑
p=0

(−1)k−p+1
(

k
p

)
{log(l + r + 1)}k−p�(p)

(
j

c
+ 1

)

for positive integers j, k and l, where �(p)(·) denotes the pth derivative of the gamma function. In particular,

E[(λX)j] = α

B(a, b)

∞∑
m,r=0

(−1)m+r
(

b − 1
m

)(
α(a + m) − 1

r

)
1

(r + 1)j/c+1
�

(
j

c
+ 1

)

=
∞∑

m,r=0

wm,r {α(a + m) − r}
(r + 1)j/c+1

,

E[{log(λX)}k] = α

ckB(a, b)

∞∑
m,r=0

k∑
p=0

(−1)m+r+k−p
(

b − 1
m

)(
α(a + m) − 1

r

)(
k
p

)

× {log(r + 1)}k−p

r + 1
�(p)(1)

= 1

ck

∞∑
m,r=0

wm,r(α(a + m) − r)

r + 1

k∑
p=0

(−1)k−p+1
(

k
p

)
{log(r + 1)}k−p�(p)(1)

and

E[exp{−l(λX)c}] = α

B(a, b)

∞∑
m,r=0

(−1)m+r

(l + r + 1)

(
b − 1

m

)(
α(a + m) − 1

r

)

=
∞∑

m,r=0

wm,r{α(a + m) − r}
(l + r + 1)

.

Proof First, using the binomial expansion for {1 − [1 − exp{−(λx)c}]α}b−1, and then for [1 − exp{−(λx)c}]α(a+m)−1,
and setting y = (l + r + 1)(λx)c, we obtain

E[(λX)j{log(λX)}k exp{−l(λX)c}]

= cαλc+j

B(a, b)

∞∑
m=0

(−1)m
(

b − 1
m

)∫ ∞

0
xj+c−1{log(λx)}k exp{−(l + 1)(λx)c},

× [1 − exp{−(λx)c}]αa−1[1 − exp{−(λx)c}]mα dx

= cαλc+j

B(a, b)

∞∑
m,r=0

(−1)m+r
(

b − 1
m

)(
α(a + m) − 1

r

)

×
∫ ∞

0
xj+c−1{log(λx)}k exp{−(l + r + 1)(λx)c} dx
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= α

ckB(a, b)

∞∑
m,r=0

(−1)m+r
(

b − 1
m

)(
α(a + m) − 1

r

)

×
∫ ∞

0

yj/c

(l + r + 1)j/c+1
{log y − log(l + r + 1)}ke−y dy

= α

ck B(a, b)

∞∑
m,r=0

k∑
p=0

(−1)m+r+k−p

(l + r + 1)j/c+1

(
b − 1

m

)(
α(a + m) − 1

r

)

×
(

k
p

)
{log(l + r + 1)}k−p�(p)

(
j

c
+ 1

)
.

The result then follows. �

Appendix 2

The elements of the 5 × 5 unit expected information matrix are

κα,α = 1

α2
{1 + (b − 1)T2,0,0,0,2,0,1}, κα,a = ψ(a + b) − ψ(a)

α
, κα,b = 1 + a[ψ(a) − ψ(a + b)]

α(b − 1)
,

κα,λ = c

λ
{a T0,1,1,1,0,0,0 − (b − 1)(T1,1,1,1,1,0,1 + T1,1,1,1,0,0,1 + T2,1,1,1,1,0,2)},

κα,c = 1

c
{aT0,1,1,1,0,1,0 − (b − 1)[T1,1,1,1,0,1,1 + T2,1,1,1,1,1,1]},

κλ,λ = − c

λ2
{1 + (c − 1) T0,0,0,1,0,0,0} + (αa − 1)c

λ2
{(c − 1)T0,1,1,1,0,0,0 + cT0,1,2,2,0,0,0}

+ (b − 1)αc

λ2
{cT1,1,2,1,0,0,1 − T1,1,1,1,0,0,1 − cT1,1,2,2,0,0,1 + αcT2,2,2,2,0,0,2},

κλ,a = αc

λ
T0,1,1,1,0,0,0, κλ,b = −αc

λ
T1,1,1,1,0,0,1, κb,b = ψ ′(b) − ψ ′(a + b),

κλ,c = − 1

λ
{1 + T0,0,0,1,0,1,0 + T0,0,0,1,0,0,0 − (α a − 1)[T0,1,1,1,0,0,0 + T0,1,1,1,0,1,0 + T0,1,1,2,0,1,0 + T0,2,2,2,0,1,0]

− (b − 1)α[(α − 1)T1,2,2,2,0,1,1 − T1,1,1,1,0,1,1 − T1,1,1,2,0,1,1 − T1,1,1,1,0,0,1 + αT2,2,2,2,0,1,2]},
κa,a = ψ ′(a) − ψ ′(a + b), κa,b = −ψ ′(a + b), κa,c = α

c
T0,1,1,1,0,1,0, κb,c = −α

c
T1,1,1,1,0,1,1

and

κc,c = 1

c2
{1 − T0,0,0,1,0,2,0 + (α a − 1)[T0,1,1,1,0,2,0 + T0,1,2,2,0,2,0]

+ (b − 1)α[αT1,2,2,2,0,2,1 − T1,1,1,1,0,2,1 − T1,1,2,2,0,2,1 + αT2,2,2,2,0,2,2]},
where

Ti,j,k,l,m,p,q = E{(1 − V)−i[1 − V1/α]jVq−k/α[log(1 − V1/α)]l[log(V)]m[log(−(log(1 − V1/α))]p},
V is a beta random variable with parameters a and b and i, j, k, l, m, p, q ∈ {0, 1, 2}. The total information matrix is then
Kn = Kn(θ) = nK(θ).
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