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So far in discussing experiments we have considered there to be a set of treatments 
to be applied and we have been concerned to group the units and apply these 
treatments so as to make the experiment as sensitive as possible. 
 
Now I will turn to more sophisticated selection of treatments. The first point is that 
there will often be more than one factor of interest to the experimenter.  
 
Definition VII.1: Experiments that involve more than one randomized or treatment 
factor are called factorial experiments.  ■ 
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VII.A Design of factorial experiments 
 
In general, the number of treatments in a factorial experiments is the product of the 
numbers of levels of the treatment factors. Given the number of treatments, the 
experiment could be laid out as a Completely Randomized Design, a Randomized 
Complete Block Design or a Latin Square with that number of treatments. The 
incomplete block designs, such as BIBDs or Youden Squares are not suitable for 
factorial experiments. 
 
a) Obtaining a layout for a factorial experiment in R 
 
Layouts for factorial experiments can be obtained in R using the expressions for the 
chosen design when only a single-factor is involved. The difference with factorial 
experiments is that the several treatment factors need to be entered. Their values 
can be generated using the fac.gen function. It is likely to be necessary to use 
either the each or times arguments to generate the replicate combinations. The 
syntax of fac.gen and examples showing how to obtain layouts for a two-factor 
factorial laid out using a Completely Randomized Design, a Randomized Complete 
Block Design and a Latin Square are given in Appendix B, Randomized layouts and 
sample size computations in R. 
 
Example VII.1 Fertilizing oranges 
 
Suppose an experimenter is interested in investigating the effect of nitrogen and 
phosphorus fertilizer on yield of oranges. It was decided to investigate 3 levels of 
Nitrogen (viz 0,30,60 kg/ha) and 2 levels of Phosphorus (viz. 0,20 kg/ha). The yield 
after six months was measured. 
 
For a factorial experiment, the treatments are all possible combinations of the 3 
Nitrogen × 2 Phosphorus levels: 3×2 = 6 treatments. The treatment combinations, 
arranged in Yates order, are: 

Treatment N P 
1 0 0 
2 30 0 
3 60 0 
4 0 20 
5 30 20 
6 60 20 

 
A layout for this experiment in a CRD with three replicates of each treatment is 
generated in R as shown in the following output. 
 
> # 
> # CRD 
> # 
> n <- 18 
> CRDFac2.unit <- list(Seedling = n) 
> CRDFac2.ran <- fac.gen(list(N = c(0, 30, 60), P = c(0, 20)), times = 3) 
> CRDFac2.lay <- fac.layout(unrandomized = CRDFac2.unit,  
+                           randomized = CRDFac2.ran, seed = 105) 
> remove("CRDFac2.unit", "CRDFac2.ran") 
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> CRDFac2.lay 
   Units Permutation Seedling  N  P 
1      1           2        1 30 20 
2      2          18        2  0  0 
3      3           4        3 30  0 
4      4           5        4 30  0 
5      5           7        5 30 20 
6      6          12        6 30  0 
7      7          15        7 60  0 
8      8          13        8  0  0 
9      9           6        9 60  0 
10    10           1       10 60  0 
11    11          10       11 30 20 
12    12          16       12 60 20 
13    13           8       13  0 20 
14    14          14       14  0 20 
15    15           3       15  0  0 
16    16          11       16 60 20 
17    17           9       17 60 20 
18    18          17       18  0 20 

 
Note the assignment of the generation of treatment values using fac.gen that 
creates 3 copies of the levels combinations of the two factors N and P, that have 3 
and 2 levels respectively, and stores these in the data.frame CRDFac2.ran. 
 
Suppose we had decided on a randomized complete block design with three blocks 
— how many units per block would be required?  
 
In factorial experiments we are not limited to two factors — thus we may have looked 
at Potassium at 2 levels as well. How many treatments in this case? Answer 3×2×2 
=12. ■ 
 

VII.B Advantages of factorial experiments 
 (Mead & Curnow sec. 6.2, 6.3 and 14.6) 
 
a) Interaction in factorial experiments 
 
The major advantage of factorial experiments is that they allow the detection of 
interaction. 
 
Definition VII.2: Two factors are said to interact if the effect of one, on the response 
variable, depends upon the level of the other. If they do not interact, they are said to 
be independent. ■ 
 
Other terms that are synonymous with interact are dependent and nonadditive. To 
investigate whether two factors interact, the simple effects are computed. 
 
Definition VII.3: A simple effect for the means computed for each combination of at 
least two factors is the difference between two of these means having different levels 
of one of the factors but the same levels for all other factors. ■ 
 
We talk of the simple effects of a factor for the levels of the other factors. 
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If there is an interaction, we can compute an interaction effect from the simple effects 
to measure the size of the interaction  
 
Definition VII.4: An interaction effect is half the difference of two simple effects for 
two different levels of just one factor or is half the difference of two interaction effects.■ 
 
If there is not an interaction we can separately compute the main effects to see how 
each factor affects the response. 
 
Definition VII.5: A main effect of a factor is the difference between two means with 
different levels of that factor, each mean having been formed from all observations 
having the same level of the factor. ■ 
 
Example VII.2 Chemical reactor experiment 
 
Consider a factorial experiment to investigate the effect of catalyst and temperature 
on the yield of chemical from a chemical reactor. Suppose there were two levels of 
each of the factors and that the table of means from the experiment was as follows: 
 

  Temperature (°C) 
  160 180 
 A 60 72 

Catalyst    
 B 52 64 

 
For A the temperature effect is 72−60 = 12 
For B the temperature effect is 64−52 = 12 

 
These are called the simple effects of temperature. 
 
Clearly, the difference between (effect of) the temperatures is independent of which 
catalyst is used. The interaction effect is [12 −12]/2 = 0. The situation can be 
illustrated using an interaction plot, in which the means for the combinations of the 
factors are plotted. 
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A set of parallel lines indicates that there is no interaction — the slope of these lines 
is proportional to the simple effects which are equal. If there was an interaction the 
simple effects would not be equal and so the lines would not be parallel. 
 
Note that the statement about the independence of two factors is symmetrical in the 
two factors. Thus, 
 

the simple catalyst effect at 160°C is 52−60 = −8 
the simple catalyst effect at 180°C is 64−72 = −8 

 
Thus the difference between (effect of) the catalysts is independent of which 
temperature is used.  The interaction effect is still zero. 
 
So we can say that temperature and catalyst are independent in their effects on yield. 
In reality, we need to qualify this to say they are additively independent (the ratios are 
not the same). We could also say that they are additive in their effects. 
 
The practical import of this statement is that we can consider each factor separately. 
Indeed looking at the overall means for a factor will indicate what is happening in the 
experiment. For this experiment, the overall means are: 
 

 Temperature (°C) 
 160 180 
   

Mean 56 68 
 

 Catalyst 
 A B 
   

Mean 66 58 
 
So the differences between the means in these tables are the main effects of the 
factors. That is, the main effect of Temperature is 12 and that of Catalyst is −8. Note 
that in this case the main effects are the same as the individual difference calculated 
above and so they summarize the effect of the factors. Having used the two-way table 
of means to work out that there is no interaction, it can be abandoned for the purposes 
of summarizing the results of the analysis. 
 
Example VII.3 Second chemical reactor experiment 
 
Suppose the experiment was run with a second reactor and the results were as 
follows: 
 

  Temperature (°C) 
  160 180 
 A 60 72 

Catalyst    
 B 52 83 
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The simple temperature effect for A is 72−60 = 12 
The simple temperature effect for B is 83−52 = 31  

 
Thus the difference between (effect of) the temperatures depends on which catalyst 
is used. Again, this statement is symmetrical in the factors and so we say that the two 
factors interact. The interaction plot for this example is shown in the following figure. 
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There is clearly an interaction as the lines have different slopes. In an experiment in 
which two factors interact, it is not appropriate to summarize the results using the 
overall means.  
 
We first examine why using overall means is inappropriate. In the case of the 
example, the overall means are: 
 

 Temperature (°C) 
 160 180 
   

Mean 56 77.5 
 

 Catalyst 
 A B 
   

Mean 66 67.5 
 
The main effects cannot be equal to the simple effects in this case because the 
simple effects differ for the levels of the other factor. The main effects have no 
practical interpretation. It is the means for the combinations of the factors that must 
be examined to reveal the behaviour of the experimental material: 
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  Temperature (°C) 
  160 180 
 A 60 72 

Catalyst    
 B 52 83 

 
Note that the interaction effect is computed as the half-difference between the 
catalyst effects at each temperature or vice-a-versa: 
 
 [(72−60) − (83−52)]/2 = [12 − 31]/2 = −9.5 
or 
 [(52−60) − (83−72)]/2 = [−8 − 9]/2 = −9.5. ■ 
 
The situation in which the two factors do not interact is the simpler of the two 
possibilities.  
 
b) Advantages over one-factor-at-a-time experiments 
 
It is sometimes suggested that rather than complicate things by putting several 
factors into a single experiment, it would be better to run several experiments each of 
which investigate one of the factors of interest. However, this is not the case as you 
will be unable to determine whether or not there is an interaction. Take our 
temperature-catalyst experiment again. One could run an experiment to examine just 
the temperature effect and would have to keep the catalyst used constant during the 
experiment. Suppose it is decided to use catalyst B. The implication of this is that the 
results of this experiment apply only to the conditions under which the experiment 
was run. That is, when catalyst B is used. To look at the other factor, a second 
experiment with 2 different catalysts would be run, but the same temperature used 
throughout say 160°C. WELL YOU HAVE ONLY APPLIED THREE OF THE FOUR 
POSSIBLE COMBINATIONS OF THE TWO FACTORS — catalyst A at 180°C has 
not been tested but catalyst B at 160°C has been tested twice as indicated in the 
following table: 
 

   Experiment 1 
   Temperature (°C) 
   160 180 
  A 60 ? 

Experiment 2 Catalyst    
  B 52 83 

 
The results of the experiments would indicate that temperature increases yield by 31 
gms and that the catalysts differ by 8 gms in yield. However, these conclusions are 
restricted — if we presume the factors act additively we would predict the yield for 
catalyst A at 160°C to be 60+31 = 83 + 8 = 91. This is quite clearly erroneous — we 
need the factorial experiment to determine if there is an interaction; exactly the same 
total amount of resources are involved in the two alternative strategies, assuming the 
number of replicates is the same in all the experiments. 
 



  VII-8 

In addition to allowing the detection of interaction, factorial experiment also have the 
advantage that, if the factors are additive then the main effects are estimated with 
greater precision. In the one-factor-at-a time experiments the effect of a particular 
factor is estimated as the difference between two means each based on r 
observations where r is the number of replicates of each treatments. In the factorial 
experiment the main effects of the factors are the difference between two means 
based on 2r observations which represents a 2  increase in precision. The 
improvement in precision will be greater for more factors and more levels; for a 
3×3×3 = 33 experiment the main effects are based on 9r observations leading to a 3 
fold increase in precision over one-factor-at-a-time experiments.  
 
To summarize, relative to one-factor-at-a-time experiments, factorial experiments 
have the advantages that: 
 
1. if the factors interact, factorial experiments allow this to be detected and 

estimates of the interaction effect can be obtained, and  
2. if the factors are independent, factorial experiments result in the estimation of the 

main effects with greater precision. 
 

VII.C An example two-factor CRD experiment 
 
The analysis of a factorial experiment is going to depend on the basic design that has 
been employed — that is, CRD, RCBD or LS. The design will determine the 
unrandomized factors and structure so that you basically perform the analysis 
appropriate to that design. The modification is that, instead of having just a single 
source in the analysis of variance corresponding to treatments, you will have a 
source for each factor and one for each possible combinations of factors.  
 
a) Determining the ANOVA table for a two-Factor CRD 
 
We will first use the procedure outlined in section VI.A for determining the analysis of 
variance table to establish the general form of the analysis for a two-factor CRD. 
Recall that, in general, such an experiment would have a total of n observations on 
two factors A and B with a and b levels, respectively. 
 
a) Description of pertinent features of the study 
 

1. Observational unit – a unit 
2. Response variable – Y 
3. Unrandomized factors – Units 
4. Randomized factors – A, B 
5. Type of study – Two-factor CRD 

 
b) The experimental structure 
 

Structure Formula 
unrandomized n Units 
randomized a A*b B 
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c) Sources derived from the structure formulae 
 
 Units = Units 
 A*B = A + B + A#B. 
 
d) Degrees of freedom and sums of squares 
 

Hasse diagrams, with degrees of freedom, for two-factor CRD 

 

Unit
n 

A
a

B
b

A∧B
ab

Randomized termsUnrandomized terms 

a−1 b−1 

(a−1)(b−1) 

n−1 

μ
1 1

μ
1 1 

U A B 

A#B

 
 

Hasse diagrams, with M and Q matrices, for two-factor CRD 

 

Unit A B

A∧B

Randomized termsUnrandomized terms 

μ
MG MG 

μ
MG MG

MU MA MB

MAB

MU−MG MA−MG MB−MG 

MAB−MA−MB+MG 

U A B 

A#B
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e) The analysis of variance table 
 

Source df SSq 

Units n−1 ′ UY Q Y  

 A a−1 ′ AY Q Y  

 B b−1 ′ BY Q Y  

 A#B (a−1)(b−1) ′ ABY Q Y  

 Residual ab(r−1) ′
ResUY Q Y  

 
f) Maximal expectation and variation models 

 
Assume the randomized factors are fixed and that the unrandomized factor is a 
random factor. Then the potential expectation terms are A, B and A∧B. The 
variation term is: Units.  
 
The maximal expectation model is 

ψ = E[Y] = A∧B 
and the variation model is 

var[Y] = Units 
 

g) The expected mean squares. 
 

Hasse diagrams, with expected mean squares, for two-factor CRD 
 

 

Unit A B 

A∧B

Randomized terms Unrandomized terms 

μ
1 1

μ 
1 1 

2
Uσ 2

Uσ ( )Aq ψ ( )Aq ψ ( )Bq ψ ( )Bq ψ

( )ABq ψ ( )ABq ψ

U A B 

A#B 
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Source df SSq E[MSq] 

Units n−1 ′ UY Q Y   

 A a−1 ′ AY Q Y  ( )σ +2
U Aq ψ  

 B b−1 ′ BY Q Y  ( )σ +2
U Bq ψ  

 A#B (a−1)(b−1) ′ ABY Q Y  ( )σ +2
U ABq ψ  

 Residual ab(r−1) ′
ResUY Q Y  σ 2

U  

 
b) Analysis of an example 
 
Example VII.4 Animal survival experiment 
 
To demonstrate the analysis I will use the example from Box, Hunter and Hunter 
(sec. 7.7). In this experiment three poisons and four treatments (antidotes) were 
investigated. The 12 combinations of poisons and treatments were applied to animals 
using a CRD and the survival times of the animals measured (10 hours). The data 
are as follows: 
 

  Treatment 
  1 2 3 4 

 I 0.31 0.82 0.43 0.45 
  0.45 1.10 0.45 0.71 
  0.46 0.88 0.63 0.66 
  0.43 0.72 0.76 0.62 
      
 II 0.36 0.92 0.44 0.56 
Poison  0.29 0.61 0.35 1.02 

  0.40 0.49 0.31 0.71 
  0.23 1.24 0.40 0.38 
      
 III 0.22 0.30 0.23 0.30 
  0.21 0.37 0.25 0.36 
  0.18 0.38 0.24 0.31 
  0.23 0.29 0.22 0.33 

 
A. Description of pertinent features of the study 
 

1. Observational unit – an animal 
2. Response variable – Survival Time 
3. Unrandomized factors – Animals 
4. Randomized factors – Poisons, Treatments 
5. Type of study – Two-factor CRD 
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B. The experimental structure 
 

Structure Formula 
unrandomized 48 Animals 
randomized 3 Poisons*4 Treatments 

 
These are the steps that need to be performed before R is used to obtain the 
analysis. The remaining steps are left as an exercise for you. 
 
The interaction plot for the initial graphical exploration is: 
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There is some evidence of an interaction in that the traces for each level of Treat look 
to be different. 
 
The hypothesis test for the example is a follows: 
 
Step 1: Set up hypotheses 
 

a) H0: there is no interaction between Poison and Treatment 
 H1: there is an interaction between Poison and Treatment 
 
b) H0: ρI = ρII = ρIII 
 H1: not all population Poison means are equal  
 
c) H0: τA = τB = τC = τD 
 H1: not all population Treatment means are equal 
 
Set α = 0.05. 

 
Step 2: Calculate test statistics 
 
 The analysis of variance table for a two-factor CRD, with random factors 

being the unrandomized factors and fixed factors the randomized factors, is:  
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Source df SSq MSq E[MSq] F Prob 

Animals 47 3.0051     

 Poison 2 1.0330 0.5165 ( )σ +2
A Pq ψ  23.22 <.000 

 Treatment 3 0.9212 0.3071 ( )σ +2
A Tq ψ  13.81 <.001 

 Poison#Treat 6 0.2501 0.0417 ( )σ +2
A PTq ψ  1.87  0.112 

 Residual 36 0.8007 0.0222 σ 2
A    

 
Step 3: Decide between hypotheses 
 
 The interaction of Poison and Treatment is not significant, so there is no 

interaction and the significance of the main effects is examined. Both main 
effects are highly significant. We will see that the model that best describes 
the data is the additive model [ ]= = +P+T P TEψ Y X Xρ τ . 

 
Also, it remains to perform the usual diagnostic checking. ■ 
 

VII.D Indicator-variable models and estimation for factorial 
experiments 

 
The models for the factorial experiments will depend on the design used in assigning 
the treatments — that is, CRD, RCBD or LS. The design will determine the 
unrandomized factors and the terms to be included involving those factors. They will 
also depend on the number of randomized factors. 
 
a) Maximal model for two-factor CRD experiments 
 
We will consider the models for the two-factor CRD. Let the total number of 
observations be n and the factors be A and B with a and b levels, respectively. 
Suppose that the combinations of A and B are each replicated r times — that is, n = 
a×b×r. 
 
The maximal model for a two-factor CRD experiment, where the two randomized 
factors A and B are fixed, is: 
 

[ ] ( )= =AB ABE Y Xψ αβ  and σ= 2
U nV I , 

 
where Y is the n-random vector of random variables representing the response 

variable, 
  is the ab-vector of parameters for the A-B combinations,  (αβ)
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 XAB is the n×ab matrix giving the combinations of A and B that occurred on 
each unit, i.e the X matrix for the generalized factor A∧B, and 

 σ 2
U  is the variability arising from different units. 

 
Our model also involves assuming ( )∼ AB,NY Vψ . 
 
We can give an expression for the X matrix in terms of direct products of Is and 1s. 
To do this requires that the elements of the Y vector be ordered so that the values of 
the factors A and B are in standard order. We have previously used this term, but we 
here give a general definition. 
 
Definition VII.6: Suppose we have k factors A1, A2, …, Ak with a1, a2, …, ak levels, 
respectively, each of which has  values where r is the number of times 
each levels combination of the k factors is repeated. The values of the factors are in 
standard order when  

=
= ∏ 1

k
iin r a

 
1. for any factor, the values of a factor consist of repetitions of the sequence of its 

levels that begins with the first level and goes to the last level; and 
2. the number of consecutive values with the same level of a factor is a multiple of 

the product of the numbers of levels of all the factors to its right. ■ 
 
That is the values of the factors are systematically ordered in a hierarchical fashion 
— they are ordered according to A1, then A2, then A3, … and then Ak. The repetitions 
of the levels combinations may be dispersed in any way that maintains the 
hierarchical pattern in the levels of the factors. For example, each of the levels 
combinations may be repeated consecutively or the complete set of levels 
combinations may be repeated or some combination of these two. 
 
Suppose, the elements of the Y vector for our two-factor CRD are arranged so that 
the values of the factors A, B and the replicates are in standard order, as for a 
systematic layout. Then  
 

= ⊗ ⊗AB a b rX I I 1  
 
Example VII.5 2×2 Factorial experiment 
 
Suppose A and B have two levels each and that each combination of A and B is 
replicated 3 times. Hence, a = b = 2, r = 3 and n = 12. Then  
 

( ) ( )αβ αβ αβ αβ
′

= 11 12 21 22αβ  

 
Now Y is arranged so that the values of A, B and the replicates are in standard order 
— that is 

( )′ = 111 112 113 121 122 123 211 212 213 221 222 223Y Y Y Y Y Y Y Y Y Y Y YY . 
Then, 

= ⊗ ⊗AB 2 2 3X I I 1  
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so that XAB for the 4 level generalized factor A∧B is: 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

AB 
A 1 1 2 2
B 1 2 1 2

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

X

 

 
Notice that, as previously suggested, XG can be written as a linear combination of the 
columns of each of the other three and that XA and XB can be written as linear 
combinations of the columns of XAB. 
 
For the maximal model, 

[ ] ( )
( )
( )
( )
( )

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

αβ
αβ
αβ
αβ

αβ αβ
αβ αβ
αβ αβ
αβ αβ

αβ
αβ
αβ
αβ

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

11

11

11

12

11 12

12 12
AB AB

21 21

22 21

21

22

22

22

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

E Y Xψ αβ  

 
That is, the maximal model allows for a different response for each combination of A 
and B. ■ 
 
b) Alternative expectation models 
 
The following rule is used in constructing this set of expectation models, which we 
term the marginality-compliant models. 
 
Rule VII.1: The set of expectation models corresponds to the set of all possible 
combinations of potential expectation terms, subject to restriction that terms marginal 
to another expectation term are excluded from the model; it includes the minimal 
model that consists of a single term for the grand mean. ■ 
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Remember that the marginality of terms is summarized in the Hasse diagrams of 
Generalized-factor Marginalities (see previous section) and can be deduced using 
definition VI.9. This definition states that one generalized factor is marginal to another 
if the factors in the marginal generalized factor are a subset of those in the other and 
this will occur irrespective of the replication of the levels of the generalized factors.  
 
So for a two-factor CRD with all randomized factors fixed, then the potential 
expectation terms are A, B and A∧B. So the maximal model would presumably 
include all these terms: E[Y] = A + B + A∧B. However, marginal terms must be 
removed and so the maximal model reduces to E[Y] = A∧B. The next model leaves 
out A∧B and so we have the additive model E[Y] = A + B, and there are no marginal 
terms in this model. A simpler model than this leaves out one or other of A and B to 
produce the models E[Y] = A and E[Y] = B. The only other possible model is one that 
involves neither A nor B which is the model E[Y] = G. 
 
Hence, in matrix terms, the alternative models for the expectation to be considered 
are: 

( ) ( )
( )

( )
( )
( )μ

=

=

=

=

=

+
AB AB

A+B A B

A A

B B

G G

A and B interact in effect on response

A and B independently affect response

A only affects response

B only affects response

no factors affect response

X

X X

X

X

X

ψ αβ

ψ α β

ψ α

ψ β

ψ

 

 
Again, suppose the elements of the Y vector for our two-factor CRD are arranged so 
that the values of the factors A, B and the replicates are in standard order, as for a 
systematic layout. Then the X matrices can be written as the following direct 
products: 
 

= ⊗ ⊗ =G a b r abX 1 1 1 1 r = ⊗ ⊗A a b rX I 1 1, , = ⊗ ⊗B a b rX 1 I 1  and = ⊗ ⊗AB a b rX I I 1  
 
Example VII.5 2×2 Factorial experiment (continued) 
 
In this case,  

( )α α′ = 1 2α , ( )β β′ = 1 2β  and ( ) ( )αβ αβ αβ αβ
′

= 11 12 21 22αβ  

 
Now Y is arranged as follows: 

( )′ = 111 112 113 121 122 123 211 212 213 221 222 223Y Y Y Y Y Y Y Y Y Y Y YY . 
Then, 

= ⊗ ⊗ =G 2 2 3 1X 1 1 1 1 2 = ⊗ ⊗A 2 2X I 1 1, , 3 = ⊗ ⊗B 2 2 3X 1 I 1  and = ⊗ ⊗AB 2 2 3X I I 1  
 
so that the X matrices are as follows: 
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G A B  AB

A  1 2  1 1 2 2
B   1 2 1 2 1 2

1 1 0 1 0 1 0
1 1 0 1 0 1 0
1 1 0 1 0 1 0
1 1 0 0 1 0 1
1 1 0 0 1 0 1
1 1 0 0 1 0 1 1 0 1 1 0 0 0
1 0 1 1 0
1 0 1 1 0
1 0 1 0 1
1 0 1 0 1
1 0 1 0 1

X X X X

0 0
0 0
0 0
0 0
0 0
0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

 

 
Notice that XG can be written as a linear combination of the columns of each of the 
other three and that XA and XB can be written as linear combinations of the columns 
of XAB. ■ 
 
The relationships between the matrices noticed in the above example occur in 
general for two-factor factorial experiments arranged using a CRD, irrespective of the 
replication of the levels of A∧B.  
 
Consequently, for indicator-variable terms (for generalized factors) as seen in the 
Hasse diagram, 
• μGX  is marginal to ,   and AX α BX β ( )ABX αβ ; or μGX  ≤ AX α , , ; BX β ( )ABX αβ

• ,   are marginal to AX α BX β ( )ABX αβ ; or AX α , BX β  ≤ ( )ABX αβ ; 

and, for models (made up of indicator-variable terms), 
• μ=G GXψ  is marginal to =A AXψ α , =B BXψ β , =A+B A AX Xψ α + β  and 

; or ψ ψ ; (ψ α )β B=AB ABX ≤G A B A+B A, , ,ψ ψ ψ

•  and =A AXψ α =B BXψ β  are marginal to =A+B A AX Xψ α + β  and ( )=AB ABXψ αβ

β

; 

or ψ ψ ; ≤A B A+B AB, ,ψψ

•  is marginal to =A+B A AX Xψ α + ( )=AB ABXψ αβ ; or ≤A+B ABψ ψ . 

 
More loosely, for terms, we say that G < A, B, A∧B and A, B < A∧B and, for models, 
we say that G < A, B, A+B, A∧B, A, B < A+B, A∧B, and A+B < A∧B.  
 
The estimators of the expected values for the different expectation models 
considered for the two-factor CRD are all functions of means and so can be written in 
terms of mean operators, Ms. Further, if Y is arranged so that the associated factors 
A, B and the replicates are in standard order, the M operators can be written as the 
direct product of I and J matrices. These expressions are summarized in the 
following table. 
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Model Estimator 

( )=AB ABXψ αβ  ( ) −= = = ⊗ ⊗1
AB ABˆ a b rrA B M Y I I J Yψ ∧  

= +A+B A BX Xψ α β  = + −A+Bˆ A B Gψ  
=A AXψ α  ( )−= = = ⊗ ⊗1

A Aˆ a b rbrA M Y I J J Yψ  
=B BXψ β  ( )−= = = ⊗ ⊗1

B Bˆ a b rarB M Y J I J Yψ  
μ=G GXψ  −= = = ⊗ ⊗1

G Gˆ a b rnG M Y J J J Yψ  
 
where G  is the n-vector containing just the grand mean. 
 A  is the n-vector of A means. 
 B  is the n-vector of B means. 
 A B∧  is the n-vector of means for the combinations of A and B, that is for 

the generalized factor A∧B. 
 
Example VII.5 2×2 Factorial experiment (continued) 
 
The mean vectors, produced by an MY, are as follows:  

1 11 1
1 11 1
1 11 1
1 21 2
1 21 2

1 2

2 1 2 1
2 1 2 1
2 1

2 2

2 2

2 2

  

 

A BA BG
A BA BG
A BA BG
A BA BG
A BA BG

A BG
A BG A B

G A B A B
G A B A
G A B
G A B
G A B

∧

∧⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ∧⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ∧
⎢ ⎥ ⎢ ⎥⎢ ⎥ ∧⎢ ⎥ ⎢ ⎥⎢ ⎥

∧⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ∧⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ∧⎢ ⎥ ⎢ ⎥⎢ ⎥ ∧⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

G A B A Β

1 2A B

2 1

2 2

2 2

2 2

B
A B
A B
A B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∧⎢ ⎥

∧⎢ ⎥
⎢ ⎥∧
⎢ ⎥∧⎣ ⎦

 

 ■ 
VII.E Hypothesis testing using the ANOVA method for factorial 

experiments 
 
An analysis of variance will be used to choose between the five alternative 
expectation models for a two-factor CRD, given in section VII.D, Models and 
estimation for factorial experiments. In this section we will use the generic names of 
A, B and Units for the factors in a two-factor CRD. 
 
Recall the ANOVA table derived for the two factor experiment in section VII.C, An 
example two-factor CRD experiment. 
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Source df SSq E[MSq] 

Units n−1 ′ UY Q Y   

 A a−1 ′ AY Q Y  ( )σ +2
U Aq ψ  

 B b−1 ′ BY Q Y  ( )σ +2
U Bq ψ  

 A#B (a−1)(b−1) ′ ABY Q Y  ( )σ +2
U ABq ψ  

 Residual ab(r−1) ′
ResUY Q Y  σ 2

U  

 
In this section we look at the sums of squares and expected mean squares in more 
detail. 
 
a) Sums of squares for the analysis of variance 
 
Require the estimators of the following sum of squares for a two-factor CRD ANOVA: 
Total or Units, A, B, A#B and Residual. We will use the Hasse diagram giving 
expressions for the Q matrices in terms of M matrices. 
 
Now a sum of squares  is the sum of squares of QY from which we can derive 
an expression in terms of M and Y, and from these an expression in terms of mean 
vectors as follows: 

′Y QY

( )
( )
( )

( )
( )

( ) ( )
( )

Res

U U G G

A A G

B B G

AB AB A B G

U U AB

Total or Units SSq:

A SSq:

B SSq:

A#B SSq:

Residual SSq:

e

e

e

e ee

= − = − =

= − = − =

= − = − =

= − − +

= ∧ − − + = ∧

= − = − ∧ =

= − ∧ − − −

Q Y M M Y Y G D

Q Y M M Y A G A

Q Y M M Y B G B
Q Y M M M M Y

A B A B G A B

Q Y M M Y Y A B D

Y A B A B G
AB

 

 
Now all of the Qs and Ms are symmetric and idempotent and FROM section VII.D, 
Models and estimation for factorial experiments, we have that  
 

( )
( )

( )

−

−

−

−

= = ⊗ ⊗

= = ⊗ ⊗

= = ⊗ ⊗

= = ⊗ ⊗

1
G

1
A

1
B

1
AB

a b r

a b r

a b r

a b r

n

br

ar

r

G M Y J J J Y

A M Y I J J Y

B M Y J I J Y

A B M Y I I J Y∧
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So, in order to compute the sums of squares, it is necessary to compute the vectors 
DG, Ae, Be,  (A∧B)e and DAB. Then the sums of squares are the sums of squares of 
the elements of these vectors: 
 

( ) ( )

′ ′=
′ ′=
′ ′=

′′ =

′ ′=
Res

U G G

A

B

AB

U AB AB

e e

e e

e e

Y Q Y D D
Y Q Y A A
Y Q Y B B

Y Q Y A B A B
Y Q Y D D

∧ ∧

 

 
So the analysis of variance table is constructed as follows: 
 
Source df SSq MSq E[MSq] F p 

Units n−1 ′ UY Q Y      

 A a−1 ′ AY Q Y  ′
=

−
2A
A1

s
a

Y Q Y  ( )σ +2
U Aq ψ

Res

2 2
A Us s  Ap  

 B b−1 ′ BY Q Y  ′
=

−
2B
B1

s
b

Y Q Y  ( )σ +2
U Bq ψ

Res

2 2
B Us s  Bp  

 A#B (a−1)(b−1) ′ ABY Q Y
( )( )

′
=

− −
2AB
AB1 1

s
a b

Y Q Y

 

( )σ +2
U ABq ψ

 
Res

2 2
AB Us s

 
ABp  

 Residual ab(r−1) ′
ResUY Q Y

( )
′

=
−

Res
Res

U 2
U1

s
ab r
Y Q Y

 
σ 2

U    

Total abr−1 ′ UY Q Y      

 
Clearly, we can compute the sums of squares by decomposing y as follows: 
 

y = g  + ae + be + (a∧b)e + dAB 
 
b) Expected mean squares 
 
The expected mean squares involve three quadratic functions of the expectation 
vector: ( ) ( )′= −A A 1q aQψ ψ ψ , ( ) ( )′= −B B 1q Qψ ψ ψ b

)

 and 

( ) ( )(′= −AB AB 1q aQψ ψ ψ −1b . That is, their numerators are the sums of squares of  

 
( )−A A GQ M Mψ = ψ ,  and ( )−B B GQ M Mψ = ψ ( )− − +AB AB A B GQ M M M Mψ = ψ , 
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where  is the expectation vector for one of the five models ψ μ=G GXψ , =A AXψ α , 

,  and = XB Bψ β = +A+B A BX Xψ α β ( )=AB ABXψ αβ .  

 
We require expressions for the quadratic functions under each of these models. The 
following table indicates when the quadratic functions are nonzero. 
 
 

Quadratic functions in expected mean squares 
under alternative expectation models 

 
  Source  
Expectation model A B A#B 

μ=G GXψ  ( ) =A G 0q ψ  ( ) =B G 0q ψ  ( ) =AB G 0q ψ  

=Α AXψ α  ( )A Αq ψ  ( ) =B Α 0q ψ  ( ) =AB Α 0q ψ  

=Β BXψ β  ( ) =A B 0q ψ  ( )B Bq ψ  ( ) =AB B 0q ψ  

= +A+B A BX Xψ α β  ( )A Α+Bq ψ  ( )B A+Bq ψ  ( ) =AB A+B 0q ψ  

( )=AB ABXψ αβ  ( )A ΑBq ψ  ( )B ABq ψ  ( )AB ABq ψ  

 
Firstly, considering the column for source A#B, the only model for which ( ) ≠AB 0q ψ

( ) > 0ψ

( )

 

is . Consequently, A#B is significant indicates that  and 

that the maximal model is the appropriate model — no other model is consistent with 
a non-zero . Secondly, considering the column for source A, 

(=AB ABXψ

(ABq ψ

)αβ ABq

) ≠A 0q ψ  

occurs with either a model that includes AX α  or the maximal model ( )= ABXψ αAB β . 

Now, if A#B is significant, we already know that the maximal model is appropriate 
and the test for A has no bearing on which model we should use. However, when 
A#B is not significant, we already know that the maximal model is not required and 
so a significant A indicates that the model should include AX α . Thirdly for source B, 
provided A#B is not significant, a significant B indicates that the model should include 

. This leads us to the following algorithm for selecting the appropriate model to 
describe the data. 

BβX
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Choosing an expectation model for a two-factor CRD 

 
 

  A#B hypothesis 
p  ≤  α  p > α 

Factors interact  
in their effect on response variable.   

Use maximal model ψAB =  X AB ( αβ).  

A and B hypothese  s  

Factors independent 
in their effect on response variable. 

Use a model that includes significant
terms, that is a single factor or

additive model 

reject H 0 

reject H0(s) 

retain H0  

one or both p ≤ α 

for both  p > α
retain all H

  
0

  
s   

Factors have no effect   
on response variable.  

Use minimal model
  

 ψ G =  XG μ.  

 

To determine the quadratic functions in the expected mean squares under the 
different models, as shown in the table above, note that  
 

 

( ) ( )
( ) ( )

( )

( )

ψ ψ
=

′= −

′ − −

−

−

∑

A A

A G

2
.. ...

1

1

1

1

a

i
i

q a

a

rb

a

Q

M M

ψ ψ ψ

= ψ ψ

=

 

( ) ( )
( ) ( )

( )
( )

ψ ψ
=

′= −

′ − −

−
=

−

∑

B B

B G

2
. . ...

1

1

1

1

b

j
j

q b

b

ra

b

Q

M M

ψ ψ ψ

= ψ ψ  

where ψ ijk  is the element of the expectation vector for the kth unit and this unit 
received the ith level of A and the jth level of B,  

 ψ ψ
= =

= ∑ ∑.. 1 1
b r

i ijkj k br , ψ ψ
= =

= ∑ ∑. . 1 1
a r

j i k arijk  and 

ψ ψ
= = =

= ∑ ∑ ∑... 1 1 1
a b r

ijki j k abr . 

 
( ) ( )( )

( ) ( )( )

( )
( )( )

ψ ψ ψ ψ
= =

′= − −

′ − − + − −

− − +
=

− −

∑ ∑

AB AB

AB A B G

2
. .. . . ...

1 1

1 1

1 1

1 1

a b

ij i j
i j

q a b

a b

r

a b

Q

M M M M

ψ ψ ψ

= ψ ψ , 

where ψ ψ
=

= ∑. 1
r

ij ijkk r . 
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Example VII.5 2×2 Factorial experiment (continued) 
 
The means ψ ... , ψ ..i , ψ . .j  and ψ .ij  are formed by applying the mean operators , 

,  and  to the vector  as follows: 
GM

AM BM ABM ψ

ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ

ψψ
ψψ
ψψ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

111 ...
112 ...
113 ...
121 ...
122 ...
123 ...

G G
211 ...
212 ...
213 ...

...221

...222

...223

M Mψ , 

ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ

ψψ
ψψ
ψψ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

111 1..
112 1..
113 1..
121 1..
122 1..
123 1..

A A
211 2..
212 2..
213 2..

2..221
2..222
2..223

M Mψ , 

ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ

ψψ
ψψ
ψψ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

111 .1.
112 .1.
113 .1.
121 .2.
122 .2.
123 .2.

B AB B
211 .1.
212 .1.
213 .1.

.2.221
2.222

.2.223

.

M Mψ ⎥  and 

ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ

ψψ
ψψ
ψψ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

111 11.
112 11.
113 11.
121 12.
122 12.
123 12.

AB AB
211 21.
212 21.
213 2.1

22.221
22.222
22.223

M Mψ . 

where ( )ψ ψ
= =

= ∑ ∑2 3
.. 1 1 2 3i ijkj k × . That is, ψ ..i  is the mean of all parameters that 

have subscript i — it is said to be the mean over the subscripts that have been 
replaced by a dot. Similarly, ( )ψ ψ

= =
= ×∑ ∑2 3

. . 1 1 2 3j ijki k  is the mean of all 

parameters that have subscript j, ( )ψ ψ
= = =

= × ×∑ ∑ ∑2 2 3
... 1 1 1 2 2 3ijki j k

 is the mean 

over all subscripts, and ψ ψ
=

= ∑3
. 1 3ij ijkk  is the mean of all parameters that have 

subscripts i and  j. ■ 
 
Now we require ψ ... , ψ ..i , ψ . .j  and ψ .ij  under the alternative expectation models. To 
do this you have to realize that the elements of  
•  are the Αψ α i s, each α i  being repeated rb times in Αψ ,  

•  are the Bψ β j s, each β j  being repeated ra times in Bψ  and  

•  are the (ΑBψ )αβ ij s, each ( )αβ ij  being repeated r times in ΑBψ .  

Also . Then the results of applying the mean operators , ,  
and  to , 

= +A+B A Bψ ψ ψ

ABM Gψ
GM AM BM

Aψ ,  and Bψ ABψ  need to be obtained by substituting the 
parameters for a particular model into the elements ψ ijk  of ψ . 
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Example VII.5 2×2 Factorial experiment (continued) 
 
Here 

ψ
ψ
ψ
ψ
ψ
ψ
ψ
ψ
ψ
ψ
ψ
ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

111
112
113
121
122
123
211
212
213
221
222
223

ψ ⎥  with 

μ
μ
μ
μ
μ
μ
μ
μ
μ
μ
μ
μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Gψ , 

α
α
α
α
α
α
α
α
α
α
α
α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1
1
1
1
1
1

A
2
2
2
2
2
2

ψ , 

β
β
β
β
β
β
β
β
β
β
β
β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1
1
1
2
2
2

B
1
1
1
2
2
2

ψ  and . 

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

αβ
αβ
αβ
αβ
αβ
αβ
αβ
αβ
αβ
αβ
αβ
αβ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

11

11

11

12

12

12
AB

21

21

21

22

22

22

ψ

That is, for , Gψ ψ μ=ijk , for , Αψ ψ α=ijk i , for Bψ , ψ β=ijk j  and, for , ΑBψ ( )ψ αβ=ijk ij

. Hence, for example for , Gψ =ψ ψ ψ ψ μ= =... .. . .i j =.ij . These can be obtained by 
substituting ψ μ=ijk  into the summation expressions for the different means or by 
applying the M operator matrices to Gψ . 
 
You can derive expressions for the different expectation parameter means under the 
various models similarly. ■ 
 
The following table summarizes the general expressions for all the means under all 
the expectation models. 
 

Expectation parameter means under alternative expectation models 
 
 Mean 
Expectation model ψ ...  ψ ..i  ψ . .j  ψ .ij  

μ=G GXψ  μ μ μ μ 
=Α AXψ α  α.  α i  α.  α i  
=Β BXψ β  β.  β.  β j  β j  

= +A+B A BX Xψ α β  α β+. .  α β+ .i  α β+. j  α β+i j  

( )=AB ABXψ αβ  ( )αβ ..  ( )αβ .i  ( )αβ . j  ( )αβ ij  

α α
=

= ∑. 1
a

ii a , β β
=

= ∑. 1
b

jj b , ( ) ( )αβ αβ
=

= ∑. 1
b

i ij ( )j b , ( )αβ αβ
=

= ∑. 1
a

j ii aj  and 

( ) ( )αβ αβ
= =

= ∑ ∑.. 1 1
a b

iji j ab  
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Now,  ( )
( )

( )

ψ ψ
=

−

−

∑ 2
.. ...

1
A 1

a

i
i

rb
q

a
ψ =  so that , ( ) ( )= =A AG B 0q qψ ψ

( ) ( )
( )

( )

α α
=

−
=

−

∑ 2
.

1
A AΑ Α+B 1

a

i
i

rb
q q

a
ψ ψ =  and ( )

( ) ( )( )
( )

αβ
==
∑

1
A AB

a

i
rb

q
a

ψ
αβ−

−

2

. ..

1

i
. 

Next, ( )
( )
( )

ψ ψ
=

−
=

−

∑
2

. . ...
1

B 1

b

j
j

ra
q

b
ψ  so that , ( ) ( )= =B BG A 0q qψ ψ

( ) ( )
( )

( )

β β
=

−
= =

−

∑
2

.
1

B BB A+B 1

b

j
j

ra
q q

b
ψ ψ  and ( )

( ) ( )( )
( )

αβ
==

−

∑
1

B AB

b

j
j

ra

b
ψ

αβ−
2

. ..

1
q . 

Finally, ( )
( )
( )( )

ψ ψ ψ ψ
= =

− − +
=

− −

∑ ∑
2

. .. . . ...
1 1

AB 1 1

a b

ij i j
i j

r
q

a b
ψ so that 

 and  ( ) ( ) ( )= =AB AB ABG A B 0q q qψ ψ ψ

( )
( ) ( )

=

( ) ( )( )
( )( )

αβ αβ αβ αβ
= =

− − +
=

− −

∑ ∑
2

. . .
1 1

AB AB 1 1

a b

ij i j
i j

r
q

a b
ψ

.
. 

 
Now ( ) =A 0q ψ  implies that ψ ψ− =.. ... 0i  or ψ ψ=.. ...i  for all i. That is, all ψ ..i s are 

equal to the same value ψ ... . Similarly, ( ) =B 0q ψ  all ψ . .j s are equal to the same 

value ψ ... . On the other hand, ( ) =ABq ψ 0  implies that ψ ψ ψ ψ− − + =. .. . . ... 0ij i j  or 

ψ ψ ψ..i ψ= + −. . . ...ij j . That is, that the ψ .ij s display an additive pattern. This will occur 
for all models except the maximal model where 

( ) ( ) ( ) ( )ψ ψ ψ− −..i ψ αβ αβ αβ αβ+ = − − + ≠. . . ... . . .. 0ij j ij i j . 

 
c) Summary of the hypothesis test 
 
Step 1: Set up hypotheses 
 

a) H0: there is no interaction between A and B 
   (or model simpler than ( )ABX αβ  adequate) 

  ( ) ( ) ( ) ( )( )αβ αβ αβ αβ− − + =. . .. 0 for all ,ij i j i j  

 H1: there is an interaction between A and B 

  ( ) ( ) ( ) ( )( )αβ αβ αβ αβ− − + ≠. . .. 0 for some ,ij i j i j  
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b) H0: α1 = α2 = ... = αa (or AX α  not required in model) 
 H1: not all population A means are equal 
 
c) H0: β1 = β2 = ... = βb (or BX β  not required in model) 
 H1: not all population B means are equal 
 
Set α = 0.05.  
 

 
Step 2: Calculate test statistics 
 
 The analysis of variance table is as follows: 
 

Source df MSq E[MSq] F p 

Units n−1     

 A a−1 ′
=

−
2A
A1

s
a

Y Q Y  ( )σ +2
U Aq ψ

Res

2 2
A Us s  Ap  

 B b−1 ′
=

−
2B
B1

s
b

Y Q Y  ( )σ +2
U Bq ψ

Res

2 2
B Us s  Bp  

 A#B (a−1)(b−1) 
( )( )

′
=

− −
2AB
AB1 1

s
a b

Y Q Y

 

( )σ +2
U ABq ψ

 
Res

2 2
AB Us s

 
ABp  

 Residual ab(r−1) 

( )
′

=
−

Res
Res

U 2
U1

s
ab r
Y Q Y

 
σ 2

U    

Total abr−1     

 
Step 3: Decide between hypotheses 
 
 The steps for choosing the model that best describes the expectation of the 

response is illustrated in the diagram given in the subsection d), Expected 
mean squares. The fundamental point of this diagram is that one first 
examines the A#B interaction that tests for whether  is zero. If it is 
significant, the tests for A and B effects are not proceeded with as they are 
only relevant when A#B is not significant. For any hypothesis, if 

( )ABq ψ

{ } α≥ = ≤Pr OF F p , then the evidence suggests that the null hypothesis be 
rejected. 

 
 If A#B is significant, we conclude that the maximal model ( )=AB ABXψ αβ  

best describes the data. Having determined the model to be used for the 
data, there is no point to doing any further hypothesis tests; they will not 
provide any further information about the model. 
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 However, if A#B is not significant, we conclude that the model ( )= ABXψ αβ  

is not the best model for the data and that one of the models μ=G GXψ , 
, =A AXψ α =B BXψ β  or = +A+B A BX Xψ α β  will be better. The choice between 

these models depends on which of A and B are not significant. A term 
corresponding to the significant source must be included in the model. For 
example, if only B is significant, the model for the data would be . If 
neither A nor B is significant, then the model for the data would be 

= BXψ β
μ= GXψ . 

 
d) Computation of ANOVA and diagnostic checking in R 
 
The assumptions underlying a factorial experiment will be the same as for the basic 
design employed, except that residuals-versus-factor plots of residuals are also 
produced for all the factors in the experiment.  
 
Example VII.4 Animal survival experiment (continued) 
 
We previously determined the following experimental structure for this experiment. 
 

Structure Formula 
unrandomized 48 Animals 
randomized 3 Poisons*4 Treatments 

 
From this we conclude that the model to be used for aov function is  
 

Surv.Time ~ Poison * Treat + Error(Animals). 
 
The following instructions will enter the data into the R data.frame Fac2Pois.dat 
and produce the analysis of variance for this example: 
 
Fac2Pois.dat <- fac.gen(generate = list(Poison = 3, 4, Treat=4)) 
Fac2Pois.dat <- data.frame(Animals = factor(1:48), Fac2Pois.dat) 
Fac2Pois.dat$Surv.Time <- 
                  c(0.31,0.82,0.43,0.45,0.45,1.10,0.45,0.71,0.46,0.88,0.63,0.66, 
                    0.43,0.72,0.76,0.62,0.36,0.92,0.44,0.56,0.29,0.61,0.35,1.02, 
                    0.40,0.49,0.31,0.71,0.23,1.24,0.40,0.38,0.22,0.30,0.23,0.30, 
                    0.21,0.37,0.25,0.36,0.18,0.38,0.24,0.31,0.23,0.29,0.22,0.33) 
attach(Fac2Pois.dat) 
Fac2Pois.dat 
interaction.plot(Poison, Treat, Surv.Time, lwd=4) 
Fac2Pois.aov <- aov(Surv.Time ~ Poison * Treat + Error(Animals), Fac2Pois.dat) 
summary(Fac2Pois.aov) 

 
Note the use of the function interaction.plot to produce this plot for the initial 
graphical exploration. We do not produce boxplots in this case, in part because they 
look at just the overall effects of one factor and are only relevant if the factors are 
independent. 
 
The R output produced by these instructions is: 
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> Fac2Pois.dat <- fac.gen(generate = list(Poison = 3, 4, Treat=4)) 
> Fac2Pois.dat <- data.frame(Animals = factor(1:48), Fac2Pois.dat) 
> Fac2Pois.dat$Surv.Time <- 
+                   c(0.31,0.82,0.43,0.45,0.45,1.10,0.45,0.71,0.46,0.88,0.63,0.66, 
+                     0.43,0.72,0.76,0.62,0.36,0.92,0.44,0.56,0.29,0.61,0.35,1.02, 
+                     0.40,0.49,0.31,0.71,0.23,1.24,0.40,0.38,0.22,0.30,0.23,0.30, 
+                     0.21,0.37,0.25,0.36,0.18,0.38,0.24,0.31,0.23,0.29,0.22,0.33) 
> attach(Fac2Pois.dat) 
> Fac2Pois.dat 
   Animals Poison Treat Surv.Time 
1        1      1     1      0.31 
2        2      1     2      0.82 
3        3      1     3      0.43 
4        4      1     4      0.45 
5        5      1     1      0.45 
6        6      1     2      1.10 
7        7      1     3      0.45 
8        8      1     4      0.71 
9        9      1     1      0.46 
10      10      1     2      0.88 
11      11      1     3      0.63 
12      12      1     4      0.66 
13      13      1     1      0.43 
14      14      1     2      0.72 
15      15      1     3      0.76 
16      16      1     4      0.62 
17      17      2     1      0.36 
18      18      2     2      0.92 
19      19      2     3      0.44 
20      20      2     4      0.56 
21      21      2     1      0.29 
22      22      2     2      0.61 
23      23      2     3      0.35 
24      24      2     4      1.02 
25      25      2     1      0.40 
26      26      2     2      0.49 
27      27      2     3      0.31 
28      28      2     4      0.71 
29      29      2     1      0.23 
30      30      2     2      1.24 
31      31      2     3      0.40 
32      32      2     4      0.38 
33      33      3     1      0.22 
34      34      3     2      0.30 
35      35      3     3      0.23 
36      36      3     4      0.30 
37      37      3     1      0.21 
38      38      3     2      0.37 
39      39      3     3      0.25 
40      40      3     4      0.36 
41      41      3     1      0.18 
42      42      3     2      0.38 
43      43      3     3      0.24 
44      44      3     4      0.31 
45      45      3     1      0.23 
46      46      3     2      0.29 
47      47      3     3      0.22 
48      48      3     4      0.33 
> interaction.plot(Poison, Treat, Surv.Time, lwd=4) 
> Fac2Pois.aov <- aov(Surv.Time ~ Poison * Treat + Error(Animals), Fac2Pois.dat) 
> summary(Fac2Pois.aov) 
 
Error: Animals 
             Df  Sum Sq Mean Sq F value    Pr(>F) 
Poison        2 1.03301 0.51651 23.2217 3.331e-07 
Treat         3 0.92121 0.30707 13.8056 3.777e-06 
Poison:Treat  6 0.25014 0.04169  1.8743    0.1123 
Residuals    36 0.80073 0.02224                   
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As the experiment was set up as a CRD, the assumptions underlying its analysis will 
be the same as for the CRD and its diagnostic checking the same. In particular, 
Tukey’s one-degree-of-freedom-for-nonadditivity cannot be computed. 
 
The R output produced by the expressions that deal with diagnostic checking is as 
follows: 
 
> # 
> # Diagnostic checking 
> # 
> res <- resid.errors(Fac2Pois.aov) 
> fit <- fitted.errors(Fac2Pois.aov) 
> plot(fit, res, pch=16) 
> plot(as.numeric(Poison), res, pch=16) 
> plot(as.numeric(Treat), res, pch=16) 
> qqnorm(res, pch=16) 
> qqline(res) 
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The residual-versus-fitted-values, residuals-versus-Poison, residuals-versus-Treat 
and normal probability plots both indicate a problem with the assumptions. The 
residual-versus-fitted-values plot is displaying strong funnel-shape so that variance is 
increasing with fitted values and this heterogeneity is reflected in the residuals-
versus-factors plots. The normal probability plot is not displaying a straight-line trend 
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so that the data is displaying nonnormality.  The question is would a transformation 
fix the problem and, if so, which one?  ■ 
 
e) Box-Cox transformations for correcting transformable non-additivity 
 
Box, Hunter and Hunter (sec. 7.9) describe the Box-Cox procedure for determining 
the appropriate power transformation for a set of data. It has been implemented in 
the R function boxcox supplied in the MASS library that comes with R. When you 
run this procedure you obtain a plot of the log-likelihood of λ, the power of the 
transformation to be used (for λ = 0 use the ln transformation). However, the function 
does not work with aovlist objects and so the aov function must be repeated 
without the Error function. 
 
Example VII.4 Animal survival experiment (continued) 
 
The following output has been obtained for the example and it indicates that, as the 
log likelihood is a maximum around λ = −1, the reciprocal transformation should be 
used. The reciprocal of the survival time will be the death rate — the number that die 
per unit time. 
 
> Fac2Pois.NoError.aov <- aov(Surv.Time ~ Poison * Treat, Fac2Pois.dat) 
> library(MASS) 
 
        The following object(s) are masked from package:MASS : 
 
         Animals  
 
> boxcox(Fac2Pois.NoError.aov, lambda=seq(from = -2.5, to = 2.5, len=20),  
+        plotit=T) 

 
The message reporting the masking of Animals is saying that there is a vector 
Animals that is part of the MASS library that is being overshadowed by Animals in 
Fac2Pois.dat. 
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To repeat the analysis on the reciprocals I entered expressions that produced the 
following output. The first expression detachs the Fac2Pois.dat data.frame, the 
second adds Death.Rate to the data.frame and the last reattaches the data.frame 
to refresh the information available in R. The rest of the expressions repeat 
expressions from the original analysis with Surv.time replaced by Death.Rate 
appropriately. 
 
> detach(Fac2Pois.dat) 
> Fac2Pois.dat$Death.Rate <- 1/Fac2Pois.dat$Surv.Time 
> attach(Fac2Pois.dat) 
 
        The following object(s) are masked from package:MASS : 
 
         Animals  
 
> interaction.plot(Poison, Treat, Death.Rate, lwd=4) 
> Fac2Pois.DR.aov <- aov(Death.Rate ~ Poison * Treat + Error(Animals), 
Fac2Pois.dat) 
> summary(Fac2Pois.DR.aov) 
 
Error: Animals 
             Df Sum Sq Mean Sq F value    Pr(>F) 
Poison        2 34.877  17.439 72.6347 2.310e-13 
Treat         3 20.414   6.805 28.3431 1.376e-09 
Poison:Treat  6  1.571   0.262  1.0904    0.3867 
Residuals    36  8.643   0.240                   
> res <- resid.errors(Fac2Pois.DR.aov) 
> fit <- fitted.errors(Fac2Pois.DR.aov) 
> plot(fit, res, pch=16) 
> plot(as.numeric(Poison), res, pch=16) 
> plot(as.numeric(Treat), res, pch=16) 
> qqnorm(res, pch=16) 
> qqline(res) 
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A comparison of the untransformed and transformed analyses follows: 
 
 UNTRANSFORMED TRANSFORMED 
Source df  MSq F Prob df  MSq F Prob  
        
Animals 47    47    
 Poison 2 0.5165 23.22 0.0000 2 17.4386 72.63 <0.001 
 Treatment 3 0.3071 13.81 0.0000 3 6.8048 28.34 <0.001 
 Poison#Treat 6 0.0417 1.87 0.1112 6 0.2618 1.09 0.387 
 Residual 36 0.0222   36 0.2401   
 
The analysis of the transformed data indicates that there is no interaction on the 
transformed scale with the interaction mean square being nearly equal to the 
Residual mean squares. This is confirmed by the interaction plot in which the traces 
are approximately parallel. The main effect mean squares are even larger than 
before indicating that we are able to separate the treatments even more on the 
transformed scale. 
 
The diagnostic checking now indicates that all the assumptions are met.  ■ 
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VII.F Treatment differences 
 
As usual the examination of treatment differences can be based on multiple 
comparisons or submodels. If all the factors are qualitative, multiple comparison 
procedures would be performed on the appropriate tables of means. If one or more of 
the factors are quantitative then submodels would be appropriate. 
 
a) Multiple comparisons procedures 
 
For two factor experiments, there will be altogether three tables of means, namely 
one for each of A, B and A∧B. Which table is of interest depends on the results of the 
hypothesis tests outlined above. However, in all cases Tukey’s HSD procedure will 
be employed to determine which means are significantly different. 
 
A#B Interaction significant 
 
In this case you look at the table of means for the A∧B combinations. 
 

  A 
  1 2 3 . . . a 
 1 x x x . . . x 
 2 x x x . . . x 
 . . . . . . . . 

B . . . . . . . . 
 . . . . . . . . 
 b x x x . . . x 

 

( ) υ υ= =, ,0.05 , ,0.05 25%
2 2d

ab ab
x

q q
w s

r
s  

 
There are at least two possibilities for which differences you investigate using this 
table. Which you do depends on which of the following is the researcher’s 
objective(s): 
 
1. finding the levels combination(s) of the factors that maximize (or minimize) the 

response variable or describing the response variable differences between all the 
levels combinations of the factors 

2. for each level of one factor, finding the level of the other factor that maximizes (or 
minimizes) the response variable or describing the response variable differences 
between the levels of the other factor 

3. finding a level of one factor for which there is no difference between the levels of 
the other factor 

 
The first of these involves examining all possible pairs of differences between means 
for the levels combinations of the two factors. The other two involve examining the 
pairs of mean differences between the levels of one factor for each level of the other 
factor, i.e. in slices of the table for each level of the other factor; thus the simple 
effects are examined. 
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A#B interaction not significant 
 
In this case examine the A and B tables of means for the significant lines. 
 

 A 
 1 2 3 . . . a 

Means x x x . . . x 
 

( ) υ υ= =, ,0.05 , ,0.05 25%
2 2d

a a
x

q q
w s

rb
s  

 
 B 
 1 2 3 . . . b 

Means x x x . . . x 
 

( ) υ υ= =, ,0.05 , ,0.05 25%
2 2d

b b
x

q q
w s

ra
s  

 
That is, we examine each factor separately, using main effects. This is done in R 
using the function model.tables, to get the tables of means, and the function 
qtukey, to get the studentized range values. 
 
Example VII.4 Animal survival experiment (continued) 
 
For our example, the tables of means and studentized ranges are: 
 
> # 
> # multiple comparisons 
> # 
> model.tables(Fac2Pois.DR.aov, type="means") 
Tables of means 
Grand mean 
          
2.622376  
 
 Poison  
Poison 
    1     2     3  
1.801 2.269 3.797  
 
 Treat  
Treat 
    1     2     3     4  
3.519 1.862 2.947 2.161  
 
 Poison:Treat  
      Treat 
Poison 1     2     3     4     
     1 2.487 1.163 1.863 1.690 
     2 3.268 1.393 2.714 1.702 
     3 4.803 3.029 4.265 3.092 
> q.PT <- qtukey(0.95, 12, 36) 
> q.PT 
[1] 4.93606 
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> q.P <- qtukey(0.95, 3, 36) 
> q.P 
[1] 3.456758 
> q.T <- qtukey(0.95, 4, 36) 
> q.T 
[1] 3.808798 

 
For our example, as the interaction is not significant, the overall tables of means are 
examined. 
 
For the Poison means, 

( ) 3.456758 0.240 25% 0.42
162

w ×
= × =  

Clearly, all Poison means are significantly different. 
 
For Treat means, 

( ) ×
= × =

3.808798 0.240 25% 0.54
122

w  

Examination of the Treat means reveals that all but Treats 2 and 4 are different. 
 
The expressions to produce the means for plotting in bar chart are as follows: 
 
> # 
> # Plotting means 
> # 
> Fac2Pois.DR.tab <- model.tables(Fac2Pois.DR.aov, type="means") 
> Fac2Pois.DR.Poison.Means <-  
+               data.frame(Poison = levels(Poison),  
+                          Death.Rate = as.vector(Fac2Pois.DR.tab$tables$Poison)) 
> barchart(Death.Rate ~ Poison, main="Fitted values for Death rate", ylim=c(0,4),  
+               data=Fac2Pois.DR.Poison.Means) 
> Fac2Pois.DR.Treat.Means <-  
+               data.frame(Treatment = levels(Treat),  
+                          Death.Rate = as.vector(Fac2Pois.DR.tab$tables$Treat)) 
> barchart(Death.Rate ~ Treat, main="Fitted values for Death rate", ylim=c(0,4),  
+               data=Fac2Pois.DR.Treat.Means) 

 
The bar charts, produced using 2D-Graphs, are as follows: 
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Thus the maximum death rate would obtain with Poison 3 and Treat 1 and the 
minimum with Poison 1 and either Treat 2 or 4 (as these two Treats not significantly 
different.). 
 
If the interaction had been significant, then we would have had to examine the 12 
means in the Treat by Poison table, not the two overall tables examined above. 
Tukey’s HSD would have been computed using the studentized range for 12 
treatments. That is, 

( ) ×
= × =

4.93606 0.240 25% 1.21
42

w  

Using this value, we might have looked to determine which combination of Treat and 
Poison resulted in the maximum death rate or, for each treatment, which poison gave 
the maximum death rate. ■ 
 
b) Polynomial submodels 
 
As stated previously, the formal expression for maximal indicator-variable model for a 
two-factor CRD experiment, where the two randomized factors A and B are fixed, is: 

[ ] ( )= = ABE Y Xψ αβ  and σ= 2
U nV I , 

 
where Y is the n-random vector of random variables representing the response 

variable, 
  is the ab-vector of parameters for the A-B combinations, and (αβ)
 σ 2

U  is the variability arising from different units. 
 
In respect of fitting polynomial submodels, two situations are possible: 
 
i) one factor only is quantitative, or 
ii) both factors are quantitative. 
 
One quantitative and one qualitative factor 
 
In investigating submodels for a two-factor factorial with one factor, B say, 
quantitative, the following set of models, in terms of a single observation, for the 
expectation is considered: 
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where Yijk is the random variable representing the response variable for the kth unit 

that received the ith level of factor A and the jth level of factor B, 
 
 μ is the overall level of the response variable in the experiment, 
 
 αi is the overall effect of the ith level of factor A on the response, 
 
 β j

x  is the value of the jth level of factor B, 

 
 γ1 and γ2 are the linear and quadratic coefficients of the equation describing 

the change in response as the level of B changes, 
 
 βj is the overall effect of the jth level of factor B on the response, 
 
 (αγ)i1 and (αγ)i2 are the linear and quadratic coefficients of the equation 

describing, for the ith level of A, the change in response as the level of B 
changes, 

 
 (αβ)ij is the interaction between the ith level of A and the jth level of B. 
 
The matrix expressions for these models are as follows: 
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The models for non-smooth response are the indicator-variable models discussed 
previously. The first three models are interaction models, the next three are additive 
models involving both factors and the remainder, except the last, are single factor 
models. 
 
Example VII.6 Effect of operating temperature on light output of an 
oscilloscope tube 
 
Suppose an experiment was to be conducted to investigate the effect of the 
operating temperatures 75, 100, 125 and 150, for three glass types, on the light 
output of an oscilloscope tube. Further suppose that this was done using a 
completely randomized design with two replicates of each treatment combination. 
Then the following X matrices would be involved in the models for the analysis of the 
experiment: 
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 ■ 
The above models are ordered from the most complex to the simplest. Why this set 
of expectation models? Along with rule VII.1, the following rule is used in formulating 
them. 
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Rule VII.2: An expectation model must include all polynomial terms of lower degree 
than a polynomial term that has been put in the model. ■ 
 
The following definitions allow you to determine if a polynomial term is of lower 
degree. 
 
Definition VII.7: A polynomial term is one in which the X matrix involves the 
quantitative levels of a factor(s). ■ 
 
Definition VII.8: The degree for a polynomial term with respect to a quantitative 
factor is the power to which levels of that factor are to be raised in this term.  ■ 
 
Definition VII.9: A polynomial term is said to be of lower degree than a second 
polynomial term if, for each quantitative factor in first term, its degree is less than or 
equal to its degree in the second term and the degree of at least one factor in the first 
term is less than that of the same factor in the second term.  ■ 
 
As before, γs are used for the coefficients of polynomial terms and a numeric 
subscript for each quantitative fixed factor in the experiment is placed on the γs to 
indicate the degree(s) to which the factor(s) is(are) raised. 
 
Note that the term X1γ1 is not marginal to X2γ2 — the column X1 is not a linear 
combination of the column X2. However, the degree of X1γ1 is less than X2γ2 and the 
degree rule above implies that if term X2γ2 is included in the model, so must the term 
X1γ1. As far as the marginality of models is concerned, the model involving just X1γ1 is 
marginal to the model consisting of X1γ1 and X2γ2 — that is, the model 

[ ] μ γ= +G 1E Y X X 1  is marginal to [ ] μ γ= + +G 1 1 2E Y X X X γ 2 . Also note that the term 

X1γ1 is marginal to ( )A1 1
X αγ

(
 since X1 is the sum of the columns of XA1. Consequently, 

a model containing )A1 1
X αγ  will not contain X1γ1. 

 
In general, the models to which a particular model is marginal will be found above it 
in the list; however, a model is marginal to only some, not all, of the models above it 
in this list. Note that the last four models differ from the four models immediately 
above them only in not including α . 
 
The analysis of variance table for a two-factor CRD with one quantitative factor is:  
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Source df SSq 
Units n−1 ′ UY Q Y  
 A a−1 ′ AY Q Y  
 B b−1 ′ BY Q Y  
 Linear 1 ′

LBY Q Y  
 Quadratic 1 ′

QBY Q Y  
 Deviations b−3 ′

DevBY Q Y  
 A#B (a−1)(b−1) ′ ABY Q Y  
 A#BLinear a−1 ′

LABY Q Y  
 A#BQuadratic a−1 ′

QABY Q Y  
 Deviations (a−1)(b−3) ′

DevABY Q Y  
 Residual ab(r−1) ′

ResUY Q Y  

 
In deciding between the various hypotheses one must take into account 
rules rules VII.1 and VII.2 about the marginality and degrees of terms in the models. 
The following strategy should be employed in determining which of the models is to 
be used to describe the data. 
 
 For Deviations 

 
Only if the terms to which a term is marginal are not significant then, if 
P(F ≥ Fcalc) ≤ 0.05, the evidence suggests that the null hypothesis be rejected 
and the term must be incorporated in the model. Deviations for B is marginal to 
Deviations for A#B so that if the latter is significant, the Deviations for B is not 
tested; indeed no further testing occurs as the maximal model has to be used to 
describe the data. 
 
If deviations terms are significant, then one has to revert to using multiple 
comparisons. 
 

 For A#BLinear and A#BQuadratic 
 
Only if the polynomial terms are not of lower degree than a significant 
polynomial term then, if P(F ≥ Fcalc) ≤ 0.05, the evidence suggests that the null 
hypothesis be rejected and the term be incorporated in the model. A#BLinear is of 
lower degree than A#BQuadratic so that if the latter is significant, A#BLinear is not 
tested. 
 

 For A, Linear for B, Quadratic for B 
 
Only if the terms to which a term is marginal and the polynomial terms are not of 
lower degree than a significant polynomial term then, if P(F ≥ Fcalc) ≤ 0.05, the 
evidence suggests that the null hypothesis be rejected and the term be 
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incorporated in the model. For example, for the Linear term for B, it is of lower 
degree than the Quadratic term for B and it is marginal to A#BLinear so that if 
either of these is significant, Linear for B is not tested. 
 

Both factors quantitative 
 
Example VII.7 Muzzle velocity of an antipersonnel weapon 
 
In a two-factor CRD experiment with two replicates the effect of Vent volume and 
Discharge hole area on the muzzle velocity of a mortar-like antipersonnel weapon 
was investigated. The muzzle velocity is given in the following table. 
 

Vent Discharge hole area 
volume 0.016 0.03 0.048 0.062 

0.29 294.9 295.0 270.5 258.6 
 294.1 301.1 263.2 255.9 

0.40 301.7 293.1 278.6 257.1 
 307.9 300.6 267.9 263.6 

0.59 285.5 285.0 269.6 262.6 
 298.6 289.1 269.1 260.3 

0.91 303.1 277.8 262.2 305.3 
 305.3 266.4 263.2 304.9 

 
Notice that both factors are quantitative. Here is the interaction.plot produced 
using R. 
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Pretty clear that there is an interaction. ■ 
 
The maximal model for a two-factor factorial with both factors quantitative is the same 
as when there is only one qualitative factor.  
 



  VII-43 

The expression for the maximal polynomial submodel, in terms of a single 
observation, is: 

α α β β

α β α β α β α

μ γ γ γ γ

γ γ γ γ

⎡ ⎤ = + + + +⎣ ⎦

+ + + +

2 2
10 20 01 02

2 2 2
11 12 21 22

i i j j

i j i j i j i j

ijkE Y x x x x

β
2x x x x x x x x

 

 
where Yijk is the random variable representing the response variable for the kth unit 

that received the ith level of factor A and the jth level of factor B, 
 
 μ is the overall level of the response variable in the experiment, 
 
 αi

x  is the value of the ith level of factor A, 
 
 β j

x  is the value of the jth level of factor B,  

 
 γs are the coefficients of the equation describing the change in response as 

the levels of A and/or B changes with the first subscript indicating the 
degree with respect to factor A and the second subscript indicating the 
degree with respect to factor B, 

 
We could write this model as [ ] GE μ= +Y X Xγ22  where 

[ ]22 10 20 01 02 11 12 21 22γ γ γ γ γ γ γ γ′ =γ

[
 and 

]= 10 20 01 02 11 12 21X X X X X X X X 22X  is an ×8n  matrix whose columns 
are the products of the values of the levels of A and B as indicated by the subscripts 
in X. For example the third column consists of the values of the levels of B and the 
seventh column the product of the squared values of the levels of A with the values 
of the levels of B. 
 
The following set of expectation models is considered when both factors are 
quantitative: 
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Again, rules rules VII.1 and VII.2 were used in deriving this set of models. Note that 
the subsets of terms from  mentioned above include the null subset and must 
conform to rule VII.2 so that whenever a term from 

22Xθ

22Xθ  is added to the subset, all 
terms of lower degree must also be included in the subset. For example, X11γ11 < 
X12γ12 so a model with X12γ12 must include X11γ11. However, X12γ12 ≮ X21 γ21 so a 

model with X12γ12does not need X21 γ21. Further, if for a term the Deviation for a 
marginal term is significant, polynomial terms are not considered for it. 
 
In interpreting the fitted models, the following observations apply (for more see Box, 
Hunter and Hunter, section 15.4) 
 
• models in which there are only single-factor polynomial terms define  
 

⇒ a plane if both terms linear 
⇒ a parabolic tunnel if one term is linear and the other quadratic 
⇒ a paraboloid if both involve quadratic terms 

 
• models including interaction submodels define nonlinear surfaces 
 

⇒ they will be monotonic for factors involving only linear terms, 
 
⇒ for interactions involving quadratic terms, some candidate shapes are: 

 
• could also consider models in which one factor has a smooth response that 

differs for the levels of the other factor, but that would require a re-analysis where 
one factor is treated as it is qualitative. 

 
The analysis of variance table for a two-factor CRD with both factors quantitative is:  
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Source df SSq 
Units n−1 ′ UY Q Y  
 A a−1 ′ AY Q Y  
 Linear 1 ′

LAY Q Y  
 Quadratic 1 ′

QAY Q Y  
 Deviations a−3 ′

DevBY Q Y  
 B b−1 ′ BY Q Y  
 Linear 1 ′

LBY Q Y  
 Quadratic 1 ′

QBY Q Y  
 Deviations b−3 ′

DevBY Q Y  
 A#B (a−1)(b−1) ′ ABY Q Y  
 ALinear#BLinear 1 ′

L LA BY Q Y  
 ALinear#BQuadratic 1 ′

L QA BY Q Y  
 AQuadratic#BLinear 1 ′

Q LA BY Q Y  
 AQuadratic#BQuadratic 1 ′

Q QA BY Q Y  
 Deviations (a−1)(b−1)−4 ′

DevABY Q Y  
 Residual ab(r−1) ′

ResUY Q Y  

 
Step 3: Decide between hypotheses 
 
 For Deviations 
 
 Only if the terms to which a term is marginal are not significant then, if 

{ } α≥ = ≤Pr OF F p , the evidence suggests that the null hypothesis be 
rejected and the term must be incorporated in the model. Deviations for A 
and B are marginal to Deviations for A#B so that if the latter is significant, 
neither the Deviations for A nor for B is tested; indeed no further testing 
occurs as the maximal model has to be used to describe the data and 
multiple comparisons used to investigate mean differences. 

 
 For all Linear and Quadratic terms 
 
 Only if the polynomial terms are not of lower degree than a significant 

polynomial term and the terms to which the term is marginal are not 
significant then, if { } α≥ = ≤Pr OF F p , the evidence suggests that the null 
hypothesis be rejected; the term and all polynomial terms of lower degree 
must be incorporated in the model. For example, ALinear#BLinear is marginal to 
A#B and is of lower degree than all other polynomial interaction terms and so 
is not tested if any of them is significant. 
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Example VII.7 Muzzle velocity of an antipersonnel weapon (continued) 
 
Here is the analysis produced using R, where both factors are converted to 
ordered and split used for all quantitative terms in the summary function. 
 
> attach(Fac2Muzzle.dat) 
> interaction.plot(Vent.Vol, Hole.Area, Velocity, lwd=4) 
> Vent.Vol.lev <- c(0.29, 0.4, 0.59, 0.91) 
> Fac2Muzzle.dat$Vent.Vol <- ordered(Fac2Muzzle.dat$Vent.Vol, levels=Vent.Vol.lev) 
> contrasts(Fac2Muzzle.dat$Vent.Vol) <- contr.poly(4, scores=Vent.Vol.lev) 
> contrasts(Fac2Muzzle.dat$Vent.Vol) 
              .L         .Q          .C 
0.29 -0.54740790  0.5321858 -0.40880670 
0.4  -0.31356375 -0.1895091  0.78470636 
0.59  0.09034888 -0.7290797 -0.45856278 
0.91  0.77062277  0.3864031  0.08266312 
> Hole.Area.lev <- c(0.016, 0.03, 0.048, 0.062) 
> Fac2Muzzle.dat$Hole.Area <- ordered(Fac2Muzzle.dat$Hole.Area,  
+                                                           levels=Hole.Area.lev) 
> contrasts(Fac2Muzzle.dat$Hole.Area) <- contr.poly(4, scores=Hole.Area.lev) 
> contrasts(Fac2Muzzle.dat$Hole.Area) 
              .L   .Q         .C 
0.016 -0.6584881  0.5 -0.2576693 
0.03  -0.2576693 -0.5  0.6584881 
0.048  0.2576693 -0.5 -0.6584881 
0.062  0.6584881  0.5  0.2576693 
> Fac2Muzzle.aov <- aov(Velocity ~ Vent.Vol * Hole.Area + Error(Test),  
+                                                                   Fac2Muzzle.dat) 
> summary(Fac2Muzzle.aov, split = list( 
+         Vent.Vol = list(L=1, Q=2, Dev=3),  
+         Hole.Area = list(L=1, Q= 2, Dev=3), 
+         "Vent.Vol:Hole.Area" = list(L.L=1, L.Q=2, Q.L=4, Q.Q=5, Dev=c(3,6:9)))) 
Error: Test 
                          Df Sum Sq Mean Sq  F value    Pr(>F) 
Vent.Vol                   3  379.5   126.5   5.9541 0.0063117 
  Vent.Vol: L              1  108.2   108.2   5.0940 0.0383455 
  Vent.Vol: Q              1   72.0    72.0   3.3911 0.0841639 
  Vent.Vol: Dev            1  199.2   199.2   9.3771 0.0074462 
Hole.Area                  3 5137.2  1712.4  80.6092 7.138e-10 
  Hole.Area: L             1 4461.2  4461.2 210.0078 1.280e-10 
  Hole.Area: Q             1  357.8   357.8  16.8422 0.0008297 
  Hole.Area: Dev           1  318.2   318.2  14.9776 0.0013566 
Vent.Vol:Hole.Area         9 3973.5   441.5  20.7830 3.365e-07 
  Vent.Vol:Hole.Area: L.L  1 1277.2  1277.2  60.1219 8.298e-07 
  Vent.Vol:Hole.Area: L.Q  1   89.1    89.1   4.1962 0.0572893 
  Vent.Vol:Hole.Area: Q.L  1 2171.4  2171.4 102.2166 2.358e-08 
  Vent.Vol:Hole.Area: Q.Q  1  308.5   308.5  14.5243 0.0015364 
  Vent.Vol:Hole.Area: Dev  5  127.2    25.4   1.1975 0.3541807 
Residuals                 16  339.9    21.2                    

 
The contrasts in the summary function are worked out using the following table: 
 

Factor    B  
  Contrast 1 2 3 
 Contrast Label L Q Dev 
 1 L L.L 

(1) 
L.Q 
(2) 

Dev 
(3) 

A 2 Q Q.L 
(4) 

Q.Q 
(5) 

Dev 
(6) 

 3 Dev Dev 
(7) 

Dev 
(8) 

Dev 
(9) 
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The analysis is summarized in the following table, in which the 5 interaction 
deviations lines have been pooled in that their df and SSq have been added together. 
 

Source df SSq MSq F p 
Tests 31     
 Vent.Vol 3 379.5 126.5 5.95 0.006 
 Linear 1 108.2 108.2 5.09 0.038 
 Quadratic 1 72.0 72.0 3.39 0.084 
 Deviations 1 199.2 199.2 9.38 0.007 
 Hole.Area 3 5137.2 1712.4 80.61 0.000 
 Linear 1 4461.2 4461.2 210.01 0.000 
 Quadratic 1 357.8 357.8 16.84 0.001 
 Deviations 1 318.2 318.2 14.98 0.001 
 Vent.Vol#Hole.Area 9 3973.5 441.5 20.78 0.000 
 vLinear#HLinear 1 1277.2 1277.2 60.12 0.000 
 VLinear#HQuadratic 1 89.1 89.1 4.20 0.057 
 VQuadratic#HLinear 1 2171.4 2171.4 102.22 0.000 
 VQuadratic#HQuadratic 1 308.5 308.5 14.52 0.002 
 Deviations 5 127.2 25.4 1.20 0.354 
 Residual 16 339.9 21.2   

 
While the Deviations for the interaction is not significant (p = 0.354), those for both 
the main effects are significant (p = 0.007 and p = 0.001). Hence a smooth response 
function cannot be fitted. Furthermore, the VQuadratic#HQuadratic source is significant 
(p = 0.002) so that interaction terms are required. In this case, we must revert to the 
maximal model [ ] (= VHE Y X αβ )  and use multiple comparisons. ■ 

 
Fitting these submodels in R is an extension of the procedure for a single factor. 
Having specified polynomial contrasts for each quantitative factor, the list 
argument of the summary function is used to obtain the sums of squares. The 
general form of the summary function for one factor, B say, quantitative is: 
 
summary(Experiment.aov,  
    split = list(B = list(L = 1, Q = 2, Dev = 3:(b-1)), 
             "A:B" = list(L = 1, Q = 2, Dev = 3:(b-1)))) 
 
and for two factors, A and B say, quantitative is 
summary(Experiment.aov,  
        split = list(A = list(L = 1, Q = 2, Dev = 3:(a-1)),  
                     B = list(L = 1, Q = 2, Dev = 3:(b-1)), 
                  "A:B" = list(L.L=1, L.Q=2, Q.L=b, Q.Q=(b+1),  
                             Dev=c(3:(b-1),(b+2:(a-1)(b-1))))) 
 
For more details see Appendix C.5, Factorial experiments. 
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VII.G Nested factorial structures 
 
Nested factorial structures commonly arise when a control treatment is included or 
when an interaction can be described in terms of one cell being different to the 
others. In these situations one sets up a factor (One say) with two levels, one for the 
control treatment or the different cell and two for the other treatments or cells. A 
second factor (Treats say) is set up with the same number of levels as there are 
treatments or cells. Then the structure for these two factors is One/Treats so that the 
terms in the analysis are One + Treats[One]. One compares the control or single cell 
with the mean of the others. Treats[One] reflects the differences between the other 
treatments or cells. Note that this can also be achieved using an orthogonal contrast, 
but the output using the nested factors is more convenient. 
 
More generally one set up a nested factorial structure so that in the analysis there is: 
a) a term that reflects the average differences between g groups; and b) a term that 
reflects the differences within groups or several terms each one of which reflects the 
differences within a group. 
 
Example VII.8 Grafting experiment (Daniel, 1977, p.27) 
 
For example, consider the following RCBD experiment involving two factors each at 
two levels. The response is the percent grafts that take.  
 

  B 1 2 
  A 1 2 1 2 
 I  64 23 30 15† 
 II  75 14 50 33 

Block III  76 12 41 17 
 IV  73 33 25 10 
†observation missing; value inserted so that residual is zero. 

 
a) Description of pertinent features of the study 
 

1. Observational unit – a plot 
2. Response variable – % Take 
3. Unrandomized factors – Blocks, Plots 
4. Randomized factors – A, B 
5. Type of study – Two-factor RCBD 

 
b) The experimental structure 
 

Structure Formula 
unrandomized 4 Blocks/4 Plots 
randomized 2 A*2 B 

 
The following is the R output contains the analysis of the data: 
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> attach(Fac2Take.dat) 
> Fac2Take.dat 
   Blocks Plots A B Take 
1       1     1 1 1   64 
2       1     2 2 1   23 
3       1     3 1 2   30 
4       1     4 2 2   15 
5       2     1 1 1   75 
6       2     2 2 1   14 
7       2     3 1 2   50 
8       2     4 2 2   33 
9       3     1 1 1   76 
10      3     2 2 1   12 
11      3     3 1 2   41 
12      3     4 2 2   17 
13      4     1 1 1   73 
14      4     2 2 1   33 
15      4     3 1 2   25 
16      4     4 2 2   10 
> interaction.plot(A, B, Take, lwd=4) 
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There appears to be an interaction. 
 
> Fac2Take.aov <- aov(Take ~ Blocks + A * B + Error(Blocks/Plots), Fac2Take.dat) 
> summary(Fac2Take.aov) 
 
Error: Blocks 
       Df  Sum Sq Mean Sq 
Blocks  3 221.188  73.729 
 
Error: Blocks:Plots 
          Df Sum Sq Mean Sq F value    Pr(>F) 
A          1 4795.6  4795.6  52.662 4.781e-05 
B          1 1387.6  1387.6  15.238  0.003600 
A:B        1 1139.1  1139.1  12.509  0.006346 
Residuals  9  819.6    91.1                   
> res <- resid.errors(Fac2Take.aov) 
> fit <- fitted.errors(Fac2Take.aov) 
>  
> plot(fit, res, pch=16) 
> plot(as.numeric(A), res, pch=16) 
> plot(as.numeric(B), res, pch=16) 
> qqnorm(res, pch=16) 
> qqline(res) 
> tukey.1df(Fac2Take.aov, Fac2Take.dat, error.term = "Blocks:Plots") 
$Tukey.SS 
[1] 2.879712 
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$Tukey.F 
[1] 0.02820886 
 
$Tukey.p 
[1] 0.870787 
 
$Devn.SS 
[1] 816.6828 
 
> # 
> # recompute for missing value 
> # 
> MSq <- c(73.729, 4795.6, 1387.6, 1139.1, 2.8797) 
> Res <- c(rep(819.6/8, 4), 816.6828/7) 
> df.num <- c(3,rep(1,4)) 
> df.den <- c(rep(8, 4),7) 
> Fvalue <- MSq/Res 
> pvalue <- 1-pf(Fvalue, df.num, df.den) 
> data.frame(MSq,Res,df.num,df.den,Fvalue,pvalue) 
        MSq      Res df.num df.den      Fvalue       pvalue 
1   73.7290 102.4500      3      8  0.71965837 0.5677335580 
2 4795.6000 102.4500      1      8 46.80917521 0.0001320942 
3 1387.6000 102.4500      1      8 13.54416789 0.0062170009 
4 1139.1000 102.4500      1      8 11.11859444 0.0103158259 
5    2.8797 116.6690      1      7  0.02468266 0.8795959255 

 
The recalculation of ANOVA quantities to take into account the missing value can be 
done either in R, as above, or in Excel. To use Excel you can cut the ANOVA 
quantities from R, paste them into Excel and then use Data > Text to Columns to 
separate the columns of the ANOVA table. You will need to use formulas to do the 
computation and, for the p-values, use =FDIST(F,ν1,ν2) where ν1 is the numerator 
degrees of freedom and ν2 is the denominator degrees of freedom. Note that you do 
not use 1 − FDIST(F,ν1,ν2) because of a bug in Excel. The following table illustrates 
this use of Excel — the new 8 degrees of freedom for the Residuals are manually 
entered, the unbolded items come from R output and the bolded items are 
recalculated using Excel formulae. 
 

 Df SSq MSq F Pr(F) 
Blocks 3 221.187 73.729 0.719658 0.5677 
A 1 4795.563 4795.600 46.809175 0.00013 
B 1 1387.563 1387.600 13.544168 0.006217 
A#B 1 1139.062 1139.100 11.118594 0.010316 
Residuals 8 819.563 102.4500   
Nonadditivity 1 2.880 2.880 0.024683 0.879053 
Deviations 7 816.6833 116.669   
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The hypothesis test for this example is a follows: 
 
Step 1: Set up hypotheses 
 

a) H0: (αβ)21 − (αβ)11 − (αβ)22 + (αβ)12 = 0 
 H1: (αβ)21 − (αβ)11 − (αβ)22 + (αβ)12 ≠ 0 
 
b) H0: α1 = α2 
 H1: α1 = α2 
 
c) H0: β1 = β2 
 H1: β1 = β2 
 
Set α = 0.05.  

 
Step 2: Calculate test statistics 
 
 The analysis of variance table for the two-factor RCBD is:  
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Source df SSq MSq E[MSq] F Prob
Blocks 3 221.9 73.7 σ σ+2 2

BP B4  0.72 0.568 

       
Plots[Blocks] 12 8141.8     
 A 1 4795.5 4795.5 ( )σ +2

BP Aq ψ  46.81 <0.001 
 B 1 1387.6 1387.6 ( )σ +2

BP Bq ψ  13.54 0.006 
 A#B 1 1139.1 1139.1 ( )σ +2

BP ABq ψ 11.12 0.010 

 Residual 8† 819.6 102.4 σ 2
S    

 Nonadditivity 1 2.9 2.9  0.02 0.880 
 Deviations 7 816.7 116.7    
†Residual degrees of freedom have been reduced by one to allow for the 

missing observation and  
 
Step 3: Decide between hypotheses 
 
 Note that the plot of residuals-versus-fitted-values reveals nothing untoward, 

the test for nonadditivity is not significant and the normal probability plot also 
appears to be satisfactory. There is a significant interaction between A and B 
so that the fitted model is [ ] ( )= ABE Y X αβ .  

 
The table of means for the combination of A and B needs to be examined. Suppose 
that the researcher wants to determine the level of A that has the greatest take for 
each level of B. The following output from R allows this. 
 
> # 
> # multiple comparisons 
> # 
> Fac2Take.tab <- model.tables(Fac2Take.aov, type="means") 
> Fac2Take.tab$tables$"A:B" 
   B 
A   1     2     
  1 72.00 36.50 
  2 20.50 18.75 
> q <- qtukey(0.95, 4, 8) 
> q 
[1] 4.52881 

 
Tukey’s HSD is given by  

( ) 4.52881 102.4 25% 22.91
42

w ×
= × =  

Comparing differences between means in the above table with the Tukey’s HSD it is 
concluded that there is no difference between A at level two of B but there is an A 
difference at level one of B. So at level one of B, level one of A gives the best take 
while at level two both levels of A give the same take. However, the results are only 
approximate because of the missing value. 
 
It would appear that the results of this experiment are best described in terms of A 
and B both at level 1 is different from either A or B not at level 1. An analysis based 
on this can be achieved by setting up a factor for the 4 treatments and a two-level 
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factor that compares the cell with A and B both at level 1 with the remaining factors. 
The four-level factor for treatments is then specified as nested within the two-level 
factor. 
 
The re-analysis for these new factors is achieved in R as follows: 
 
> Fac2Take.dat$Cell.1.1 <- factor(1 + as.numeric(A != "1" | B != "1")) 
> Fac2Take.dat$Treats <- fac.combine(list(A, B)) 
> detach(Fac2Take.dat) 
> attach(Fac2Take.dat) 
> Fac2Take.dat 
   Blocks Plots A B Take Cell.1.1 Treats 
1       1     1 1 1   64        1      1 
2       1     2 2 1   23        2      3 
3       1     3 1 2   30        2      2 
4       1     4 2 2   15        2      4 
5       2     1 1 1   75        1      1 
6       2     2 2 1   14        2      3 
7       2     3 1 2   50        2      2 
8       2     4 2 2   33        2      4 
9       3     1 1 1   76        1      1 
10      3     2 2 1   12        2      3 
11      3     3 1 2   41        2      2 
12      3     4 2 2   17        2      4 
13      4     1 1 1   73        1      1 
14      4     2 2 1   33        2      3 
15      4     3 1 2   25        2      2 
16      4     4 2 2   10        2      4 
> Fac2Take.aov <- aov(Take ~ Blocks + Cell.1.1/Treats + Error(Blocks/Plots),  
+                                                                Fac2Take.dat) 
> summary(Fac2Take.aov) 
 
Error: Blocks 
       Df  Sum Sq Mean Sq 
Blocks  3 221.188  73.729 
 
Error: Blocks:Plots 
                Df Sum Sq Mean Sq F value    Pr(>F) 
Cell.1.1         1 6556.7  6556.7 72.0021 1.378e-05 
Cell.1.1:Treats  2  765.5   382.8  4.2032   0.05139 
Residuals        9  819.6    91.1                   
>  
> # 
> # recompute for missing value 
> # 
> MSq <- c(73.729,6556.7,382.8) 
> Res <- rep(819.6/8, 3) 
> df.num <- c(3, 1, 2) 
> Fvalue <- MSq/Res 
> pvalue <- 1-pf(Fvalue, df.num, 8) 
> data.frame(MSq,Res,df.num,Fvalue,pvalue) 
       MSq    Res df.num     Fvalue       pvalue 
1   73.729 102.45      3  0.7196584 5.677336e-01 
2 6556.700 102.45      1 63.9990239 4.367066e-05 
3  382.800 102.45      2  3.7364568 7.146140e-02 

 
The revised analysis of variance table is: 
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Source df SSq MSq F Prob
Blocks 3 221.9 73.7 0.72 0.568 
      
Plots[Blocks] 12 8141.8    
 Cell 1,1 vs rest 1 6556.7 6556.7 64.00 <0.001
 Among rest 2 765.5 382.8 3.74 0.071
 Residual 8† 819.6 102.4   
† the Residual degrees of freedom have been reduced by one to allow 

for the missing observation
 
It would appear that the difference between the treatments is best summarized in 
terms of this single degree of freedom contrast between cell1,1 and the others. The 
mean for cell 1,1 is 72.0 and, for the other three treatments, the mean is 25.2, a 
difference of 46.8.  ■ 
 
Such one-cell interactions are a very common form of interaction. 
 
Example VII.9 Spraying sultanas 
 
An experiment was conducted to investigate the effects of tractor speed and spray 
pressure on the quality of dried sultanas. The response was the lightness of the dried 
sultanas which is measured using a Hunterlab D25 L colour difference meter. Lighter 
sultanas are considered to be of better quality and these will have a higher lightness 
measurement (L). There were three tractor speeds and two spray pressures resulting 
in 6 treatment combinations which were applied to 6 plots, each consisting of 12 
vines, using a randomized complete block design with three blocks. However, these 
6 treatment combinations resulted in only 4 rates of spray application as indicated in 
the following table. 
 

Table of application rates for the sprayer experiment 
 

 Tractor Speed (km hour−1) 
Pressure (kPa) 3.6 2.6 1.8 

140 2090 2930 4120 
330 2930 4120 5770 

 
To analyze this experiment we set up a factor, Rates, with four levels to compare the 
means of the four rates and two factors with three levels, Rate2 and Rate3, each of 
which compares the means of two treatment combinations with the same application 
rate. The levels of the factors Rate2 and Rate3 are shown in the following table. 
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Table of factor levels for Rate2 and Rate3 in the sprayer experiment 
 

 Rate2  Rate3 
Tractor Speed (km hour−1) 3.6 2.6 1.8  3.6 2.6 1.8 

Pressure (kPa)        
140 1 2 1  1 1 2 
330 3 1 1  1 3 1 

 
The experimental structure for this experiment is: 
 

Structure Formula 
unrandomized 3 Blocks/ 6 Plots 
randomized 4 Rates/(3 Rate2+3 Rate3) 

 
The sources in the analysis of variance table are: 
 

Source df E[MSq] 

Blocks 2 σ σ+2 2
BP B  

Plots[Blocks] 15  

 Rates 3 ( )σ +2
BP Rq ψ  

 Rate2[Rates] 1 ( )σ +2
BP R2q ψ  

 Rate3[Rates] 1 ( )σ +2
BP R3q ψ  

 Residual 10 σ 2
BP  

Total 17  

 ■ 

VII.H Models and hypothesis testing for three-factor 
experiments 

 
In this section we sketch the analysis of the general three factor experiment. That is 
an experiment with factors A, B and C with a, b and c levels, respectively, and each 
of the abc combinations of A, B and C replicated r times. That is, there will be 
n = abcr observations. We do this in preparation for discussing experiments with 
more than two factors in the next section. The analysis is an extension of that for a 
two-factor CRD. 
 
The initial graphical exploration for these experiments involves examining the 
interaction between two factors for each level of the third. For example, look at the 
AB interaction for each of the c levels of C. This can be done using the nonstandard 
function interaction.ABC.plot from the dae library. 
 



  VII-56 

a) Using the rules to determine the ANOVA table for a 3-factor CRD 
experiment 

 
a) Description of pertinent features of the study 
 

1. Observational unit − a unit 
2. Response variable − Response 
3. Unrandomized factors − Units 
4. Randomized factors − A, B, C 
5. Type of study − Three-factor CRD 

 
b) The experimental structure 
 

Structure Formula 
unrandomized n Units 
randomized a A*b B*c C 

 
 
c) Sources derived from the structure formulae 
 
The sources derived from the randomized structure formula are: 
 

A*B*C = A + (B*C) + A#(B*C) 
 = A + B + C + B#C + A#B + A#C + A#B#C 

 
d) Degrees of freedom and sums of squares 
 
The degrees of freedom of these terms can be derived by the cross product rule. 
 

For each factor in the term, calculate the number of levels minus one and 
multiply these together. 

 
The Hasse diagrams, with M and Q matrices, for this study are: 

 

 

Units 

Unrandomized factors

μ
MG MG

MU MU−MG

U 
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B C 

B∧C 

Randomized factors 

A∧C 

A 

A∧B 

A∧B∧C

μ
MG MG

MA 

MAB 

MB MC 

MAC MBC 

MABC

MA−MG MB−MG MC−MG 

MAB−MA−MB+MG MAC−MA−MC+MG MBC−MB−MC+MG

MABC−MAB−MAC−MBC

     +MA+MB+MC−MG 

B C A 

B#C A#C A#B 

A#B#C 

 
 
e) The analysis of variance table 
 
Enter the sources for the study, their degrees of freedom and quadratic forms, into 
the analysis of variance table below. 
 
f) Maximal expectation and variation models 
 
Given that the only random factor is Units, the following are the symbolic expressions 
for the maximal expectation and variation models: 
 

[ ]
[ ]

ψ = =A B C

var =Units

E Y

Y

∧ ∧
 

 
g) The expected mean squares. 
 
Hence the analysis of variance table with sums of squares and expected mean 
squares is: 

  



  VII-58 

Source df SSq E[MSq] 
Units n−1 ′ UY Q Y   

 A a−1 ′ AY Q Y  ( )σ +2
U Aq ψ  

 B b−1 ′ BY Q Y  ( )σ +2
U Bq ψ  

 A#B (a−1)(b−1) ′ ABY Q Y  ( )σ +2
U ABq ψ  

 C c−1 ′ CY Q Y  ( )σ +2
U Cq ψ  

 A#C (a−1)(c−1) ′ ACY Q Y  ( )σ +2
U ACq ψ  

 B#C (b−1)(c−1) ′ BCY Q Y  ( )σ +2
U BCq ψ  

 A#B#C (a−1)(b−1)(c−1) ′ ABCY Q Y  ( )σ +2
U ABCq ψ  

 Residual abc(r−1) ′
ResUY Q Y  σ 2

U  
Total abcr−1 ′ UY Q Y   

 
b) Indicator-variable models and estimation for the three-factor CRD 
 
The models for the expectation that are considered for a three-factor factorial 
experiment are as follows: 
 

[ ] ( )
[ ] ( ) ( ) ( )

[ ] ( ) ( )

[ ] ( ) ( )

ABC

AB AC BC

AB AC

A BC

and equivalent models with a pair of 
two-factors interactions

and equivalent models with two factors 
interacting and one factor independent

E

E

E

E

=

= + +

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

= +

Y X

Y X X X

Y X X

Y X X

αβδ

αβ αδ βδ

αβ α

α β

δ

δ

[ ] ( )

[ ] ( ) ( ) ( )
[ ]

AB

A B C

G

and equivalent models with two factors 
interacting

and other models consisting of 
only main effects

E

E

E μ

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
⎛ ⎞

= + + ⎜ ⎟
⎝ ⎠

=

Y X

y X X X

Y X

β

α β

α

δ

 

 
where 
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( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

{ }
{ }
{ }

ijk

ij

jk

ik

i

j

k

αβδ

αβ

βδ

αδ

α

β

δ

=

=

=

=

=

=

=

αβ

αβ

β

α

α

β

δ

δ

δ

δ  

 
Altogether there are 19 different models that are to be considered. Expressions for 
the estimators of the expected values for each of the models would be derived and 
these would be given in terms of the vectors of means A , B , ( )∧A B , C , ( )∧A C , 

( ∧Β C)  and ( ∧ ∧A Β C)  where the means in the vector are those for each 

combination of the factors in the vector's name. Being means vectors they can be 
written in terms of mean operators, Ms. Further, if Y is arranged so that the 
associated factors A, B, C and the replicates are in standard order, the M operators 
can be written as the direct product of I and J matrices as follows: 
 

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗

1
G

1
A

1
B

1
AB

1
C

1
AC

1
BC

1
ABC

a b cabcr

a b cbcr

a b c racr

a b c rcr

a b cabr

a b c rbr

a b c rar

a b c rr

M J J J

M I J J

M J I J

M I I J

M J J I

M I J I

M J I I

M I I I

r

r

r

J

J

J

J

J

J

J

J

 

 
c) Expected mean squares under alternative models 
 
We have previously given the expected mean squares under the maximal model. We 
also need to consider the expected mean squares under alternative models so that 
we know what models are indicated by the various hypothesis tests. Basically, we 
need to know under which models ( )q ψ  is zero. From our discussion of the two-

factor case, it is clear that  will be zero only when the model does not include a 
term to which the term for the source is marginal. So, provided terms to which it is 
marginal have been ruled out by prior tests, the hypothesis test for a mean square for 
a fixed term is a test for whether the expectation term corresponding to it is zero. 

( )q ψ

 
For example, consider the A#B mean square. Its expected value is  
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( )σ +2

U ABq ψ  
 
Now,  for models involving the A∧B term ( ) ≠AB 0q ψ ( )⎡ ⎤

⎣ ⎦ABX αβ  or terms to which the 

AB term is marginal. That is, it is nonzero for the models 
 

[ ] ( )
[ ] ( ) ( ) (
[ ] ( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ] ( )

ABC

AB AC BC

AB BC

AB AC

AB C

AB

E

E

E

E

E

E

=

= + +

= +

= +

= +

=

Y X

Y X X X

Y X X

Y X X

Y X X

Y X

αβ

)αβ α

αβ β

αβ α

αβ δ

αβ

δ

βδ δ

δ

δ
 

 
It will only become zero when the A∧B∧C and A∧B terms are dropped from the 
model. Dropping the A∧B∧C term in the first model leads to a consideration of the 
next simplest model which is one involving the terms A∧B, A∧C, and B∧C. Dropping 
terms other than A∧B from the other models leaves A∧B in the model so that ( )ABq ψ  

remains nonzero. It is only when the A∧B term is dropped that  becomes 
zero. Hence the test for A#B, provides a test for whether the term A∧B should be 
included in the model, provided that the test for A#B#C has already indicated that the 
term A∧B∧C can be omitted. 

( )ABq ψ

 
d) The hypothesis test 
 
The hypothesis test for choosing the model for a 3-factor experiment is as follows: 
 
Step 1: Set up hypotheses 
 

   Term being tested 

a) H0: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
. . .

.. . . .. ... 0 for all i,j,k

ijk ij i k jk

i j k

αβδ αβδ αβδ αβδ

αβδ αβδ αβδ αβδ

⎛ ⎞− − −
⎜ ⎟
⎜ ⎟⎜ ⎟+ + + − =⎝ ⎠

 A∧B∧C 

 H1: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
. . .

.. . . .. ... 0 for some i,j,k

ijk ij i k jk

i j k

αβδ αβδ αβδ αβδ

αβδ αβδ αβδ αβδ

⎛ ⎞− − −
⎜ ⎟
⎜ ⎟⎜ ⎟+ + + − ≠⎝ ⎠

 

 
b) H0: ( ) ( ) ( ) ( )( )αβ αβ αβ αβ− − + =. . .. 0 for all i,jij i j  A∧B 

 H1: ( ) ( ) ( ) ( )( )αβ αβ αβ αβ− − + ≠. . .. 0 for some i,jij i j  
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c) H0: ( ) ( ) ( ) ( )( ). . .. 0 for all i,kik i kαδ αδ αδ αδ− − + =  A∧C 

 H1: ( ) ( ) ( ) ( )( ). . .. 0 for some i,kik i kαδ αδ αδ αδ− − + ≠  

 
d) H0: ( ) ( ) ( ) ( )( ). . .. 0 for all j,kjk j kβδ βδ βδ βδ− − + =  B∧C 

 H1: ( ) ( ) ( ) ( )( ). . .. 0 for some j,kjk j kβδ βδ βδ βδ− − + ≠  

 
e) H0: α1 = α2 = ... = αa A 
 H1: not all population A means are equal 
 
f) H0: β1 = β2 = ... = βb B 
 H1: not all population B means are equal 
 
g) H0: δ1 = δ2 = ... = δc C 
 H1: not all population C means are equal 

 
Set α = 0.05.  

 
Step 2: Calculate test statistics 
 
 The form of the analysis of variance table for a three-factor factorial CRD is:  
 

Source df SSq E[MSq] 
Units n−1 ′ UY Q Y   

 A a−1 ′ AY Q Y  ( )σ +2
U Aq ψ  

 B b−1 ′ BY Q Y  ( )σ +2
U Bq ψ  

 A#B (a−1)(b−1) ′ ABY Q Y  ( )σ +2
U ABq ψ  

 C c−1 ′ CY Q Y  ( )σ +2
U Cq ψ  

 A#C (a−1)(c−1) ′ ACY Q Y  ( )σ +2
U ACq ψ  

 B#C (b−1)(c−1) ′ BCY Q Y  ( )σ +2
U BCq ψ  

 A#B#C (a−1)(b−1)(c−1) ′ ABCY Q Y  ( )σ +2
U ABCq ψ  

 Residual abc(r−1) ′
ResUY Q Y  σ 2

U  
Total abcr−1 ′ UY Q Y   

 
 Of course, mean squares would be added to this table by taking each sum of 

squares and dividing by its degrees of freedom, F statistics computed by 
dividing all mean squares, except the Residual mean square, by the Residual 
mean square, and p values obtained for each F statistic. 
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Step 3: Decide between hypotheses 
 
 For A#B#C interaction source 
 
 If { } α≥ = ≤Pr OF F p , the evidence suggests that the null hypothesis be 

rejected and the term should be incorporated in the model. 
 
 For A#B, A#C and B#C interaction sources 
 
 Only if A#B#C is not significant, then if { } α≥ = ≤Pr OF F p , the evidence 

suggests that the null hypothesis be rejected and the term corresponding to 
the significant source should be incorporated in the model. 

 
 For A, B and C sources 
 
 For each term, only if the interactions involving the term are not significant, 

then if { } α≥ = ≤Pr OF F p , the evidence suggests that the null hypothesis be 
rejected and the term corresponding to the significant source should be 
incorporated in the model. 
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VII.I Summary 
 
In this chapter we have: 
 
• described how to design factorial experiments using a completely randomized, a 

randomized complete block or a Latin square design; 
• emphasized the advantage of factorial experiments over one-factor-at-a time 

experiments; 
• formulated alternative linear expectation models using indicator variables to 

describe the results from a factorial experiment; given the estimators of the 
expected values as functions of M or mean operator matrices; 

• used the rules from chapter VI, Determining the analysis of variance table, to 
formulate the ANOVA hypothesis test for choosing between expectation models 
in a two-factor factorial experiment and outlined the test;  
• the partition of the total sums of squares was given with the sums of squares 

expressed as the sums of squares of the elements of vectors and as 
quadratic forms where the matrices of the quadratic forms, Q matrices, are 
symmetric idempotents; 

• the expected mean squares under the alternative expectation models are 
used to justify the choice of F test statistic; 

• the order in which hypotheses should be tested was described and it was 
mentioned that in some cases not all hypotheses will be tested; 

• shown how to obtain a layout and the analysis of variance in R; 
• discussed procedures for checking the adequacy of the proposed models; 

demonstrated how to choose a Box-Cox transformation when the model is 
inadequate; 

• subsequent to the hypothesis test, examined treatment differences in detail; in 
particular, outlined the fitting of submodels for the two cases of a) one factor 
quantitative and the other qualitative and b) both factors quantitative; 

• used the rules from chapter VI, Determining the analysis of variance table, to 
formulate the analyses for nested and three-factor factorial experiments. 
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VII.J Exercises 
 
VII.1 A completely randomized experiment was conducted to investigate the effect of 

vitamin B12 (0, 5 mg) and antibiotics (0, 40 mg) fed to swine.  The response was 
the average daily gain in weight. 

 
  Vitamin B12 
  0 5 
  1.30 1.26 
 0 1.19 1.21 
  1.08 1.19 

Antibiotics    
  1.05 1.52 
 40 1.00 1.56 
  1.05 1.55 

 
 What are the components of this experiment? 

1. Observational unit   

2. Response variable   

3. Unrandomized factors   

4. Randomized factors   

5. Type of study   

 
 What is the experimental structure for this experiment? 
 

Structure Formula 
unrandomized  
randomized  

 
 What are the degrees of freedom, sums of squares and expected mean squares 

for the lines in the analysis of variance table based on all unrandomized factors 
being random and all randomized factors being fixed? 

 
Source df SSq E[MSq] 

    

    

    

    

    
Total    
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 Obtain the usual analysis for a two-factor factorial experiment using R, including 
diagnostic checking. Also, examine treatment differences using multiple 
comparison procedures on the appropriate table(s) of means with a view to 
identifying the levels combinations of the factors that produce the maximum 
weight gain. 

 
VII.2 Examination of the interaction plot of swine weight gain in exercise VII.1 

suggests that there might be a response when both Antibiotic is at 40 and 
Vitamin B12 is at 5 and not a significant difference between the other three 
combinations.  To investigate this possibility set up an analysis with a nested 
factorial structure that examines the divergence between two groups of 
treatments thought to be different and differences within the groups where no 
divergence is expected. 

 
VII.3 An experiment was conducted to investigate the effect of temperature and 

copper content on the warping of copper plates. Copper plates were produced 
using each of the combinations of temperature and copper content on one day 
and this was repeated on a second day; the order of the temperature-copper 
content combinations was randomized to the 16 production runs used each day 
in the experiment. The amount of warping of the copper plates produced was 
measured and the results are given in the following table. 

 
 Temperature (°C) 
 50 75 100 125 

Day 1 2 1 2 1 2 1 2 
Copper content (%)         

40 17 20 12 9 16 12 21 17 
60 16 21 18 13 18 21 23 21 
80 24 22 17 12 25 23 23 22 

100 28 27 27 31 30 30 29 31 
  
 What are the components of this experiment? 
 

1. Observational unit   

2. Response variable   

3. Unrandomized factors   

4. Randomized factors   

5. Type of study   

 
 What is the experimental structure for this experiment? 
 

Structure Formula 
unrandomized  
randomized  
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 What are the degrees of freedom, sums of squares and expected mean squares 
for the lines in the analysis of variance table based on all unrandomized factors 
being random and all randomized factors being fixed? 

 
Source df SSq E[MSq] 

    

    

    

    

    
Total    

 
 Analyze the data using R, including diagnostic checking and obtaining a fitted 

equation and surface for an appropriate polynomial submodel. 
 
VII.4 The following are data on the number of units produced per day by different 

operators in different machines.  The order of the operator-machine combinations 
was randomized to the days in a particular period. The whole process was 
repeated in a second period with re-randomization of the operator-machine 
combinations. The first observation for each combination in the following table is 
for the first period and the second for the second period. 

 
 Operator 

Machine A B C D 
1 18 17 16 18 17 20 27 27 
2 17 13 18 18 20 16 28 23 
3 16 17 17 19 20 16 31 30 
4 15 17 21 22 16 16 31 24 
5 17 18 16 18 14 13 28 22 

 
 What are the components of this experiment? 
 

1. Observational unit   

2. Response variable   

3. Unrandomized factors   

4. Randomized factors   

5. Type of study   
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 What is the experimental structure for this experiment? 
 

Structure Formula 
unrandomized  
randomized  

 
 What are the Hasse diagrams of generalized-factor marginalities, with M and Q 

matrices, for this study? 
 
 
 
 
 
 
 
 
 
 
 
 
 What are the degrees of freedom, sums of squares and expected mean squares 

for the lines in the analysis of variance table based on all factors being random? 
 

Source df SSq E[MSq] 

    

    

    

    

    
Total    

 
 The data has been saved in Fac2Prod.dat.rda and is available from the web site. 

Analyze the data using R, including diagnostic checking. 
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VII.5 The yields of an undesirable by-product of a process were measured from 12 
runs in which 2 different catalysts and 2 different pressures were used in a 
random order; that is each combination was replicated 3 times.  This experiment 
was repeated at two different laboratories.  The data, given below, are the 
percentage of by-product produced and it is available in the file Fac2ByPr.dat.rda 
from the web site. 

 
 Catalyst I II 
 Laboratory A B A B 
  53 27 40 45 
 High 43 45 32 12 
  45 57 29 69 

Pressure      
  42 32 61 54 
 Low 95 27 24 60 
  60 98 11 26 

 
 The components of this experiment are: 
 

1. Observational unit – a run 
2. Response variable – % By-product 
3. Unrandomized factors – Laboratories, Runs 
4. Randomized factors – Catalyst, Pressure 
5. Type of study – Two-factor RCBD 

 
 In this experiment interactions between laboratories and treatments are likely to 

be of interest so that the experimental structure for this experiment would be: 
 

Structure Formula 
unrandomized Labs/Runs 
randomized Catalyst*Pressure*Labs 

  
What are the Hasse diagrams of generalized-factor marginalities, with M and Q 
matrices, for this study? 
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 What are the degrees of freedom, sums of squares and expected mean squares 

for the lines in the analysis of variance table based on all unrandomized factors 
being random and all randomized factors being fixed? 

 
Source df SSq E[MSq] 

    

    

    

    

    

    
Total    

 
 Analyze the data using R, including diagnostic checking and the examination of 

treatment differences. Note that in producing the exploratory interaction plots, 
because there are 3 factors in the randomized structure, an interaction plot for 
two of the factors should be produced for each level of the third factor. In this 
case, an interaction plot of Catalyst by Pressure for each Lab seems the natural 
choice. Use the nonstandard function interaction.ABC.plot from the dae 
library. 
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