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An executive summary

The field of statistics has made profound contributions to society over
the past century. Its impact is felt across virtually all branches of sci-
ence, medicine, industry and government. The strong growth of the field—
stimulated in large part by advances in computing technology—has also
caused strains and frustrations as the opportunities have increased and
the supporting infrastructure has struggled to keep pace. This report at-
tempts to highlight many of the contributions that statistics has made and
to identify priorities for continued progress.

The report is an outgrowth of a workshop hosted by the National Science
Foundation, which took place May 6-8, 2002. Approximately fifty statisti-
cians from around the world participated. The goal of the workshop was to
identify future challenges and opportunities for the profession. It focused on
scientific research but also covered important related topics such as statis-
tics education, infrastructure, the international perspective, and long-term
objectives. The scientific committee was placed in charge of producing this
report. Over the course of the next year a variety of additional inputs were
received from members of the community and leaders of professional sta-
tistical organizations. This report attempts to reflect an integrated view of
all of these inputs.

Statistics is itself a science—the science of learning from data. It is
grounded in a still growing core of knowledge that reflects its roots in prob-
ability and mathematics and also the more recent influence of computer
science. Statistics both draws from these roots and feeds back to them new
mathematical and computational questions. Statistics is also an unusually
interdisciplinary field. Indeed, applications are its lifeblood: they stimulate
research on new theories and methods while providing valuable outlets for
established techniques. Among the highest priorities for statistics today is
adapting to meet the needs of data sets that are so large and complex that
new ideas are required, not only to analyze the data, but also to design the
experiments and interpret the experimental results. These problems are
often the source of the widespread interdisciplinary collaborations—from
astronomy to public policy to zoology—which statisticians engage in today.

A substantial proportion of the report describes contributions that statis-
tics has made to other fields, including physical, biological, and social sci-
ences, as well as engineering and computer sciences. The motivation for
this emphasis is to help clarify the often misunderstood role of statistical
science and to illustrate its impact in a variety of ways. Special attention
is also given to statistics education because there are substantial across-
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the-board opportunities for advancing the way the subject is taught and
students are trained.

The sense of the workshop and the feeling of the leadership in the profes-
sion is that enormous opportunities lie ahead for statistics. The realization
of this potential, however, will not come easily. Resources are too limited.
The pipeline of students is too small. And the infrastructure supporting
the field is too constrained. To deal with these and other challenges, the
following recommendations are put forth:

° Promote understanding of statistical science. Statistics is
hard to pigeon-hole. At NSF, it falls largely under the mathematical sci-
ences, yet most statisticians would agree that statistics is not a branch of
mathematics. Modern statistics is also close to computer science, especially
machine learning, yet most statisticians would agree that statistics is not a
branch of computer science. Statistics is a science in itself, and attempts to
group it here or there ultimately exacerbate misunderstandings about the
field. Statisticians need to take responsibility for articulating more effec-
tively the unique capabilities of their discipline. NSF can help by assuring
that, wherever it is housed, statistics can flourish without unproductive
constraints.

° Increase support for, and the autonomy of, the NSF statis-
tics program. To avoid stifling the momentum evident today in statistics
(and partially documented in this report) and to reap the benefits of the
multitude of opportunities presenting themselves, there are compelling rea-
sons for providing a substantial boost in resources that support statistics
at NSF. (See below for some specific needs.) In addition, we suggest that
NSF provide the DMS statistics program with increased autonomy within
its current organizational structure. This would be a logical step towards
full division status that many feel is already overdue.

e Develop more flexible funding models. The creation of the new
Statistics and Applied Mathematics Institute, SAMSI, is an excellent exam-
ple of creative new funding needed by the statistics profession. The needs,
however, are not solely institutional. Increasingly, individual researchers
are becoming involved in complex cross-disciplinary projects or in activities
that are more akin to running a laboratory than doing individual research.
One implication of this movement is the need for learning advanced pro-
gramming techniques and the development of sophisticated user-friendly
software. We propose that NSF develop novel funding arrangements that
would encourage these new ventures while being careful not to simply ex-
tract these monies from the individual research grant pool.

° Strengthen the core of statistics research. The risk of fragmen-
tation of the core of statistics has increased substantially as the field has
diversified and expanded. More attention must be given to consolidation of
knowledge and the development of new theories and methods with broad
applicability. We urge NSF to take responsibility for providing the level of
support necessary for strengthening the statistics core.
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° Improve the support of multidisciplinary research activities.
Much of the excitement in science today stems from research that involves
multiple disciplines. While statistics comes by this naturally, it often suffers
from inclusion as an afterthought or exclusion as a minority player without
a significant role. We encourage NSF' to experiment with new vehicles for
funding this type of research and—when appropriate—to assure a role for
statistics. For example, in many cases statisticians should be partners in
projects with complex design and data analysis components. For such col-
laborations to succeed, statisticians will need to have the time and support
to understand the subject area.

e Develop new models for statistics education. The growth of AP
statistics courses in high schools, the burgeoning enrollments in undergrad-
uate statistics courses, and major improvements in computing technology
for data analysis underscore the need for reevaluation of the entire K-16
approach to statistics education. Graduate training is also due for reassess-
ment: keeping the right balance between training in the core parts of the
science, preparing students for cross-disciplinary work, and incorporating
relevant parts of computer science into the curriculum are among the con-
tributing factors to the awkward balancing act that departments face today.
The role of post-doctoral training and continuing education more generally
should also be part of the updated vision. To help the statistics community
develop appropriate new models for education, and to do it both holisti-
cally and systematically, we suggest that NSF sponsor or support a series
of focused, coordinated workshops on statistics education with the aim of
developing concrete plans for reform on these various fronts. It would be
natural to carry out this undertaking in collaboration with the scientific and
educational organizations that share responsibility for and concern about
statistics education.

) Accelerate the recruitment of the next generation. Workshop
participants pointed repeatedly to shortages in the pipeline of students and
unmet demand from key industries and government laboratories and agen-
cies. The long-range solution to this problem must lie in improvements to
the education system, starting even in elementary school and continuing
into high school and undergraduate school. However, changes of this type
will take much time and investment. Meanwhile, the shortage may prove
quite damaging to the nation’s infrastructure, especially in this period of
heightened concerns about national defense and security—areas to which
statistics has much to offer. Novel special programs designed to spur interest
in undergraduate and graduate training in statistics should be considered.
We encourage NSF to join forces with leaders of the statistics profession to
help solve the pipeline problem.
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Introduction

1.1 The workshop

Evidence is all about us for the current unique opportunities for statis-
tics. Consider, for example, the three pillars of the Mathematical Sciences
Priority Area of the National Science Foundation: handling massive data,
modeling complex systems and dealing with uncertainty. All three are pri-
mary interests of the discipline of statistics. Never before has statistical
knowledge been more important—nor as widely useful- to the scientific en-
terprise.

Massive amounts of data are collected nowadays in many scientific fields.
But unless there are proper data collection plans, this will almost inevitably
lead to massive amounts of useless data. Without scientifically justified
methods and efficient tools for the collection, exploration and analysis of
data sets, regardless of their size, we will fail to learn more about the often
complex and poorly or partly understood processes that yield the data.

In order to master this enormous opportunity, the statistics community
must address the many challenges that are arising. Some of these are in-
tellectual challenges. Others are infrastructural, arising from the changing
tides of external forces.

This document records an attempt by the statistics community to iden-
tify and address these challenges and forces. It is based on a workshop on
the future of statistics that was held at the National Science Foundation
in May of 2002. The workshop was held at the request of the Foundation,
and was organized by a scientific committee of 9 members. That same
committee has prepared this report with the guidance and assistance of
the workshop participants and many others.

There were about fifty participants in the workshop, chosen to represent
the breadth of the statistical profession. There were a significant number
of non U.S. participants, but on the whole the workshop and the report
are focused on the statistical sciences within the boundaries of the United
States. The names of the participants, together with the names of the
scientific committee, are included within Appendix A to this report. This
appendix also contains the schedule of talks at the workshop, as well as the
charge delivered to the participants.

The workshop took place at a time of great ferment and excitement in
the world of statistics. Recognizing this, the National Science Foundation
supported the workshop as a means for the community to come together to
identify its common needs, goals, and aspirations. The scientific committee
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was given a free hand to create the workshop as well as to design the
final product, this report. However, it was clear that the sponsors sought a
product that would have a wide and positive effect on the future of statistics
in the United States.

The committee has decided that, for maximum impact, this report should
be directed to a wide range of audiences. Thus our target is not just statis-
tics researchers, but also such important supporting players as collabo-
rators, department heads, college deans, and funding agencies. The work-
shop participants, themselves from a diverse set of scientific frontiers, found
much in common about the challenges and opportunities facing their pro-
fession. This report is designed to encompass this common ground in a
manner intelligible to the whole scientific community.

The workshop was designed to focus on aspects of the statistics field
that were particularly relevant to NSF. Biostatistics is a branch of statis-
tics primarily associated with applications in the health sciences. It is a
large and thriving subdiscipline, with many Departments of Biostatistics
existing in medical schools throughout the U.S. However, the biostatistics
research area has not been emphasized in this report because the NSF does
not support applied biostatistical research in the health sciences. Even so,
we should point out that research in biostatistics constitutes a major com-
ponent of the total research effort in statistics.

1.2 What is statistics?

An important driving force behind the workshop and the resulting report
was the perception that the role of the statistics profession is often only
poorly understood by the rest of the scientific community. Much of the
intellectual excitement of the core of the subject comes from the develop-
ment and use of sophisticated mathematical and computational tools, and
so falls beyond the ken of all but a few scientists. One of our goals was to
improve this situation.

To fulfill this need, the first speaker at the workshop, the eminent Pro-
fessor D. R. Cox of Oxford University, was asked to start with the basics
and identify “What is Statistics?”. This question was to be repeatedly ad-
dressed through the course of the workshop. We summarize some of the
key points here.

Statistics is the discipline concerned with the study of variability, with
the study of uncertainty and with the study of decision-making in the face
of uncertainty. As these are issues that are crucial throughout the sciences
and engineering, statistics is an inherently interdisciplinary science. Even
though statistics does not have its own concrete scientific domain (like
rocks, clouds, stars, or DNA), it is united through a common body of
knowledge and a common intellectual heritage.
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A distinguishing feature of the statistics profession, and the method-
ology it develops, is the focus on a set of cautious principles for draw-
ing scientific conclusions from data. This principled approach distinguishes
statistics from a larger venue of data manipulation, organization, and anal-
ysis. An overarching principle dictates that one should provide a measure
of the uncertainty for scientific statements based on data. Such statisti-
cal tools as confidence coefficients, significance levels, and credible regions
were designed to provide easily interpreted measures of validity. When used
appropriately, these tools help to curb false conclusions from data.

Of course, statisticians do not own the tools of statistics any more than
mathematicians own mathematics. Certainly most statistical applications
and much statistical research is carried out by scientists in other subject
matter areas. The essential role of statistical research is to develop new tools
for use at the frontiers of science. In the later sections of this report we will
demonstrate the very exciting statistical research possibilities that have
arisen in recent years. In particular, the possibilities for data collection and
storage have opened the need for whole new approaches to data analysis
problems.

1.3 Our scientific domains

The scientific domains of this work are nearly as wide as all scientific en-
deavor. In the workshop we focused on six main areas: the Core of Statistics
plus six principal areas of application:

e biological science
e engineering and industrial statistics

e geological and environmental sciences

information technology

physical sciences

e social and economic science

These categories were chosen to correspond roughly to the different direc-
torates of the National Science Foundation in which the research is sup-
ported.

In Chapter Five of this report each of these areas, save one, will be given
an in-depth review. Unfortunately, social and economic science had to be
excluded. The difficulty the editors faced is that this area is not only rather
separated from the rest, it is also quite complex. The research workers in
the field are most often housed not in statistics departments, but instead in
such departments as economics, psychology, or sociology. It includes several
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domains that have their own mature, specialized statistics literatures, such
as psychometrics and econometrics. An adequate review of this rich and
sophisticated area was beyond our time frame and resources.

Outside the collaborative domain, the core activity of statisticians is the
construction of the mathematical and conceptual tools that can be used
for information extraction. Much of the research has as its mathematical
basis probability theory, but the end goal is always to provide results use-
ful in empirical work. This distinguishes the theoretical research efforts of
statisticians from most areas of mathematics in which abstract results are
pursued purely for their intrinsic significance. As was stated in the NSF
Report 98-95 (“Report of the Senior Assessment Panel for the Interna-
tional Assessment of the U.S. Mathematical Sciences”) hereafter called the
“Odom Report”:

Statistics has always been tied to applications, and the signif-
icance of results, even in theoretical statistics, is strongly de-
pendent on the class of applications to which the results are
relevant. In this aspect it strongly differs from all other disci-
plines of the mathematical sciences except computational math-
ematics. (Our emphasis)

A distinguishing feature of the statistics profession, and the methodology
it develops, is the focus on a set of cautious principles for drawing scien-
tific conclusions from data. This principled approach distinguishes statistics
from a larger venue of data manipulation, organization, and analysis. One
central mandate dictates that one should provide a measure of the uncer-
tainty for scientific statements based on data. Such statistical tools as con-
fidence coefficients, significance levels, and credible regions were designed
to provide easily interpreted measures of validity. When used appropriately,
these tools help to curb false conclusions from data.

Benjamin Disraeli, later quoted by Mark Twain, said, “There are three
kinds of lies: lies, damned lies, and statistics.” In fact, statisticians are
trained to operate at the other end of the spectrum, separating scientific
truth from scientific fiction. To illustrate this point, later in this report we
will discuss a new measure of validity, the false discovery rate, that was
developed due to the massive data sets and wide range of hypotheses that
occur in modern scientific investigations.

Of course, statisticians do not own the tools of statistics any more than
mathematicians own mathematics. Certainly most statistical applications
and much statistical research is carried out by scientists in other subject
matter areas. The essential role of statistical research is to develop new tools
for use at the frontiers of science. In the later sections of this report we will
demonstrate the very exciting statistical research possibilities that have
arisen in recent years. In particular, the possibilities for data collection and
storage have opened the need for whole new approaches to data analysis
problems.
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1.4 The statistical community

By the nature of their work, statisticians work in a wide array of envi-
ronments. In the United States there are many statisticians who work in
Departments of Statistics. Such departments are found at most of the ma-
jor research universities. There are now 86 Ph.D. programs in Statistics,
Biostatistics, and Biometrics. They have tended to focus on graduate re-
search, including collaboration with other disciplines, and education, as
well as undergraduate service courses. One key question to be addressed
later in this report is their potential future role in providing undergraduate
majors in statistics as a part of a major effort to increase the size of the
pipeline into the profession.

These departments largely arose by splitting off from mathematics de-
partments in the second half of the twentieth century. As such statistics is
often viewed as a branch of mathematics. This structural view is evidenced
in the National Science Foundation itself, in which Probability and Statis-
tics is one branch of the Division of Mathematical Sciences, placed side by
side with such “pure” branches as Topology and Algebra. However one of
the key conclusions of the participants of the Futures workshop was that
statistics has become more and more distinct from the other mathemati-
cal areas. The scientific goals of statisticians and the directions of modern
science point to a world where computer and information science tools are
at least as important to statistics as those of probability theory.

A substantial fraction of the academic statistics community works in
departments other than statistics. This can occur even in universities with
statistics departments, where they can be found in business schools, social
science and science departments across the spectrum. In schools without
statistics departments, as for example in four year colleges, there are often
statisticians within the mathematics department where they are needed
for undergraduate education. Finally, there are also many statisticians who
work in biostatistics departments.

Going beyond the academic community, but well connected to it, are
many more statisticians employed in government and business, as well as
many users of statistics. The NSF Report 98-95, the Odom Report, stated
regarding the field of statistics:

The interaction between the academic community and users in
industry and government is highly developed, and hence there
is a rapid dissemination of theoretical ideas and of challenging
problems from applications, as well as a tradition of interdisci-
plinary work.

Statisticians are found in government agencies from the Census Bureau
to the National Institute of Standards and Technology to the National
Institutes of Health. They are employed across a wide range of industries,
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often for quality control work. In particular, the pharmaceutical industry
has been a leading employer of statisticians, who carry out the design and
analysis of experiments required for drug development.

1.5 Resources

This committee report appears to be the first of its kind for statistics, and
so we cannot provide benchmarks from past reports for comparison. Our
primary sources of information for the health of the profession, as well as
its trends are materials from the joint mathematical societies and from
the National Science Foundation. Within these documents it is important
to separate out the information that is particular to statistics from that of
mathematical sciences as a whole, as in many cases the trends are different.

The NSF Report 98-95 titled “Report of the Senior Assessment Panel for
the International Assessment of the U.S. Mathematical Sciences,” widely
known as the Odom Report, is an important document because of its role
in generating policy at the Foundation. It provided an independent assess-
ment of the needs of the mathematical sciences including statistics, but
for the most part focuses on mathematics as a whole. There are sufficient
commonalities between the needs of mathematics and statistics to use it as
an important source document. For example, the report identifies the three
primary activities of mathematicians as being:

1. Generating concepts in fundamental mathematics

2. Interacting with areas that use mathematics, such as science, engi-
neering, technology, finance, and national security; and

3. Attracting and developing the next generation of mathematicians.

After substituting statistics for mathematics, this trichotomy serves well
to describe the primary activities of statisticians as well. One fundamental
distinction between mathematics and statistics lies in the balance between
items 1 and 2, as will be discussed later.

The book Statistics in the 21st Century (Raftery et al, ed.) contains
seventy papers written by many of the leading scholars of today. It can be
recommended to statisticians as a valuable compendium of information,
covering the current status and future directions of research in a wide
variety of statistical topic areas.
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Historical Overview

Statistical methods have a long history of application in the sciences, al-
though its recognition as a separate field dates largely from the twenti-
eth century. Stigler (1986) identifies modern statistics as a unified subject,
“both a logic and a methodology”, that grew out of a diversity of ideas.
One stream of the story is data analytic, as it arises from the problem
of combining measurements in astronomy and geodesy. Among the earli-
est contributions was the development of the method of least squares by
Legendre around 1800.

A second stream, the basis for the theory of uncertainty, arose from the
early developments in the theory of probability. Here the mathematicians
Bernoulli, DeMoivre, Bayes, Laplace, and finally Gauss laid the foundations
for the construction of probability models, as well as provided a basis for
inverting probability models to draw conclusions about data.

The late part of the nineteenth century brought a fundamental coales-
cence of statistical thinking in England, but now the measurements that
generated the concepts were those of heredity and biometrics. The key
statistical ideas of correlation and regression were developed at this time.
Soon thereafter, the chi-squared test was developed by Karl Pearson (1900).
This was a tremendously important conceptual breakthrough; it is still be-
ing used for the rigorous testing of scientific hypotheses within a statistical
model. The Department of Applied Statistics at University College in Lon-
don was founded in 1911 by Karl Pearson, and was the first university
statistics department in the world. It arose from the merger of a Eugenics
Laboratory and a Biometric Laboratory.

Within a few years, R. A. Fisher, also of England, created the foundations
of much of modern statistics. Fisher, also the founder of modern population
genetics, was a genius of the highest order. He established methods for the
analysis of complex experiments, now called “analysis of variance”, which
are used thousands of times each day by scientists around the globe. He
showed that a function he called the likelihood could be used to develop
optimal estimation and testing procedures in almost any probability model.
He founded and developed the main ideas in the design of experiments,
inspired by his work on agricultural field trials.

Fisher had a tremendous statistical intuition. At least some of the im-
portant work of the twentieth century was simply the attempt to clarify
the significance and expand the domain of his groundbreaking research.
Among the important works that followed in the 1930’s was the rigorous
development of the theory of hypothesis testing by Jerzy Neyman and Egon
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Pearson at University College London. This theory became the foundation
of research in this area for the remainder of the twentieth century.

By the mid-century, statisticians in the United States were making sem-
inal contributions. Abraham Wald of Columbia University was a leader in
the formal development of sequential analysis, a subject that grew out of
the need for efficient sampling methods during World War II. Wald was
also a leader in the development of decision-theoretic methods in Statis-
tics. Another important player of this period was C. R. Rao, now of The
Pennsylvania State University and recent winner of the National Medal of
Science, who produced many innovations in multivariate analysis, which is
the study of the complex structures that exist in data of high dimensions.
Another Medal of Science winner, John Tukey of Princeton, is the father
of modern data analysis.

It was also during this period that statistics started to become institu-
tionalized as a separate subject in the United States, distinct from the rest
of mathematics or particular areas of application. In the U.S., Columbia
(1946) and University of North Carolina (1946) were among the earliest
departments. Through the rest of the century, as the role of statistics in
the sciences expanded, the number and size of such departments grew. In
the next section we will provide indicators for this growth.

Many important advances of the past century came in the area of mod-
elling and estimation, where methods were developed that expanded the
horizon of possible models and widened the range of validity of statisti-
cal procedures. An important adjunct to these developments was the wide
expansion of so-called large sample theory, the study of the distributional
properties of statistical procedures when the sample sizes are large. Accu-
rate measures of uncertainty are the key components of statistical inference;
large sample methods have enabled statisticians to calculate excellent ap-
proximations to these measures in a very wide range of problems.

A major revolution in science occurred during the 1970’s. It was destined
to change the face of statistics forever. Beginning with punch cards, but
rapidly replacing the existing slower alternatives, the computer has changed
completely what it means to carry out a statistical analysis. It has also
changed the facility with which scientists can collect and store data.

What are the consequences of this? This report is about those issues. We
conclude our history by noting that the most successful methodologies at
the end of the twentieth century, such as the bootstrap, and the propor-
tional hazards model, would have been impractical without these changes
in computing power. And the capacity for scientists to collect ever more
data as well as data of greater sophistication points to an exciting and
challenging future with more fundamental results.
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Current Status

3.1 General overview

The theory and application of statistics spreads across many disciplines.
The workshop organizers asked the following eminent speakers to deliver
keynote talks on the following subareas:

e Core of statistics: Iain Johnstone, Stanford University.
e Biological statistics: Warren Ewens, University of Pennsylvania.

e Engineering and industrial statistics: Vijay Nair, University of Michi-
gan.

o Geological and environmental statistics: Richard Smith, University of
North Carolina.

o Information technology and statistics: Werner Stuetzle, University of
Washington.

e Social and economic statistics: Joel Horowitz, Northwestern Univer-
sity.

In addition, there were talks by Chris Heyde, Australian National Uni-
versity and Columbia University, and James Berger, Duke University on
“Statistics in the international scene” and “Institutes: the role and contri-
bution to statistics” respectively.

Tt should be noted that the subject of statistics does not have an agreed
upon division of its heritage into distinct areas of research, such as “algebra,
analysis, topology, and geometry” are in mathematics or “inorganic, or-
ganic, physical, and biophysical” are in chemistry. There is rather a central
portion of the research, that we will call the core, and applications-oriented
research that we have divided by scientific field.

The workshop organizers took these lectures and the ensuing discussions
as the basis for the following report on the current status of the statistics
profession. We start with some general statements about the state of the
profession, and then turn to more specialized issues organized by the above
research areas.
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3.2 The quality of the profession

The NSF Odom Report provided a strong endorsement to the quality of
the U.S. effort in statistics, stating that: “the statistical sciences are very
healthy across all subareas in the United States, which is the clear world
leader.”

At the workshop Iain Johnstone presented a wide range of data on the
current status of statistics, some of which we reproduce in this section.
For example, he conducted an informal survey of four leading statistics
journals (two of which are based in the United Kingdom). Approximately
one-half of the authors had U.S. affiliations, substantiating the preceding
Odom quote. The following table shows the departmental affiliation of the
the U.S. based authors in these journals.

Statistics 49%
Biostatistics 23%
Industry 6%

Math.Science 5%
Mathematics 4%
Other 13%

Approximately one-half of the authors had U.S. affiliations. Essentially all
of these authors are in academic institutions. Moreover, the vast majority
come from statistics or biostatistics departments, with less than one in ten
coming from a department of Mathematics or Mathematical Sciences. The
next table shows the reported sources of funding for this published research:

NIH 40%
NSF 38%
NSA 9%
ARO/ONR/EPA 4%
Other 9%

Clearly the National Science Foundation and the National Institutes of
Health are the major role players in funding research in statistics. However,
this split in our funding is a key factor in diminishing our presence in either
scientific agency.

3.3 The size of the profession

One way to gauge the size of the statistics profession is to compare it with
the rest of mathematics. In the following table we give the approximate
number of members in the leading statistics and mathematics societies.
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American Statistical Association (ASA) 16,000
Institute of Mathematical Statistics (IMS) 3,500
Biometric Society (ENAR/WNAR) 3,500
American Mathematical Society (AMS) 30,000
Mathematical Association of America (MAA) 33,000
Society for Industrial and Applied Math (STAM) 9,000

These numbers are somewhat difficult to compare due to overlapping mem-
bership lists and various reporting biases, but they do suggest that the
number of statistics professionals might be somewhere between one-fourth
to one-half the number of mathematicians.

The American Mathematical Society annual survey of 2001 indicates that
there are 86 doctoral programs in statistics, biostatistics, and biometrics
(Group IV). This can be compared with 196 programs in other areas of
mathematics (Groups I, II, III, V). Again, the numbers are not easy to
compare, but do provide some idea of the scale.

A better measure might be the annual number of Statistics Ph.D’s. How-
ever, these counts suffer from many of the usual data collection challenges:
definition of population, quality of data, and census non-response. The fol-
lowing table presents three rather different numbers for statistics, as well
as two estimates for the rest of mathematics.

AMS Survey 2000 (excluding probability) 310

Amstat Online 2000 (self reports) 457

NSF Survey of Earned Doctorates 2000 822
(accumulated over statistical subfields)

For reference, math excluding statistics:
AMS Survey 2000 809
NSF Survey of Earned Doctorates 925

The AMS survey acknowledges problems with non-response from Statistics
programs. The NSF Survey of Earned Doctorates number is derived by
aggregating “statistical subfields” from the nearly 300 fine categories by
which fields of doctorate are categorized in this Foundation wide survey.

If we consider the number of doctorates in math excluding statistics,
there is greater coherence between the AMS and NSF surveys, again sug-
gesting problems with the identification and collection of data for statistics
in particular.

The NSF survey does provide data back in time that is useful for under-
standing how the relationship between statistics and the rest of mathemat-
ics has changed over the last 35 years. Figure 3.1 shows that the annual
number of statistics Ph.D.s (per NSF definition) started at 200, less than
1/3 the number of mathematics degrees, but has grown more or less linearly
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FIGURE 3.1. NSF Survey on the Number of Doctorates by Subject Matter

ever since to 800, staying roughly equal with mathematics in the 1980’s,
and falling slightly behind since then.

The number of research doctorates is a noisy surrogate for the level
of research activity. Regardless, some at the workshop found it surprising
that there are three program directors in Division of Mathematical Sciences
for Statistics and Probability as opposed to 19 for all other mathematical
areas. This does not seem proportionate to the size of the discipline, nor
its potential importance in building connections between DMS and other
sciences and engineering.

In followup discussions with the NSF leadership it was learned that the
number of program officers in an area is strongly related to the number
of research proposals received in that area, and at this time statistics is
somewhat overrepresented relative to this number, the so-called "proposal
pressure." Thus we are, in a sense, victims of our own success at being

interdisciplinary, and obtaining funding from other sources, particularly
NIH.
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This, plus the low funding rates in the DMS, could be the sources of
reduced proposal pressure. One consequence is that Statistics has a smaller
role, and less influence, in this division of NSF than it would otherwise.
Another consequence, to be developed later, is that there is not enough
encouragement to do core research, as DMS is virtually the only source of
funding.

3.4 The Odom Report: Issues in mathematics and
statistics

The Odom report provided some broad statements about the most impor-
tant issues in mathematics as a whole. In this section we discuss them in
the context of the current status of statistics. We will later revisit these
themes in the designated subareas.

3.4.1 Data collection

A major theme of our report is that the statistics profession is experiencing
a dramatic growth in its scientific value and its scientific workload due to
changes in science, and in particular data collection. The Odom Report
stated that

With the advent of high-speed computers and sensors, some
experimental sciences can now generate enormous volumes of
data—the human genome is an example—and the new tools needed
to organize this data and extract significant information from
it will depend on the mathematical sciences.

Of all the mathematical sciences, the statistical sciences are uniquely fo-
cused on the collection and analysis of scientific data. Every senior statis-
tician has felt the impact of this startling growth in the scale of data in
recent years.

3.4.2 Increased opportunities for scientific collaboration

A second major theme of this report is that concurrent with the increased
demand for statistical knowledge in the sciences comes an increased pres-
sure for statisticians to make major time commitments to gaining knowl-
edge and providing expertise in a diverse set of scientific areas. As noted
in the Odom Report,

Both in applications and in multidisciplinary projects ... there
exist serious problems in the misuse of statistical models and in
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the quality of the education of scientists, engineers, social sci-
entists, and other users of statistical methods. As observations
generate more data, it will be essential to resolve this problem,
perhaps by routinely including statisticians on research teams.

The Odom report further noted the scientific problems of the future will
be extremely complex, and require collaborative efforts. It states that it
will be virtually impossible for a single researcher to maintain sufficient ex-
pertise in both mathematics/computer science and a scientific discipline to
model complex problems alone. We wholeheartedly agree with this finding,
and will elaborate on it further.

3.4.8 The next generation

In several ways the future challenges to statistics differ from that of math-
ematics. For example, the Odom Report identifies three key issues:

...the mathematics community in the United States shares with
other nations significant disciplinary challenges including a con-
dition of isolation from other fields of science and engineering,
a decline in the number of young people entering the field, and
a low level of interaction with nonacademic fields, especially
in the private sector. (emphasis ours)

It is clear that the middle concern is of great importance to us. It is our
observation that the number of U.S. residents entering the statistics field
has shrunken over the years, and the growth in Ph.D. degrees has come
largely by foreign recruitment.

On the other hand, in the opinion of the scientific committee, the Odom
Report’s concern about isolation from other fields, scientific and non-scientific,
applies less and less to the current statistics scene.
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The Core of Statistics

Statistics has an expanding intellectual heritage that we might, for lack of
a better word, call the core of statistics. This terminology is not routinely
used in the profession and so it is useful to describe more precisely its
intended meaning. We will define the core of statistics as the subset of
statistical activity that is focused inward, on the subject itself, rather than
outward, towards the needs of statistics in particular scientific domains.
As a synonym for “core” the word “inreach” might be offered. This would
reflect the fact that this core activity is the opposite of outreach. As such,
almost all statisticians are active in both inreach and outreach activities.

The research in the core area is focused on the development of statistical
models, methods, and related theory based on the general principles of the
field. The objectives are to create unifying philosophies, concepts, statistical
methods, and computational tools. Although this is introspective activity,
a central philosophy of the core is that the importance of a problem is not
dictated by its intrinsic beauty (as, say, in abstract mathematics). Rather,
its importance is dictated by its potential for wide application or, alterna-
tively, for its value in expanding understanding of the scientific validity of
our methods.

Through this combination of looking inward and looking outward, the
core serves very much as an information hub. It is defined by its connec-
tivity to, and simultaneous use in, virtually all other sciences. That core
statistical concepts and methodology can be used simultaneously in a vast
range of sciences and applications is a great source of efficiency in statistics,
and as a consequence, provides high value to all of science.

Core research might be contrasted to “application-specific statistical re-
search”, which is more closely driven by the need to analyze data so as
to answer questions in a particular scientific field. Of necessity, this re-
search draws on core knowledge for tools as well as for an understanding
of the limitations of the tools. It also provides raw material for future core
research through its unmet needs.

4.1 Understanding core interactivity

As Tain Johnstone noted in his workshop address, one way to demonstrate
the amazing way that the core activities of statistics provide widespread
value to the scientific community is to consider data on the citations of
statistical literature. He did offer a strong caution that citation data should
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FIGURE 4.1. Citation counts of the most cited mathematical scientists

not be overinterpreted, as high citations for individual articles can reflect
things other than quality or intrinsic importance. Just the same, it is offered
here because it provides a simple and accessible measure of the widespread
influence of statistical research on scientific fields outside of statistics.

The Institute of Scientific Information (ISI), which produces the Science
Citation Index and its relatives, created several lists of the “most cited
scientists in the 1990’s.” Based on data provided by Jennifer Minnick, ISI,
Oct 11, 2000, eighteen of the twenty-five most cited mathematical scientists
of the period 1991 to 2001 were statisticians or biostatisticians. Citation
counts per author are given in Figure 4.1 In addition, the Journal of the
American Statistical Association was far and away the most cited mathe-
matical science journal.

There is evidence that this high rate of citation of statistical articles, rel-
ative to mathematics as a whole, is related to its wide scientific influence.
For example, the paper by Hall and Titterington (1987), which considers
the thorny problem of choosing a smoothing parameter in nonparametric
function estimation, has about 2/3 of its citations outside any definition of
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Recent Citations of Efron's Bootstrap Paper
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FIGURE 4.2. Of 500 recent citations of Efron’s paper, 152 were in statistics. The
distribution among sciences of the others is shown above.

the core of statistics, including the TEEE journals, J. Microscopy, Biomed-
ical Engineering, and Journal de Physique. This is despite its appearance
in a core research journal, and its theoretical cast.

One of the most important articles that leapt directly from core research
into the mainstream of many scientific areas is the one introducing boot-
strap methods. An examination of 500 recent citations of this paper shows
that only 152 of these citations appeared in the statistics literature. Figure
4.2 shows the wide dispersal of this innovation that was generated in the
core of statistics.

Of course, the core also arises at meaningful and useful methods for sci-
ence because it reaches out to specific areas, finds important ideas, and
creates the necessary generalizations that widen applicability. As an exam-
ple, we might consider the development of methods that had their origins
in age-specific death rates in actuarial work. In 1972 and 1975 the ideas
of proportional hazards regression and partial likelihood analyses were in-
troduced, which greatly enriched the tools available for the analysis of
lifetime data when one has censored data along with covariate informa-
tion. Since that time, these ideas and this methodology have grown and
spread throughout the sciences to all settings where data that is censored
or partially observed occurs. This would include astronomy, for example,
where a star visible with one measurement tool might be invisible due to
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inadequate signal with a second measurement tool.

4.2 A detailed example of interplay

The following recent example illustrates in more detail the theme that the
core research in statistics feeds off and interacts with outreach efforts. Since
at least some of the work is NSF funded, it indicates in part the kind of
interactions that should be kept in mind when supporting core research.

In 2001 three astrophysicists published in Science a confirmation of the
Big Bang theory of the creation of the universe. They studied the imprint of
so-called acoustic oscillations on the distribution of matter in the universe
today and showed it was in concordance with the distribution of cosmic mi-
crowave background radiation from the early universe. It not only provided
support for the Big Bang theory, it also provided an understanding of the
physics of the early universe that enabled predictions of the distribution of
matter from the microwave background radiation forward and backward in
time.

The discovery was made using a new statistical method, the false discov-
ery rate (known as the FDR), to detect the oscillations. At false discovery
rate 1/4, eight were flagged as possibly inconsistent with a smooth, feature-
less power spectrum. This and further analyses led the authors to conclude
that the oscillations were statistically significant departures from a feature-
less matter-density power spectrum.

The method was developed through collaboration with two statisticians
and published in The Astronomical Journal. Using this method, the authors
were able to make their discovery and publish it in Science while other
competing groups were still plowing through the plethora of data.

Tt is interesting to trace the history of this success, as it illustrates quite
well how the “information hub” operates. Figure 4.3 illustrates the migra-
tion route of the statistical idea.

When one tests many hypotheses on the same dataset, one must adjust
the significance levels of the tests to avoid spurious rejection of true null
hypotheses. This “simultaneous inference” problem has perhaps received
the most attention in medical statistics — at least, all of the references cited
as motivation appeared in the medical literature. Indeed, the main statisti-
cal contribution here was not to propose the sequential P-value procedure
that was used in this example per se, which actually went back to Simes in
the 80’s (and maybe earlier), but rather to establish a convincing theoret-
ical justification. This theoretical justification, the FDR control, led other
researchers to propose a version for estimation.

The estimation proposal caught the attention of others because of its
potential for threshold selection in wavelet shrinkage methods for statistical
signal processing. Statisticians at CMU began work on FDR, both as a core



4. The Core of Statistics 19

From Medicine to The Big Bang via FDR

Acoustic Physics- signa
Oscillation detection

se Estimatiol
ho- J 1998

FDR: Benjal
Hochberg

M edical Statistics
70's-80's

FIGURE 4.3. Migration of statistical ideas into subject matter areas

statistics topic, and also in their collaboration with astrophysicists Miller
and Nichol. Initially, they considered signal detection problems in huge
pixel arrays. Later in their collaboration, the physicists recognized that
this approach would apply to the acoustic oscillation signatures, which led
to the Science article.

Miller and Nichol report that when they give talks to the physics com-
munity on this work, there is great interest in the FDR approach. CMU
physics professor Bob Nichol writes, in part “I personally would like to em-
phasize the symbiotic relationship that has grown between the Statisticians
and astrophysicists here at CMU. It is now becoming clear that there are
core common problems both sets of domain researchers find interesting e.g.
application of FDR to astrophysical problems.

In fact, the astrophysicists appreciate the mathematical beauty of the
statistics (and want to be involved), while the Statisticians clearly relish
their role in helping to understand the Cosmos. In addition to these joint
projects, this collaboration also is driving separate new research in the
individual domains. In summary, this multiway collaboration has simulated
both new joint research, as well as new separate research in the domain
sciences. Therefore, it is a perfect marriage!
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4.3 A set of research challenges

We next wish to suggest some of the important challenges that will be
faced in future core area statistical research. To identify such challenges in
statistics is inherently a slightly different enterprise than occurs in some
other sciences. Whereas in mathematics, for example, much focus has been
given to famous lists of problems whose challenge is enduring, in statistics
the problems are always evolving corresponding to the development of new
data structures and new computational tools. Unlike the laboratory sci-
ences, statistics does not have big expensive problems with multiple labs
competing—or cooperating—on major frontiers. It is perhaps more true in
statistics than in other sciences that the most important advances will be
unpredictable.

For this reason we need to maintain an underlying philosophy that is
flexible enough to adapt to change. At the same time it is important that
this future research should not degenerate into a disparate collection of
techniques.

One can identify some general themes driving modern core area research.
The challenges are based on the development of conceptual frameworks and
appropriate asymptotic approximation theories for dealing with (possibly)
large numbers of observations with many parameters, many scales, and
complex dependencies.

The following subsections identify these issues in more detail.

4.3.1 Scales of data

It has become commonplace to remark on the explosion in data being gath-
ered. It is trite but true that the growth in data has been exponential, in
data analysts quadratic, and in statisticians linear. Huber’s 1994 taxonomy
of data sizes,

Tiny 10, Small 10*, Medium 10°, Large 10%, Huge 10'°

already looks quaint (Wegman, 1995). For example, a single database for
a single particle physics experiment using the “BaBaR” detector at the
Stanford Linear Accelerator Center has 5 x 10'° bytes.

There will continue to be research issues at every scale — we haven’t
solved all problems for data sets under 100. However, a new part of the
challenge to statistics is that the mix of issues, such as generalizability,
scalability, and robustness, as well as the depth of scientific understanding
of the data, will change with scale and context. Moreover, it is clear that our
research and graduate training has yet to fully recognize the computational
and other issues associated with the larger scales.
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4.8.2  Data reduction and compression.

We need more “reduction principles”: R. A. Fisher gave us many of the key
ideas, such as sufficiency, ancillarity, conditional arguments, transforma-
tions, pivotal methods, and asymptotic optimality. Invariance came along
later. However, there is clear need for new ideas to guide us in areas such
as model selection, prediction, and classification.

One such idea is the use of “Compression” as a guiding paradigm for
data analysis. The basic idea is that good structural understanding of data
is related to our ability to compactly store it without losing our ability to
“decompress” it and recover nearly the original information. For example,
in the domain of signal and image data, wavelets are actually not optimal
for representing and compressing curved edges in images. This suggests the
need for new representational systems for better compression.

4.3.83 Machine learning and neural networks

Many ad hoc methods and computational strategies have been developed
for “industrial strength” data. For the most part these methods are not in-
formed by a broader understanding and integration into mainstream statis-
tics. Thus future research should involve coherently integrating the many
methods of analysis for large and complex data sets being developed by
the machine learning community and elsewhere into the core knowledge of
statistics.

Following our tradition, this research could be based on the building of
models and structures that allow description of risk as well as its data-
based assessment. It would then include developing principled tools for
guided adaptation in the model building exercise. Another possibility is
expressed by Breiman (2001), who stated that "If our goal as a field is
to use data to solve problems, then we need to move away from exclusive
dependence on data models and adopt a more diverse set of tools."

4.8.4 Multivariate analysis for large p, small n

In many important statistical applications there are many more variables
(p) than there are units being measured (n). Examples include analysis
of curve data, spectra, images, and DNA micro-arrays. A recent workshop
titled “High dimensional data: p>>n in mathematical statistics and in
biomedical applications” in Leiden, Netherlands highlighted the current
research importance of this subject across many areas of statistics.

The following more specific example can be offered to illustrate how
innovations in other fields might prove useful in this problem, thereby rein-
forcing the idea that the core continually looks outward for ideas. Random
Matrix Theory describes a collection of models and methods that have de-
veloped over the last forty years in mathematical physics, beginning with
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the study of energy levels in complex nuclei. In recent years these ideas
have created much interest in probability and combinatorics.

The time now seems ripe to apply and develop these methods in high
dimensional problems in statistics and data analysis. For example, scien-
tists in many fields work with large data matrices (many observations (n)
and many variables (p)) and there is little current statistical theory to sup-
port and understand heuristic methods used for dimensionality reduction
in principal components, canonical correlations etc.

Early results suggest that large n - large p theory can in some cases yield
more useful and insightful approximations than the classical large n - fixed
p asymptotics. For example, the Tracy-Widom distribution for “Gaussian
orthogonal ensembles” provides a single distribution, which with appropri-
ate centering and scaling provides really quite remarkably accurate descrip-
tions of the distributions of extreme principal components and canonical
correlations in null hypothesis situations.

4.3.5 Bayes and biased estimation

The decade of the nineties brought the computational techniques and power
to make Bayesian methods fully implementable in a wide range of model
types. A challenge for the coming decades is to fully develop and exploit the
links between Bayesian methods and those of modern nonparametric and
semiparametric statistics, including research on the possible combination
of Bayesian and frequentist methodology.

One clear issue is that for models with huge data problems with large
numbers of variables, the ideas of unbiasedness or “near” unbiasedness (as
for the MLE) become less useful, as the idea of data summarization implicit
in statistical methodology becomes lost in the complexity and variability of
any unbiased method. This points to the need for a more extensive “biased
estimation theory” and new theories for huge data problems with large
numbers of variables.

Given their ever increasing use in all kinds of model-building exercises,
it is also clear that there is a need for further analysis of “Monte Carlo”
methods for inference.

4.8.6 Middle ground between proof and computational
experiment.

A final challenge for theoretical work in the coming decades is to develop
an agreed-upon middle ground between the pace of proof (too slow), and
the swamp of unfettered computational experimentation (too arbitrary and
unconvincing). There are many problems in which rigorous mathematical
verifications might be left behind in the development of methodology both
because they are too hard and because they seem of secondary importance.
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For example, despite many years of work, there are important families of
statistical models, such as mixture models, in which identifiability questions
are largely ignored because of the difficult analysis that is involved and the
ever-widening variety of model structures that must be investigated.

4.4 Opportunities and needs for the core

If there is exponential growth in data collected and in the need for data
analysis, why is core research relevant? It is because unifying ideas can
tame this growth, and the core area of statistics is the one place where
these ideas can happen and be communicated throughout science. That is,
promoting core area statistics is actually an important infrastructure goal
for science from the point of view of efficient organization and communica-
tion of advances in data analysis.

A healthy core of statistics (through a lively connection with applica-
tions) is the best hope for efficient assimilation, development and porta-
bility between domains of the explosion of data analytic methods that is
occurring. As such, it is a key infrastructure for science generally.

4-4.1 Adapting to data analysis outside the core

The growth in data needs provides a distinct challenge for statisticians to
provide, in adequate time, intellectual structure for the many data analytic
methods being developed in other arenas. As one leading statistician said,
“If we don’t want to be taken over by Machine Learners or Computer Scien-
tists, people who work exclusively in some interesting area of applications,
and have a natural advantage on their own turf, we have to keep thinking
of good statistical ideas, as well as making them friendly to the users.”

4.4.2 A manpower problem

It is our perception that statistical outreach activity is high and it is in-
creasing for all sorts of good reasons. Unifying ideas can tame this growth,
and the core of statistics is the one place where these ideas can happen and
be communicated throughout science. But there has been what we think
is an unintended consequence of this growth — a relative neglect of basic
research, and an attendant danger of our field fragmenting.

We emphasize again the importance of core research: the FDR exam-
ple illustrates that methodologic/theoretical insight into ad hoc methods
magnifies their potential for application.

One might mention some data items to support this: In previous years,
according to an “export scores” analysis by Stephen Stigler, the Annals
of Statistics was the most influential statistics journal. However, reflecting
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recent trends, submissions to this journal are down by about 25%, and
perhaps not co-incidentally, the fraction of US authors has dropped from
70% twenty years ago to 35% now.

This manpower problem is destined to grow worse, as it is clear that
Ph.D. students in statistics are finding, through the job market, that out-
reach skills are highly valued.

4.4.8 Increased professional demands

The core research of statistics is multidisciplinary in its tools: it borrows
from (at least) information theory, computer science, and physics as well
as from probability and traditional math areas.

As statisticians have become more and more data-focused (in the sense
of solving real problems of modern size and scope), the math skills needed
in core areas have gone up. To name a few areas, a modern statistician
might need to know complex analysis (saddlepoints), algebra (contingency
tables), Markov chains (MCMC), or functional analysis (complex model
building). At the same time, there is the need to be enough of a computer
scientist to develop the algorithms and computer software required for the
data analysis.

This need for ever increasing technical skills provides yet a second set of
challenges to keeping the core vital as a place for integration of statistical
ideas.

4.4.4 Research funding

It seems clear that funding for core research has not kept pace with the
growth of the subject. Investigators, rather than beating their heads against
difficult funding walls, turn their efforts towards better funded outreach
activities or consulting.

But the whole history of statistics shows that inreach activity in statis-
tics is critical to its own health, and highly leveraged in its payoff across
the sciences. Many statisticians are concerned about the current levels of
support.

It is therefore suggested that we raise the profile of support for core
research to counteract the hollowing out of external sources. The most
basic needs remain as they always have: to encourage talent, giving senior
people time and space to think, and encouraging junior people to buy into
this line of research.

4-4.5 A possible program

One might ask, what sort of special program might a funding agency offer
that would stimulate the integrative activity of the core? In that spirit, we



4. The Core of Statistics 25

provide a specific suggestion for a program along with the possible name:
“Method Exploration and Migration”. It represents one possible way to
enhance the ability of researchers to provide integration of new ideas arising
outside the intellectual core.

The theme of the program would be “developing new data analytic ideas
for broad scientific use”. It would be based on the observation that most
data analytic innovation necessarily occurs in a particular scientific context,
but is potentially of far wider applicability. It might support research to
understand common features of (new) data analytic techniques in fields
A (and maybe B, C) with a view to understanding their properties and
promoting their use in science generally.

There would be some subtle differences in this program compared with
the usual interdisciplinary research initiatives. Interdisciplinary research
typically brings together researchers from fields A, B and C to collaborate
on grand challenge D. This research might also require statisticians (or
other methodologists) in a collaboration with researchers in A (and maybe
B and C) to understand the context and current uses of the techniques.

The key difference in the new program would be that the primary goal
would not be to advance the use of techniques existing in field A per se
(though this may be a positive side effect). The aim rather is through fur-
ther research to understand and explain in general terms why the methods
may be of wide utility. The point is that this work might not take place
otherwise, as the pace of work in hot field A is typically such that its scien-
tists and even its methodologists have neither time nor support to promote
the advance of data analysis generally.

How does this differ from standard “investigator-initiated grants” ?—here
support would be needed for the statistician/methodologists to develop
familiarity, contacts, and collaborations with field B and then to conduct
the research. This is not part of the usual grants. But field B shouldn’t be
asked to fund the specific project, since it isn’t the primary beneficiary. It
is an inreach or “methodologic infrastructure” activity.

Of course, it is possible to do such research now as historical examples
in the development of core statistics attest. But giving this activity higher
profile and support would offer high leverage benefits to the data analytic
arsenal of science generally.
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Statistics in Science and
Industry

A distinguishing feature of statistics as a discipline is its interaction with
the entire spectrum of natural and social sciences and with technology.
This chapter is concerned with the elucidation of the role of statistics in
gathering knowledge across a wide spectrum of possibilities. Rather than
give a broad (and therefore shallow) survey of areas in which statistics has
had, and will continue to have, an impact, this chapter focuses on topics
that illustrate important aspects of the interplay between statistics and
other scientific disciplines.

5.1 Biological Sciences

Building on the foundations of agricultural and genetic statistics developed
in the first half of the 20th century, biostatistics, statistical epidemiology,
and randomized clinical trials have been cornerstones of the systematic
attack on human disease that have dramatically increased life expectancy
in advanced societies during the past half century.

Recent progress in molecular biology and genetics has opened entirely
new areas of investigation, where for the foreseeable future there will be
rapid advances in understanding fundamental life processes at the molecu-
lar level. The long term goals of this research are the application of the
knowledge of molecular processes to entire organisms and populations.
These goals include improved tailoring of medical treatments to the individ-
ual (e.g., by devising treatment suited to the individual’s genetic makeup),
alleviation of problems of malnutrition and starvation by improving agri-
culturally important plant species and domestic animals, improved public
health, and better defense against bioterrorism.

In addition to new solutions for problems that arise out of the “new”
biology discussed below, success in statistical research will also depend on
better understanding and further development of the statistical methods for
clinical trials, laboratory and field experiments, and observational studies
that have been developed during the past half century.

At the risk of oversimplifying the many new developments in biological
research, it is useful to consider four areas where statistical and computa-
tional methods have played and will continue to play an important role:
(A) computational genomics, including in particular biomolecular sequence
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analysis and functional genomics, (B) genetic epidemiology and gene map-
ping, (C) evolution, population genetics, and ecology; and (D) computa-
tional neuroscience.

(A) Biomolecular sequence analysis and functional genomics re-
fer to methods based on analysis of DNA sequences (the building blocks
of genes) and amino acid sequences (the building blocks of proteins), and
global profiles of RNA and proteins in various cellular states, to discover
the structure and evolution of genes and proteins, and their functions in
normal and abnormal processes. Examples include:

1. data base searches based on protein sequence alignment to infer func-
tions of a newly discovered protein by comparing it with possibly
related proteins that have already been studied,

2. the identification of control regions imbedded in the genome that
govern the amount of protein produced and the conditions under
which it is produced,

3. alignment of homologous genomic regions of different plant or animal
species as a first step in inferring their phylogenetic relationships, and

4. comparative analysis of the levels of gene expression in normal and
diseased cells to provide objective differential diagnostics for diseases
that present similar clinical symptoms and, more ambitiously, to pro-
vide avenues for successful treatment based on understanding the role
of the over and under expressed genes in the pathology of the disease.

Promising new directions in this area include the use of computational
and functional genomics approaches in areas such as molecular medicine
and cellular and developmental biology.

Molecular medicine seeks to use genetic data to identify subjects at
risk for drug toxicity, to develop refined classification of disease subtypes
based on genotype, RNA and protein profiles, and to develop individual-
ized therapeutic intervention based on predictive models that use molecular
level assays. Justification of research in this direction will ultimately de-
pend on traditional clinically oriented biostatistical areas such as clinical
trails and cohort studies. This is an area of unlimited opportunities for the
discipline of biostatistics.

Although statistics has not yet been firmly established in cellular and
developmental biology, it appears that new statistical and computa-
tional approaches will be essential for future advances as more and more
high throughput experimental approaches are designed, e.g., recently im-
plemented assays in 96 or 384 well format to obtain real time measurements
of the activities of thousands of gene promoters in parallel.

An astounding amount of imagery based on time-lapsed microscropy, in
situ hybridization and antibody staining will provide a dynamic view of
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key molecular events at every stage of an organism’s development. One
particularly exciting direction is the development of approaches that are
capable of integrating information from primary literature (PubMed, on-
line articles) and knowledge bases (e.g. Locus Link, OMIM, Flybase, Gene
Ontology), with the analysis of high-throughput functional genomics and
cellular imaging data.

(B) The goal of Genetic epidemiology is to understand the relative
importance of environment and genetics in human disease. Gene mapping
involves the use of maps of molecular markers throughout the genome of a
particular plant or animal to locate the genes that contribute to phenotypes
of interest. It is frequently the first step toward better understanding and
treatment of those diseases in plants and animals where inheritance plays
an important role. One also wants to map genes that lead to desirable traits
in agriculturally important plants and domestic animals or genes in model
organisms like the laboratory mouse that may provide clues to the genetics
of similar human phenotypes.

In experimental organisms genetic mapping includes the design of breed-
ing experiments to maximize information. Gene mapping in humans, where
one cannot perform breeding experiments, is much more complex, with
some approaches exploiting relationships within families, while others in-
volve the more difficult to infer and more complex relationships of individ-
uals within populations.

(C) Evolution, population genetics and ecology study the changes
that occur at the population level in plants and animals in response to
random mutational changes in the population’s gene pool and changes in
their environment. Although originally oriented toward the study of evolu-
tionary relationships (for example, the evidence supporting the hypothesis
of a common African origin of modern humans), the ideas of population
genetics are increasingly used to understand the evolution of bacteria and
viruses (in order to provide appropriate vaccines and drugs) and the evo-
lution of proteins in different species of plants and animals (in order to
understand protein structure and function by identifying parts of related
proteins in different species that have been conserved by evolution).

(D) Using modern methods of neuroimaging (PET, fMRI), computa-
tional neuroscience attempts to understand the functioning of nervous
systems at the level of small numbers of interacting neurons and at the
level of the entire brain: which parts of the brain are activated under which
conditions? How do the brains of normal and psychotic individuals differ
in their structure and/or function? How can we use this knowledge for
diagnosis and treatment?

Computational neuroscience encompasses basic molecular biology from
the study of ion-channel behavior, modeling of neuronal firing in simple
networks, and responses of olfactory and visual receptors, to macroscopic
measurements using in vivo brain imaging and cryo-sectioning techniques,
to abstract approaches to computational vision. Statistics plays a vital role
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at each level of analysis.

Statistical and Computational Methods

As a consequence of this enormous diversity of scientific problems, a
expansive set of statistical, probabilistic, and computational methods has
proved to be very useful. Some methods have proved themselves in a num-
ber of areas, while others have more specialized applications.

Stochastic processes, from finite Markov chains to point processes and
Gaussian random fields, are useful across the entire spectrum of problems.
Statistical techniques of classification, clustering, and principal components
are widely used in (A) and (D). Likelihood and/or Bayesian analysis of
stochastic processes is important in (A), (B) and (C). Because of the large
amount of data produced, e.g., expression levels on a microarray for tens
of thousands of genes in a sample of individuals, or data from up to a
thousand markers (in the future perhaps one hundred thousand) distributed
across the genome of thousands of individuals, challenging issues of multiple
comparisons arise in (A), (B) and (D).

Hidden Markov models and Markov chain Monte Carlo provide impor-
tant computational algorithms for calculating and maximizing likelihood
functions in (A), (B), and (C). Some of these statistical methods are clas-
sical (e.g., principal components, likelihood analysis), but even they may
require adaptation (principal curves, likelihood analysis of stochastic pro-
cesses) to deal with the large amounts of data produced by modern bio-
logical experiments. Other methods (hidden Markov models, Markov chain
Monte Carlo) have developed relatively recently in parallel with the modern
computing technology necessary to implement them.

In addition there are some methods that are of paramount importance
to the development of a single area. An example is the use of trees (phylo-
genetic and coalescent trees) to describe evolutionary relationships among
individuals within a population and among different populations. (Trees
also play a technical role in cluster analysis.) Experimental design and
variance components provide important tools for genetic mapping.

Many techniques have been developed in close relation to the field of ap-
plication, and it is expected that important contributions in the future will
come from statisticians who are well versed in specific applications. How-
ever, even these techniques have typically built on a theoretical structure
that was developed earlier in response to some other perceived need, often
in a field far removed from modern biology.

The common methodological features of those methods that find applica-
tion in several different areas provide motivation to achieve better theoret-
ical understanding, even when that understanding is not tied to a specific
application. It is also worth noting that in view of the vast explosion of
knowledge, much of it cutting across traditional disciplinary lines, training
the next generation of scientists will require some (not yet apparent) con-
sensus about what concepts will be important and the appropriate balance
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between general methodology and specific subject matter knowledge.

A common feature of all the efforts described above is the amount, com-
plexity and variability of data, with the result that computation (frequently
including graphics) is an important aspect of the implementation of every
idea. In view of the diverse mathematical and computational backgrounds
of scientists engaged in biological research, it is important that computa-
tional algorithms be made as “user friendly” as possible. This may require
support for specialists to provide the “front end” and documentation nec-
essary so that laboratory scientists can use tools developed by statisticians
easily and correctly.

Illustrative Examples

Example 1. A subject showing the importance of a broad mathematical
viewpoint in solving concrete problems of biological importance is found
in the assessment of statistical significance in gapped sequence alignments
(referred to under (A)1 above).

The modern history of this subject began about 1990, when a team of
researchers for the purpose of analyzing single DNA or protein sequences,
recognized the relevance of results obtained by Iglehart in 1970, in his
investigations of queueing theory. At the same time others conjectured that
a similar result would hold for pairwise sequence alignments, a much more
difficult result that was proved by another team of researchers in 1994, but
only for the artificially simplified problem of alignments without gaps.

Based on conjectures of Karlin and Altschul and of Waterman and Vin-
gron (1994) that an approximation of the same parametric form would be
valid for the more important practical case of gapped alignments, Monte
Carlo methods were developed to estimate the parameters of the conjec-
tured approximation. These Monte Carlo estimates have been encoded into
the widely used BLAST software, but their application is limited to a small
number of previously studied cases by the slowness of the required compu-
tations.

Using methods motivated by applications to quality control, an approxi-
mation was obtained for gapped alignments that is much more easily eval-
uated, albeit less accurate. Current research continues in an attempt to
find an approximation that successfully combines generality, speed of eval-
uation, and accuracy.

Example 2. An area that has stimulated rapid development of new
computational and statistical tools is the analysis of cDNA microarrays,
which are used for measuring gene expression in a wide variety of biolog-
ical studies. A typical problem is to assess differential expression between
a control and a treatment group for a large number (thousands) of genes
from a relatively small sample of individuals. Descriptive statistics, often
in the form of clustering algorithms, and inferential statistics to deal with
special problems arising from the simultaneous comparison of thousands of
genes both play important roles. For example, the collaboration of statisti-
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FIGURE 5.1. An illustration of brain imaging from Example 3

cians and researchers in oncology and biochemistry produced the software
“Significance analysis of microarrays” (SAM) (Stanford University). This
development was motivated by an experiment to measure the genetic re-
sponse of human cells to ionizing radiation. The method is very simple, and
was implemented as an Excel spreadsheet add-in “SAM.” This package has
been downloaded over 3400 times since its release in April 2001.

Example 3. An example illustrating the importance of both higher
mathematics and of computational methods to promote visual understand-
ing of complex data is provided by the research of K. Worsley, who for
most of the last decade has focused on brain imaging data obtained ei-
ther from positron emission tomography (PET) or functional magnetic
resonance imaging (fMRI) (and similar astrophysical data) (cf. Worsley,
Evans, Marrett and Neelin (1992)) or Worsley, et al. (2002). Worsley has
used mathematical ideas of differential and integral geometry developed by
pure mathematicians beginning with C. F. Gauss in the 1800s, in order to
assess the statistical significance of regions of apparent neural activity in
response to particular external stimuli. An example of the accompanying
graphics derived from his software is given in Figure 5.1.

In summary, the large amounts of data produced by modern biological
experiments and the variability in human response to medical interven-
tion produce an increasing demand for statisticians who can communicate
with biologists and devise new methods to guide experimental design and
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biological data analysis.

5.2 Engineering and Industry

Historical Perspective and Recent Developments

Statistical concepts and methods have played a key role in industrial
development over the last century. Applications in engineering and indus-
try, in turn, have been major catalysts for research in statistical theory
and methodology. The richness and variety of these problems have greatly
influenced the development of statistics as a discipline.

The origins of industrial statistics can be traced to the pioneering work of
Walter Shewhart on statistical process control (SPC) in the 1920s. Today,
SPC philosophy and methods have become a critical technology for quality
improvement in manufacturing industries and are increasingly being used
in business and the service and health industries.

The early work on design of experiments (DOE) by R. A. Fisher, F.
Yates, and their collaborators at Rothamsted Experimental Station was
stimulated by the needs of the agricultural industry. Product testing, anal-
ysis, and optimization in the chemical and textile industries led to further
developments in factorial designs and new methods such as response surface
methodology and evolutionary operation by G. Box and others.

The emphasis on quality improvement and G. Taguchi’s ideas on robust
design for variation reduction have led to extensive research in and appli-
cation of designed experiments for product and process design, quality and
process improvement, and software testing. The needs of the defense, elec-
tronics, aircraft, and space industries have also stimulated the development
of new areas such as sequential analysis, reliability, spectrum estimation
and fast Fourier transform algorithms.

The years during World War IT saw rapid growth of the use of statistical
methods in quality control. After a period of stagnation, the renewed focus
on quality and productivity improvement during the last three decades has
rekindled interest in and appreciation for statistics in industry. Statistical
concepts for understanding and managing variation and basic statistical
techniques of the DOE and SPC form the backbone of popular quality
management paradigms such as Total Quality Management (TQM), Six
Sigma, and Deming’s famous 14 points. Major companies have invested
heavily in re-training their workforce in quality management principles and
basic statistical methods.

Much of the early work was driven by the needs of the agricultural, man-
ufacturing, and defense industries. In recent years, the scope has expanded
substantially into business and finance, software engineering, and service
and health industries. Applications in these areas include credit scoring,
customer profiling, design of intelligent highways and vehicles, e-commerce,
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fraud detection, network monitoring, and software quality and reliability.

While the benefits are hard to quantify, it should be clear from even this
abbreviated historical summary that statistics and statistical thinking have
had a profound positive impact on engineering and industry in the United
States.

High Impact Research Areas

Global competition and increasing customer expectations are transform-
ing the environment in which companies operate. These changes have im-
portant implications for research directions in statistics. Following are brief
descriptions of four general examples.

A. Massive Data Sets with Complex Structure: This topic cuts
across all parts of business and industry (as well as other areas discussed in
this report). Business and manufacturing processes are becoming increas-
ingly complex. Consequently, engineers and managers are in greater need
of relevant data to guide decision-making than ever before.

At the same time, advances in sensing and data capture technologies
have made it possible to collect extensive amounts of data. These data
often have complex structure in the form of time series, spatial processes,
texts, images, very high dimensions with hierarchical structure, and so on.
Collection, modeling, and analysis of these data present a wide range of
difficult research challenges.

For example, monitoring, diagnosis, and improvement of advanced manu-
facturing processes require new methods for data compression and feature
extraction, development of intelligent diagnostics, and real-time process
control. These problems also involve issues of a general nature such as selec-
tion biases, computing, scalability of algorithms, and visualization. Statis-
ticians have important roles to play in designing effective data warehousing
solutions, ensuring data quality, developing informative data collection and
data reduction (compression) schemes in this new environment. Many of
these issues have, until recently been dominated by computer scientists and
engineers.

To be effective, however, the methods must be developed in the context of
specific applications, and the empirical information must be integrated with
engineering and subject-matter knowledge for decision making. For exam-
ple, a research project on yield improvement in semiconductor manufactur-
ing led to new methods for analyzing and visualizing spatial data, including
methods for monitoring spatial processes, characterizing spatial patterns,
and development of fault diagnostics. Engineering research on stamping
processes resulted in new methods for monitoring functional data combin-
ing wavelet techniques with engineering knowledge for data compression
and feature extraction.

Other areas of application such as credit scoring, fraud detection in
telecommunications, and warranty analyses are also generating many re-
search problems. Warranty costs in the automobile industry now run into
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billions of dollars annually (not counting safety and lives lost). There is
a need for methods that quickly detect warranty problems (small signals)
from very large and extremely noisy data sets.

Much of the past work has also focused on individual processes with-
out taking a holistic approach to modeling and optimization. One of the
grand challenges is the need for enterprise-level modeling and to “instan-
taneously transform information from a vast array of diverse sources into
useful knowledge and effective decisions.”

B. Large-Scale Computational Models — Experimentation, Anal-
ysis and Validation: Computational models and simulation are being
used more and more frequently in many areas of application. In manufac-
turing industries, competitive market forces and the concomitant pressure
to reduce product development cycle times have led to less physical test-
ing and greater use of computer-aided design and engineering (CAD/CAE)
methods. Finite-element analysis and other techniques are used extensively
in the automobile industry for product design and optimization.

There are similar trends in semiconductor manufacturing, aircraft, de-
fense, and other industries. The computational models are very high dimen-
sional, involving hundreds and even thousands of parameters and design
variables. A single function evaluation can take several days on high-end
computing platforms.

Experimentation, analysis, visualization, and validation using large-scale
computational models raise a variety of statistical challenges. These in-
clude: a) development of experimental designs for approximating and ex-
ploring response surfaces in very high dimensions, b) incorporating ran-
domness and uncertainty in the design parameters and material charac-
teristics into the computational model; ¢) modeling, screening, prediction,
and optimization.

There has been some research on design and analysis of computer experi-
ments in the literature, including the development of new classes of designs
and the use of Gaussian random fields and spatial interpolation techniques
for inference ( National Research Council (1996)). But research in this area
has not kept pace with the needs of industry. Validation of large-scale com-
putational models has received relatively little attention in the statistical
literature. Sequential methods, DOE, and Bayesian analysis, among oth-
ers, have important roles to play here. There are also opportunities for
collaboration with researchers in numerical analysis and optimization.

C. Reliability and Safety: The design, development and fabrication
of highly reliable products that also meet safety and environmental goals
represent another area of major challenge faced by industry. The traditional
focus in reliability has been on the collection and analysis of “time-to-
failure” data. This poses difficulties in high-reliability applications with
few failures and high degrees of censoring.

Fortunately, advances in sensing technologies are making it possible to
collect extensive amounts of data on degradation and performance-related
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measures associated with systems and components. While these data are a
rich source of reliability information, there is a paucity of models and meth-
ods for analyzing degradation data and for combining them with physics-
of-failure mechanisms for efficient reliability estimation, prediction, and
maintenance. Degradation analysis and device-level failure prediction are
integral parts of predictive maintenance for expensive and high-reliability
systems.

New, modern materials being developed, such as various types of com-
posites or nanostructured materials, require research on appropriate models
and methodology for prediction of failure and other properties. Modern air-
craft and other structures will increasingly use these materials for critical
parts whose failure could be catastrophic, bringing user safety to the fore-
front. Statisticians will need to work closely with material scientists and
engineers to be successful in this arena.

There are also vast amounts of field-performance data available from war-
ranty and maintenance databases. Mining these data for signals and process
problems and using them for process improvement should be a major area
of focus. There is also a need to incorporate the environment in which a sys-
tem operates into reliability models and analysis of field-performance data.
These environments are generally dynamic and/or heterogeneous, and de-
velopment of realistic models for reliability assessment and prediction under
such conditions will be needed.

D. Software engineering: This is still a relatively new field when com-
pared with traditional branches of engineering. Its importance to the nation
is underscored by the increasing reliance of the U.S. economy and national
defense on high quality, mission critical software (National Research Coun-
cil (1996)).

Statistics has a significant role to play in software engineering because
data are central to managing the software development process, and sta-
tistical methods have proven to be valuable in dealing with several aspects
of it. To mention a few examples, statistical considerations are essential
for the construction and utilization of effective software metrics, and ex-
perimental design ideas are the backbone of technology for reducing the
number of cases needed to test software efficiently (but not exhaustively).
Further, statistical quality control provides the basis for quantitative anal-
ysis of various parts of the software process and for continuous process
improvement.

Indeed, the entire movement towards formal processes for software de-
velopment, as in the Software Engineering Institute’s Capability Maturity
Model, can be traced in part to the pioneering work of W. A. Shewhart
and W. E. Deming on statistical quality control and related topics. In spite
of the progress that has been made, considerable additional research will
be essential to deal with the software challenge (or more dramatically the
“software crisis”).
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5.3 Geophysical and Environmental Sciences

Background

The term ‘geophysical and environmental sciences’ covers many specific
fields of study, particularly if environmental sciences is taken to include the
study of ecological phenomena and processes. This broad area of statistical
activity does not have an easily summarized history, nor a simple pattern of
development. Indeed, the history of statistical work in the geophysical and
environmental sciences is intertwined with fields as diverse as agriculture,
basic biology, civil engineering, atmospheric chemistry, and ecology, among
others.

Rather than give a broad and necessarily incomplete survey of areas in
which statistics has had, and continues to have, an impact, this presentation
focuses on topics that illustrate several aspects of the interplay between
statistics and other scientific disciplines. In particular, examples have been
chosen to illustrate the tandem use of deterministic process models and
stochastic models, the use of models for correlated data in the detection of
change in environmental processes, and the role of statistical thinking in
scientific conceptualization.

Deterministic Process Models and Stochastic Models

A substantial amount of emphasis is now being placed on the tandem
use of deterministic process models and statistical models. Process models
have typically taken fundamental scientific concepts such as mass balance
in chemical constituents as a foundation, and built up more elegant math-
ematical structures by overlaying equations that represent physical and
chemical interactions, often in the form of sets of differential equations.
Statistical models, on the other hand, typically rely on the description of
observed data patterns as a fundamental motivation for model develop-
ment. Increasingly, there is recognition that one’s understanding of many
geophysical and environmental processes can be advanced by combining
ideas from these two modeling approaches.

One method that has been used to combine process and statistical mod-
els is to use the output of deterministic models as input information to
a stochastic formulation. An example is the analysis of bivariate time se-
ries representing northern and southern hemispheric temperature averages.
Along with traditional use of linear trend terms and covariate information
such as effects of the El Nifio-Southern Oscillation (ENSO) phenomenon,
the outputs from 24 deterministic climate models were considered for their
ability to describe hemispheric mean temperatures over the period 1900 to
1996.

As an example of the results, Fig. 5.2 shows the raw data for both hemi-
spheres with both a fitted straight line and the estimated trend curve arising
from a combination of climate forcing factors (i.e., climate model output)
and El Nino-Southern Oscillation effects. It is visually obvious, and the
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FIGURE 5.2. Observed temperature anomalies for northern (NH) and southern
(SH) hemispheres, with fitted straight lines (dashed lines) and estimated trends
(solid curves) due to combination of climate forcing factors and ENSO. From
Smith et al. (2001).

detailed statistical analysis confirms, that the latter trend curve fits the
data much more closely than a simple straight line regression. This ex-
ample demonstrates the use of a statistical analysis to provide evidence
about which factors are important for inclusion in process models, as well
as providing a description of observed data.

Another method for incorporating statistical and deterministic modeling
approaches is illustrated by recent work on ocean surface wind speeds au-
thored by statisticians associated with the Geophysical Statistics Project at
the National Center for Atmospheric Research (NCAR) and an oceanog-
rapher. Data were obtained from two sources. One is satellite data that
arise from the NASA scatterometer (NSCAT) instrument. These data are
high-resolution but of sparse spatial coverage. The second source of data
is so-called analyses produced by a global-scale numerical weather predic-
tion model of the National Center for Environmental Prediction (NCEP).
These data are complete in the sense that each six-hour observation covers
the whole region, but is of much lower spatial resolution than the NSCAT
measurements.

Statistical analysis of these data requires techniques beyond standard
spatial and spatio-temporal statistics. In addition to both temporal and
spatial components, the analysis must accommodate several sources of data
that are dissimilar in resolution and scales of coverage, with a goal of pro-
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viding a faithful representation of wind speed over the entire region for
each six-hour period.

Correlated Data and Environmental Trends

Many environmental problems involve the detection and estimation of
changes over time. For example, an environmental monitoring agency such
as the EPA uses trend estimates to assess the success of pollution control
programs and to identify areas where more stringent controls are needed.
In climate modeling, a major preoccupation is to determine whether there
is an overall trend in the data, not only for widely studied variables such as
the global mean temperature but also for numerous other variables where
the conclusions are less clear cut.

For statisticians, the estimation of trend components with correlated
errors is a problem with a long history, and much of this work involved
substantial interaction between statisticians and geophysical and environ-
mental scientists. For example, Sir Gilbert Walker, known to statisticians
through his many contributions to time series analysis and in particular the
Yule-Walker equations, was also a distinguished meteorologist who worked
extensively on the El Nifio-Southern Oscillation (ENSO) phenomenon, and
these contributions were largely the result of the same research.

A long collaboration between statisticians and geophysicists has resulted
in a series of papers on the detection of change in stratospheric ozone in
which a large number of models with correlated errors are considered. This
research, consisting largely of papers with a statistician as lead author but
appearing in journals outside of the mainstream statistical outlets, is an
excellent illustration of the outreach of statistics to other scientific fields.

Numerous authors working on problems from the atmospheric sciences
have also considered models with correlated errors and, in particular, have
examined how the conclusions about climate change vary with different
assumptions about the error process. Such assumptions include time se-
ries models with long-range dependence, and models using spectra derived
from climate model dynamics. Other workers have presented an alternative
approach using wavelet representations of long-range dependent processes,
and continuing work in this area illustrates the feedback that consideration
of the important scientific problem of climate change has on the develop-
ment of new statistical representations for environmental processes. Recent
work, authored by statisticians but published in the meteorology literature,
has taken statistical models for long-range dependent processes developed
largely in the analysis of problems from economics and applied them to
wind speed and direction. This illustrates the role of statistics in the trans-
fer of methodology from one discipline (in this case, economics) to another
(meteorology) that may have otherwise remained unaware of its applica-
bility to their problems.

Statistical Modeling and Scientific Conceptualization
It is common for changes in environmental data records to be conceptu-
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alized within the statistical framework of signal plus noise. Indeed, this is
the case for many of the models discussed above, in which various forms are
given to the signal (or systematic) and noise (or error) components of the
models to better represent the processes under study. Consideration of a
signal plus noise structure in the analysis of water chemistry variables has
led many limnologists to conclude that the data records observed contain
a small signal component embedded in a large noise component.

But this concept can lead to difficulties, as illustrated by considering
records of Secchi depth (a measure of water transparency) for Lake Wash-
ington in the United States. Figure 5.3 presents observed Secchi depths for
a relatively short time span in 1980 to 1981. The panel on the left displays
a sequence of values that clearly indicates an increasing trend. But, when
these values are embedded in a slightly longer sequence of observations in
the right panel, we can see that this change is not meaningful in terms of de-
termining whether a substantial change has occurred in the basic character
of the lake.

Nevertheless, it is difficult to accept that the values from mid-1980 to
early 1981 are a realization of noise component alone. In this example,
the environmental processes of interest may be better conceptualized as
consisting of a number of layers of processes, each of which may contain
its own noise component.

A model for this situation has been formulated as an extension of a
Bayesian dynamic model. The model consists of three conceptual processes,
an observational process, a current condition process, and a lake function
process, which is of greatest interest in monitoring water quality. The model
can be shown to clearly detect changes in the lake function process for Lake
Washington at three times between 1960 and 1990; those times correspond
to three known events that have impacted the basic character of Lake
Washington.

Here, statistical methods have helped in the conceptualization of an en-
vironmental situation for which the development of process models is pro-
hibitively complex. That is, the three processes used in the dynamic model
do not correspond to physical or chemical mechanisms, but rather to scien-
tific conceptualization of environmental processes, in a manner similar to
that of the fundamental limnological concept of lake trophic status.

Another example in which statistics has aided in the development of sci-
entific thinking is the analysis of cycles in the populations of Canadian lynx
and snowshoe hare, and a series of papers dealing with this have appeared
in the Proceedings of the National Academy of Science and Science. Here,
collaboration between statisticians and ecological scientists has resulted in
a strengthening of scientific theory. A number of concepts have been de-
veloped through this work, including the relation between autoregression
order of a statistical model and the complexity of feedback systems be-
tween species (i.e., lynx and hare) and the idea that population cycles may
exhibit spatial synchrony.
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FIGURE 5.3. Observed Secchi depth values from Lake Washington. The graph
of the left panel is embedded as the solid line on the right panel.

In particular, researchers analyzed 21 time series of lynx populations
spanning the period 1821 to the 1990s. They employed nonlinear autore-
gressive processes of order 2, and combined series through random coeffi-
cients and empirical Bayes estimation. Having developed good statistical
descriptions of the observed data, they then derived equivalent forms of
pure mathematical models in theoretical population ecology.

Depending on one’s perspective, the mathematical models of population
dynamics give meaning to the statistical models used, or the statistical
models have helped guide the development of theoretical descriptions of
populations. This work resulted in a demonstration of the inter-relation of
density dependence and phase dependence in population cycles.

Other directions and future possibilities
The collection and processing of large amounts of data is a feature in



42 5. Statistics in Science and Industry

many of the major components of the geophysical and environmental sci-
ences such as meteorology, oceanography, seismology, the detection and
attribution of climate change, and the dispersion of pollutants through the
atmosphere.

Statisticians have been actively involved in all of these fields, but as sta-
tistical methodology has advanced to include, for example, complex models
for spatial-temporal data and the associated methods of computation, the
potential for direct interactions between statisticians and geophysical and
environmental scientists has increased enormously. Traditional methods of
multivariate analysis and spatial statistics rely heavily on matrix compu-
tations which are infeasible in very large dimensions; this has provoked
research on methods which perform well in such situations and that are
computationally efficient with large data sets.

Much statistical effort has recently been devoted to the development of
models and methods appropriate for the analysis of large-scale spatial and
temporal data sets; the model described above for ocean windspeed data
is just one instance of new statistical methodology developed in response
to these problems. Modeling approaches that are being developed for use
in such situations include hierarchical forms of geostatistical models and
general mixture models based on lattice structures.

Another major area of research is on nonstationary spatial models in-
cluding methods to represent a nonstationary process using a deformation
of space that results in stationarity, models defined by kernel smoothing of
an underlying random field, and models defined by multiresolution bases.

The design of monitoring networks is another area with a large literature.
Design problems, such as the locations at which samples should be taken
when it is possible to take only a small number of measurements in a large
complex system, are also relevant in the context of data assimilation.

One expects to see a huge growth in the analysis of data from numerical
environmental models, and direct interaction with applied mathematicians
and subject-matter scientists in the development of such models. Models of
the kind we are thinking about arise in climatology and numerical weather
forecasting; the modeling of atmospheric pollutants; and modeling flow in
a porous medium. This topic is the subject of forthcoming program at the
Statistical and Applied Mathematical Sciences Institute (SAMSI) in 2003
and is likely to be a very large subject for future research.

Statisticians have also been active in addressing questions of ecological
concern, although the fundamental statistical questions in ecological anal-
yses are less evident than they are for modeling environmental processes
in space and time. Thus, statistical contributions tend to be more scat-
tered, and there are few long-term collaborative teams of ecologists and
statisticians.

Historically, statisticians have made contributions to sampling problems
in ecological field studies, the assessment of population estimation, and
analysis of community composition. Funding sources for ecological work,
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too, have been less available for statistical development in the ecological
sciences than they have been for the analysis of atmospheric processes and
of pollution fields.

With increased emphasis on the assessment of biodiversity as a far-
reaching issue with both scientific and social implications this area is ripe
for both application and stimulation of statistical research. The emergence
of what is often called landscape ecology brings with it a broadening of
spatial extent for the consideration of ecological questions and, here too,
there is both a need and opportunity for increased statistical activity.

Funding needs and opportunities

DMS has supported a number of initiatives on statistics in the geophys-
ical and environmental sciences. Examples include the three-year (1998-
2000) joint initiative with the EPA; DMS’s support since 1995 of the Geo-
physical Statistics Project (GSP) at NCAR, and the current GeoMath ini-
tiative; and the SAMSI program entitled “Large-scale computer models of
environmental systems.”

These initiatives are welcome and have greatly increased the potential
for individuals trained as academic statisticians to work collaboratively
with scientists in the geophysical and environmental sciences. Developing
effective collaborative research programs requires a considerable investment
of time and energy on the part of both statisticians and applied scientists.

There is the expectation that faculty who develop such collaborative
relationships will be able to secure external funding to continue to sup-
port those efforts. Young faculty, in particular, who have dedicated time to
developing expertise in scientific disciplines other than statistics, such as
postdocs from the successful GSP program, must have avenues other than
traditional single-investigator grants for attracting outside funding.

It would be of enormous benefit to have NSF, preferably in conjuction
with agencies having direct responsibility for the management of natural
resources, to construct a long-term funding mechanism to support true in-
terdisciplinary research among statisticians and geophysical, environmen-
tal, and ecological scientists. The initiatives undertaken over the past years
have been highly successful in attracting statisticians to work in these sci-
ences. There is now a need to foster the interdisciplinary aspects of that
activity in a positive long-term manner.

One hopes that the NSF will continue to collaborate with the EPA,
which has shown the initiative and funding potential to support large-
scale projects in statistics, in particular through its support of two national
centers for environmental statistics (at the University of Washington from
1996 to 2001, and at the University of Chicago from 2002).

However, with the exception of these two centers, EPA funding has been
sporadic and uncoordinated. A further joint initiative by NSF and EPA
could do much to attract more statisticians into the field, while at the
same time the NSF’s high standards of peer review and grant assessment
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will ensure that such support is effectively targeted.

Other bodies with whom the NSF might productively collaborate in-
clude NOAA, NASA, DOE, NPS, and USGS. The first and last of these
are particularly important for promoting statistical work of an ecological
nature, NOAA in marine and USGS in terrestrial environments. From the
perspective of academic researchers, as funding sources these agencies can
benefit from cooperation with NSF in much the way that has been realized
for the EPA.

5.4 Information Technology

The rapid rise of computing and large-scale data storage has impacted many
human endeavors, sometimes in profound ways. There has never been a
more exciting time for statisticians working in areas related to Information
Technology (IT).

The development of the web and the exponentially increasing capabilities
of computer systems have opened up possibilities previously undreamed for
the exchange of information, the ability to collect and analyze extremely
large data sets of diverse nature from diverse sources, and to communicate
the results. The development of open source software magnifies the ability
of researchers to leverage their talents and ideas.

New challenges in statistical model building and learning from data
abound. The efforts of statisticians and statistically trained scientists are
having an important impact in all areas of science and technology, from
astronomy to biology to climate to communications to engineering to in-
telligence, just to name a few at the beginning of the alphabet. Contacts
with people in other scientific areas invariably give rise to opportunities for
developing new ways to present, model and help interpret their experimen-
tal/observational /simulated data and to new methodology in experimental
design and data collection.

The remainder of this section highlights a selected set of high-impact
areas.

Communications

A wealth of communications records is generated every minute of every
day. Each wireless and wireline call produces a record that reports who
placed the call, who received the call, when and where it was placed, how
long it lasted, and how it was paid for. Each user request to download a
file from an Internet site is recorded in a log file. Each post to an online
chat session in a public forum is recorded.

Such communications records are of interest to network engineers, who
must design networks and develop new services, to sociologists, who are
concerned with how people communicate and form social groups, to ser-
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vice providers, who need to ferret out fraud as quickly as possible, and to
law enforcement and security agencies looking for criminal and terrorist
activities.

There is a host of challenging statistical problems that need to be met
before the wealth of data is converted into a wealth of information. These
include characterizing the probability distributions that describe the cur-
rent behaviors of the millions of people generating the records, to updating
the estimated behavior for each individual as the records fly by, to distin-
guishing the very small number of people with “interesting” behavior as
early as possible. Perhaps surprisingly, these problems are inherently small
sample, since most individuals do not generate huge numbers of records,
and, not so surprisingly, are complicated by severe constraints on com-
puting time and space. There is much that statisticians can contribute to
solving these problems.

Machine Learning and Data Mining

The line between research in machine learning and data mining, as car-
ried out primarily in Computer Sciences departments, and research in non-
parametric estimation, as carried out primarily in Statistics Departments,
has increasingly become blurred. In fact the labels ‘machine learning’ and
‘data mining’ are increasingly used by statisticians. Primary areas of very
active research within Statistics Departments include new methods for clas-
sification, clustering, and predictive model building. Statisticians have been
developing classification tools for a long time but the explosion in compu-
tational ability along with the fruits of recent research have led to some
important new advances.

One such new advance in classification, taking advantage of these facts,
is Support Vector Machines. The method is highly popular among com-
puter sciences machine learning communities, but has greatly benefited
from input by statisticians, who have contributed in important ways to un-
derstanding of the properties of the method. However there are important
opportunities for further understanding of both the theoretical properties
of this tool, and the most appropriate and efficient way to use this tool in
recovering information from data, in a broad variety of contexts.

Recent applications of Support Vector Machines include: classification
of microarray gene chips according to the type of disease carried by the
subject donating mRNA to the chip, and classification of satellite radiance
profiles according to whether and what kinds of clouds are present.

Examples of nonparametric risk factor modeling include joint risk of
various medical outcomes, as a complex function of many risk factors. At
a more exploratory level, clustering of mRNA signals by mixture modeling
assists researchers to understand the number and nature of subpopulations
in the data.

With the advent of high speed computing Statisticians are better able
to build and test more sophisticated and detailed models that can deal
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in a more realistic and interpretable way, with very large data sets and
many potential predictor or attribute variables. It is important to put these
models on firm theoretical and computational foundations to guide the
applications.

Networks

The study of internet traffic can be roughly divided into traffic measure-
ment and modelling, network topology, and network tomography. All of
these areas present large scale statistical challenges.

Further research in measurement and modelling is motivated by the need
to jointly improve quality of service and efficiency. The current approach to
quality of service is based on massive overprovisioning of resources, which
is both wasteful, and also not completely effective because of bursts in the
traffic caused partly by improper protocol and routing procedures. Because
many ideas for addressing these problems have been proposed, there is a
major need for comparison, now done typically by simulation. This requires
modelling, and seriously addressing the statistical problem of goodness of
fit.

In particular, the central question is, “How do we know this works like
the real traffic?” These issues present a host of new challenges to statisti-
cians and probabilists. Classical statistical approaches and techniques are
typically rendered impractical by the appearance at many points of heavy
tailed distributions (often leaving even such standard tools as variance and
correlation useless) and long range dependence and non-stationarity (step-
ping beyond the most basic assumptions of classical time series). However,
understanding and modelling variation is still of critical importance, so this
area is a large fertile ground for the development of creative new statistical
methodologies.

Network topology presents different types of statistical problems. Here
the goal is to understand the connectivity structure of the internet. Graph
theoretic notions, combined with variation over time, and also combined
with sampling issues, are needed for serious headway in this area.

Network tomography is about inferring structure of the internet, based
only on the behavior of signals sent through it. Proper understanding,
analysis, and modelling of the complex uncertainties involved in this process
are important to headway in this area.

Data Streams

Statistical analyses of large data sets are often performed in what is essen-
tially batch mode. Such data sets may require years to collect and prepare,
and the corresponding statistical analyses may extend over a similar period
of time. However, just as there exists an important niche in computer pro-
gramming dealing with real-time computing and control, a rapidly growing
niche for statisticians exists for real-time data mining. Such situations arise,
for example, in remote sensing where limited bandwidth between an orbit-
ing satellite and its ground station precludes transmission of all raw data. A
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second example is commercial web sites such as an airline reservation sys-
tem where detailed keystroke sequence data leading to actual or abortive
reservations is not saved.

Off-line statistical analyses of these streams or rivers of data are not
possible as the raw data are simply not available. However, a statistical
agent can be placed directly in the stream of data to detect and quantify
results typical of modern data mining. The challenge is to create statistical
tools that run in almost linear time, that is, to design tools that can run
in parallel with the real-time stream of data.

For simple statistics such as sample moments, there are no difficulties.
However, these tools must be able to adapt in real-time. Furthermore, data
mining makes use of virtually every modern statistical tool (e.g., cluster-
ing algorithms, trees, logistic regression). Transforming and recasting the
statistical toolbox into this new and fundamentally important setting will
require imagination, cleverness, and collaboration with algorithmic experts
in other areas of the mathematical sciences.

More

Statisticians have played and continue to play an important role in other
areas of IT, e.g., Medical Imaging, Computer Vision, Computer Graphics,
Speech and Handwriting Recognition, Customer and Transaction Analysis,
Document Organization and Retrieval.

5.5 Physical Sciences

Historically, astronomy is one of the first and most important sources of
inspiration for, and application of, statistical ideas. In the 18th century
astronomers were using averages of a number of measurements of the same
quantity made under identical conditions. This led, at the beginning of the
19th century, to the method of least squares.

Astronomy has expanded enormously both in the size and complexity of
its data sets in recent years in order to estimate the Big Bang cosmological
parameters from the anisotropic clustering of galaxies, the fluctuation spec-
trum of the cosmic microwave background radiation, etc. A host of other
basic statistical problems arises from the Virtual Observatory, a federation
of multi-terabyte multi-wavelength astronomical survey data bases.

Despite the common origins of statistics and astronomy, and our mutual
interest in data analysis, only very recently have there been substantial
collaborations between statisticians and astronomers. (One example of this
type was presented in the core chapter.)

This longstanding gap between the fields of statistics and astronomy ex-
emplifies a common pattern in the physical sciences. Statistics works by the
efficient accrual of evidence from noisy individual information sources. In
large part the historical spread of statistical methodology can be described
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as “noisy fields first”: vital statistics, economics, agriculture, education,
psychology, medical science, genetics, and biology. The “hard sciences”
earned their name from the almost perfect signal-to-noise ratios attain-
able in classical experimentation, so it is understandable that they have
proved the most resistant to statistical methodology.

However, recent trends are softening the hard sciences, and so there is
an increasing need for statistical principles and methods. Technology now
enables bigger and more ambitious data-gathering projects such as those of
the Sudbury neutrino observatory and the Wilkinson microwave anistropy
probe. These projects must extract crucial nuggets of information from
mountains of noisy data. (The signal-to-noise ratio at Sudbury is less than
one in a million.) Unsurprisingly, statistical methods play a big, sometimes
crucial role in these projects.

To illustrate the promising future role of statistics in the physical sci-
ences, we offer three brief statistics-intensive examples, from particle physics,
chemical spectroscopy, and astronomy.

Confidence Intervals in Particle Detection

The following situation arises in the search for elusive particles: a detector
runs for a long period of time, recording x interesting events; a similar run
with the elusive particles shielded out yields a "background" count of y
events. What is an upper confidence limit for the true rate of the particles
of interest? Statistical issues become particularly sensitive if y exceeds x,
so that the unbiased rate estimate is actually negative. The question then
is whether the upper confidence limit is sufficiently positive to encourage
further detection efforts.

Even in its simplest form—actual situations can involve much more elab-
orate background corrections-this problem has attracted widespread inter-
est in the physics community. A much-quoted reference is Feldman and
Cousins’ 1998 Physical Review D article (p. 3873-3889). Louis Lyons, pro-
fessor of physics at Oxford, organized a September 2003 conference at the
Stanford Linear Accelerator Center devoted to statistical problems in parti-
cle physics, astrophysics, and cosmology (www-conf.slac.stanford.edu/phystat2002/
).

Comparative Experiments in Chemical Spectroscopy

Richard Zare, of the Stanford chemistry faculty, has developed an ad-
vanced class of mass spectrometers, able to simultaneously time the flights
of large volumes of massive particles. This permits comparisons between
collections of particles obtained under different conditions, for example
complex molecules grown in different chemical environments.

A typical spectrum consists of particle counts in binned units of time,
perhaps 15,000 bins in a typical run. Comparing two such spectra, that is
looking for bins with significant count differences between the two condi-
tions, is an exercise in simultaneous hypothesis testing. With 15,000 bins,
the simultaneity is massive. Statistical methodology originally developed
for microarray analysis can be brought to bear on spectroscopy compar-
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isons, but the relation between time bins is unlike that between genes,
suggesting that new methodology will be needed.

Survival Analysis and Astronomy

In a spectacular example of parallel development, astronomy and bio-
statistics invented closely related theories for dealing with missing data,
the field called "survival analysis" in the statistics literature. The reasons
for the missingness were different: astronomers are earth-bound so they
cannot observe events too dim or too far away, leading to data "trunca-
tion". Data "censoring" occurs in medical trials when subjects fail to record
a key event, such as relapse or death, before the end of the trial. Lynden-
Bell’s method and the Kaplan-Meier estimate, the astronomy and statistics
solutions to the missing data problem, are essentially the same.

Mutual awareness did not occur until the 1980’s. An influential series of
joint astronomy-statistics conferences organized at Penn State by Babu and
Feigelson have led to collaborations and progress in the statistical analysis
of astronomical data. For example, the extra-galactic origin of gamma-ray
bursts was demonstrated via survival analysis before the bursts could be
identified with specific physical sources.
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6

Statistical Education

6.1 Overview

Clearly, the long-range solution to the shortage of statisticians must lie
in improvements to the educational system that will attract, train, retain,
and reward a new generation of talented students. Improvements will be
required across the spectrum from elementary school through continuing
education of the workforce. The pool of K-16 teachers who are qualified to
teach statistics needs to be increased.

As a result of the stunning growth in AP statistics and other efforts
to incorporate college level material into the high school curriculum, the
boundary between high school and college statistics has blurred. The typical
college introductory statistics course often does not push far enough in
terms of fulfilling the needs of undergraduates for skills in data analysis,
modeling, and experimental design. These and other pressures suggest that
the entire K-16 approach to statistical training needs to be reevaluated to
assure that there is a logical and complete progression. At the same time,
the sharing of best practices needs to be emphasized to speed change and
increase efficiency.

According to CBMS2000, undergraduate enrollments in statistics courses
in mathematics and statistics departments were up sharply—45% —between
1990 and 2000. Faculty growth has not kept pace, and statistics depart-
ments, like mathematics departments, appear to be relying increasingly on
temporary faculty, according to this report.

While it appears that graduate doctoral training has become more bal-
anced in recent years, it is under stress from an enlarged statistics core,
increased demand for cross-disciplinary work, and expansion of the inter-
section of statistics and computer science. The situation is delicate and
will require departments to adapt in response to their local challenges
and opportunities. Post-doctoral training should receive higher priority in
the statistics community as a sensible way to launch research careers and
broaden interests. NSF’s VIGRE activity is providing a significant boost
in this regard.

Statisticians should play a larger role in the science of educational reform
whether it involves statistics instruction per se or other topics. There is a
cross-the-board national need for decisions about education to be based on
sound data!

So much of what needs to be done to strengthen education in statistics
will require large investment that it is natural to look to NSF for leader-
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ship and support. The shortage of statisticians in key industries and many
government agencies, the heightened concerns about national security, and
the increased reliance at the college level on adjuncts and instructors who
are not members of the regular faculty all suggest that now is the time for
action.

6.2 K-12 Statistics

There has been a general movement towards more emphasis on flexible
problem solving skills, including working with data, throughout the K-12
system. While not without controversy, this trend seems to be a healthy one
from the perspective of increasing the statistical literacy of the population.

Now with AP statistics courses, a significant number of students are
seeing statistics before they get to college. It may be too soon to assess
the impact of this development on the pipeline for future statisticians. But
it does seem clear that this full-year course, taught in an interactive high
school environment (in contrast to a one semester college lecture format),
has a lot going for it.

The role of the teacher cannot be overemphasized in all of these develop-
ments. Considerable effort continues to be given to training K-12 teachers
to take on AP statistics. Still, the need exceeds the supply. Dealing with
the K-12 (and college level) shortage of trained teachers may well be the
number one priority in statistics education. There is a special opportunity
and challenge for assuring that a qualified corps of teachers is available in
the inner cities and other places with large minority populations.

Generally, the number of minority students interested in technical studies
has been small. This can be traced in part to limited exposure in middle
and high schools. Improving statistics literacy is obviously only one leg of
a larger challenge in providing quantitative preparation in this country.

6.3 Undergraduate Statistics Training

With the demand for undergraduate statistics courses on the rise, as men-
tioned above, and the growing appreciation of the value of a statistically lit-
erate society, it is only natural to expect increased emphasis on undergrad-
uate statistics training. Special pressure points can be seen in the demand
from the pharmaceutical, biomedical, and government statistical commu-
nities (including those involved in homeland security and national defense
matters). The demand includes both undergraduate and graduate levels of
preparation.

The introductory statistics course—* stat 101” —has received consid-
erable attention in recent years. Certainly, much progress has been made
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in the development of course content, pedagogy, and technology and how
they relate to each other. However, the progress is hardly complete (and
never will be) and must continue in order to reflect the ongoing evolution of
the subject. Another concern is the “ trickle down” effect that can result in
out-of-date training being provided at community colleges and other places
where there is too long a time lag for course updates.

There are two other issues with respect to stat 101. First, with the ad-
vances in K-12 training, many students are entering college with exposure
to statistics that may even surpass the ordinary introductory course. Hence,
there is the need to rethink matters from a holistic K-16 perspective. Sec-
ond, stat 101 may not go far enough to meet the needs of many undergrad-
uates. The leap into a mathematical statistics course or into a specialized
course within a major is not the answer. There is a growing recognition of
the need for a natural sequel, a stat 102, that will help students continue to
learn about data analysis, modeling, statistical computing, and experimen-
tal design—practical skills that will prepare them for success in particular
application domains.

Going one step further, a minor-in-statistics option may be attractive
for undergraduates who require extensive skills of this kind. It is a logical
alternative that falls between the limited exposure of a stat 101-102 series
and a full-blown statistics major. It may be the right answer for many social
science and some engineering and physical science majors.

Engineers are often faced with the need for data collection, experimen-
tation, and decision making in the face of uncertainty. All of these involve
basic statistical concepts and methods. Yet, with the exception of indus-
trial engineering, statistics is not a part of the core curriculum in most (if
not all) major engineering programs. At the same time, industry has a crit-
ical need for sound statistical thinking among its engineers (and others).
For example, it spends enormous amounts re-educating its workforce in ba-
sic statistical methods for quality improvement. NSF could help close this
gap in undergraduate engineering training by bringing together educators
from engineering and statistics and industrial leaders to figure out how to
address this problem.

Concern over the state of undergraduate education in statistics is hardly
new. Bryce (2002) points out that it has been there for over 100 years. What
has changed, he observes, is that there is now a critical mass of statisticians
and educators attempting to improve matters. This couldn’t be happening
at a better time.

6.4 Graduate Statistics Training

Statistics doctoral training has improved considerably over the past decade
in the sense that there is a better balance between theory, methodology
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(including data analysis and computing), and probability. However, the
increasing breadth of the field is causing difficulties. Questions are being
asked as to what constitutes the core of statistics and what is essential to
teach graduate students. Some worry that decreased emphasis on mathe-
matics will lower the ability of graduates to tackle and solve truly difficult
and complex problems. Others argue for more diversity in statistics grad-
uate programs, recognizing the impossible task of dealing effectively with
an expanding core of “ required” knowledge without watering down the
curriculum too much. It is critical to get this balance right.

In addition to the expansion of the field and the fuzziness at where its
edges lie, there is also the growing intersection of statistics and parts of
computer science. Quite what this means for statisticians and graduate edu-
cation is still being debated (Breiman 2001). Nevertheless, a strong case can
be made that today’s typical graduate program reflects an overly narrow,
pre-computing view of statistics. Much of the statistics that emerged from
this era was centered on problems of estimation and testing where mathe-
matics brilliantly finessed a paucity of computing power. While acknowledg-
ing the continuing demand for this type of classically trained statistician,
there is increasing concern that students emerging from graduate programs
are not adequately prepared to engage in cutting-edge research and collab-
oration in the newer information-rich arenas. The skills needed go much
deeper than just the ability to program or to use statistical packages. They
include, for example, the ability to design and evaluate algorithms for com-
putationally challenging statistical methodology.

With many younger statistics faculty immersed in cross-disciplinary re-
search, it is natural to expect that graduate students will increasingly latch
onto research topics coming from these exciting application areas (e.g., ge-
nomics, neural science, finance, and astronomy). A natural next step would
be the formal development of cross-disciplinary doctoral programs involv-
ing statistics. At the very least, experiments along these lines should be
encouraged and monitored with the goal of finding models that work.

A related recommendation comes from the Odom report. It proposes that
graduate (as well as undergraduate) mathematical sciences education be
broadened to include “ areas other than mathematics.” It goes on to suggest
stronger support for programs that involve “ mathematical scientists in
multidisciplinary and university/industry research.”

Another opportunity is to invest resources in developing graduate courses
in statistics tailored to the needs of particular disciplines such as atmo-
spheric sciences. Besides providing a needed service, an important side
benefit could be the sparking of new inter-disciplinary collaborations.

Statistics, along with virtually every science, lags in the production of
minority doctorates. The current percentage of under represented minori-
ties among the total of statistics doctorates appears to be about five. Yet
there are models available on how to run a successful program. Ingredients
include attractive fellowships, a critical mass of minority students, and in-
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dividualized attention from faculty.

In most universities, a professional master’s degree in statistics is at least
a significant portion of the graduate program. The basic course work usu-
ally places less emphasis on mathematics, theory, and specialized advanced
courses, and more on methods, consulting, and computing. Employers often
still feel that such training needs to be stiffened in terms of applications,
data analysis, and communications skills. Nevertheless, these degrees are an
important part of the equation for increasing the pipeline of statisticians—
especially those who are U. S. citizens.

An intriguing variation is a master’s program aimed at doctoral students
in other disciplines. This is the natural extension of the undergraduate
minor idea mentioned in Section 5.3. It is also an alternative to the cross-
disciplinary Ph.D. degree.

In contrast with mathematics education, there is no well-established dis-
cipline called statistics education. This lack of formal structure and study
is an impediment to the development of new ideas and their incorporation
into educational practice. To overcome this situation, some universities are
beginning to establish degrees in statistics education. The American Sta-
tistical Association is also focusing on this issue through a working group
on undergraduate education.

Given all of these pressing concerns, tensions, and opportunities sur-
rounding graduate training in statistics, it would be especially timely and
beneficial to organize a series of national workshops to explore how best to
deal with these challenges.

6.5 Post-Graduate Statistics Training

Post-doctoral appointments have never been a major component of the
career path for statisticians, in contrast to many other disciplines. One
reason for this has been a long-standing very strong job market. Gradu-
ates can find immediate employment in career-path positions without such
experience. So why bother?

Notwithstanding this reality, carefully crafted post-doctoral appointments
can be an immensely rewarding career-enhancing step. Their availability
and use should probably be expanded. The Odom report argues for grad-
uates in the mathematical sciences to use these opportunities to immerse
themselves in other disciplines. The National Institute of Statistical Sci-
ences (NISS) has provided 43 government and industry-sponsored post-
doctoral appointments over the past decade. Consistent with the mission
of NISS, the primary emphasis has been on cross-disciplinary training. It
is anticipated that the new Statistics and Applied Mathematics Institute
(SAMSI) will offer a substantial number of post-doctoral appointments in
the years ahead. Even for graduates who desire a traditional research path



56 6. Statistical Education

within the core of statistics, these appointments can offer rich opportunities
for maturation, increased professional breadth, and experience in securing
research funds without the pressure of a tenure clock.

Other types of post-graduate training can be equally valuable for career
enhancement. These include mentoring on the job by seasoned profession-
als, early sabbaticals, and a whole range of formal continuing education
programs aimed at keeping statisticians at all levels up to date with new
developments.

6.6 Special Initiatives (VIGRE)

NSF continues to sponsor a variety of initiatives of interest to the statistics
community. The Grants for Vertical Integration of Research and Education
in the Mathematical Sciences (VIGRE) activity is especially relevant to the
transformations that many statistics departments desire to make. Still, the
program has left many departments with the impression that it is mainly
appropriate for mathematics departments. Statistics departments that lack
an undergraduate major or are relatively small in size feel at a disadvantage,
for example.

Just the same, a few departments of statistics have been beneficiaries of
VIGRE awards and have reported that their impact has been very positive
in several ways. This is not hard to understand because the goals of VI-
GRE, e.g., integration of research and education, enhancing interactions,
and broadening experiences, are very natural ones for statisticians.

For these departments, VIGRE has resulted in strong undergraduate
research experiences and increased the flow and improved the quality of
students entering graduate school. It has also impacted how graduate de-
partments think about training. Post-doctoral appointments in statistics
have increased as departments have been able to make appointments that
otherwise would have been infeasible.

Questions remain as to how these positive changes will be sustained
at these institutions. Clearly, this will boil down to money and faculty
commitment to a large extent. The challenge for the statistics community
and NSF will be to capitalize on what has been learned and to spread
the knowledge beyond the institutions that have been part of the VIGRE
activity. An NSF-sponsored conference may be an effective way of doing
this.

Granting agencies should consider other types of programs that could
broaden the experiences of students such as strengthening ties between
university departments and government and industrial groups.
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6.7 Continuing Education

For statistics graduates of all kinds, as well as novices to the field coming
from other backgrounds and disciplines, there is a very clear-cut need for
continuing education. The demand for such training is well illustrated by
the large audiences (including professors) at tutorial sessions at the Joint
Statistical Meetings and the expansion of the Continuing Education Pro-
gram of the American Statistical Association. Much of this demand comes
from industry and government where there are the unfortunate counter-
vailing pressures of the need to learn while on the job and the constraints
of lack of time and money for such training.

While it is now well understood that educational technology is only part
of the solution for K-16 and graduate training, there should be a much
larger role here for technology-intensive solutions. By taking advantage of
the capabilities of the Web and exploiting various multi-media technologies,
one can envisage a range of distance learning experiences that are practical
and cost effective for the mature student with limited time and budget.

6.8 Educational Research

For obvious reasons, it is essential that educational reform programs dealing
with statistics (or any other subject for that matter!) be based upon sound
statistical studies of their benefits. Yet there is a sense that too many
decisions about education are based on anecdotal information. Statisticians
should be particularly sensitive to these risks. They are also in a position
to assist education researchers in beefing up their studies so that the next
time someone asks for the data it will be there.
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7

Summarizing Key Issues

Evidence is all about us for the current unique opportunities for Statistics,
but also for our current unique challenges.

In order to master this enormous opportunity, the profession must ad-
dress several important challenges. Some of these are the intellectual chal-
lenges that we have reviewed in the preceding chapters. A second set of
challenges arise from the external forces that face the profession. In this
chapter these external challenges will be recapitulated.

7.1 Developing Professional Recognition

Earlier in this report some time was spent on identifying “What is statis-
tics” and on reviewing the history of the profession. The reason for this is
simple. The role of the statistics profession is often only poorly understood
by the rest of the scientific community.

Statistics is no longer, if it ever was, just another mathematical area like
topology, but rather it is a large scale user of mathematical and computa-
tional tools with a focused scientific agenda. The growth of the profession
in the past twenty years is enormous. For example, the number of doctoral
degrees granted in statistics has grown steadily to the point of matching
the number of degrees in the “rest” of mathematics.

If we wish our separate needs to be met, we need to establish our identity
to the wider scientific audience. We hope that this report can contribute
to this goal.

7.2 Building and maintaining the core activities

Exploitation of the current manifold opportunities in science has lead to
an increased demand for greater subject matter knowledge and greater
specialization in applications.

This in turn has created a challenge for statistics by putting the core
of the subject under stresses that could with time diminish its current
effectiveness in the consolidation of statistical knowledge and its transfer
back to the scientific frontiers. In essence, the multidisciplinary activities
are becoming sufficiently large and diverse that they threaten professional
cohesiveness.
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If there is exponential growth in data collected and in the need for data
analysis, why is core research relevant? It is because unifying ideas can
tame this growth, and the core area of statistics is the one place where
these ideas can happen and be communicated throughout science. That is,
promoting core area statistics is actually an important infrastructure goal
for science from the point of view of efficient organization and communica-
tion of advances in data analysis.

A healthy core of statistics (through a lively connection with applica-
tions) is the best hope for efficient assimilation, development and porta-
bility between domains of the explosion of data analytic methods that is
occurring. As such, it is a key infrastructure for science generally.

In Chapter 4 we identified the following opportunities and needs for the
core:

e Adapting to data analysis outside the core. The growth in
data needs provides a distinct challenge for statisticians to provide,
in adequate time, intellectual structure for the many data analytic
methods being developed in other arenas.

e Fragmentation of core research. Outreach activity is high and
increasing for all sorts of good reasons. We think there has been an
unintended consequence of this growth — a relative neglect of basic
research, and an attendant danger of our field fragmenting.

e Manpower problem. There is an ever shrinking set of research
workers in the U.S. who work in core area research. This manpower
problem is destined to grow worse, partly from the general shortage of
recruits into statistics and partly because outreach areas are pulling
statisticians away from core research.

e Increased professional demands. The core research of statistics
is multidisciplinary in its tools: it borrows from (at least) information
theory, computer science, and physics as well as from probability and
traditional math areas. As statisticians have become more and more
data-focused (in the sense of solving real problems of modern size and
scope), the math skills needed in core areas have gone up. This need
for ever increasing technical skills provides a challenge to keeping the
core vital as a place for integration of statistical ideas.

e Research funding. It seems clear that funding for core research has
not kept pace with the growth of the subject. Investigators, rather
than beating their heads against difficult funding walls, turn their
efforts towards better funded outreach activities or consulting. The
most basic needs remain as they always have: to encourage talent,
giving senior people time and space to think, and encouraging junior
people to buy into this line of research.
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¢ New funding paths. An illustration was given of a possible fund-
ing route that might enable statisticians to enrich basic statistical
research with interdisciplinary activity without pulling them out of
core research.

7.3 Enhancing collaborative activities

A distinguishing feature of the intellectual organization of statistics is the
value placed on individual participation both in the development of statis-
tical methodology and on multidisciplinary activities, e.g., in applications
of statistics in biology, medicine, social science, astronomy, engineering,
government policy, and national security, which, in turn, becomes an im-
portant stimulus for new methodology. Although different people strike
different balances between methodological research and subject matter ap-
plications, and the same people strike different balances at different times
in their careers, essentially all statisticians participate in both activities.

Statistics, through these interactions, develops tools that are critical for
enabling discoveries in other sciences and engineering. Statisticians are
also instrumental in unearthing commonalities between seemingly unre-
lated problems in different disciplines, thereby contributing to or creating
synergistic interactions between different scientific fields.

However, as noted by the Odom Report, our reach has not been wide or
far enough:

Both in applications and in multidisciplinary projects, however,
there exist serious problems in the misuse of statistical models
and in the quality of education of scientists, engineers, social sci-
entists, and other users of statistical methods. As observations
generate more data, it will be essential to resolve this problem,
perhaps by routinely including statisticians on research teams.

One problem is that statisticians who attempt to participate widely in
these activities face several steep challenges, including the need to stay
current in all relevant fields and the need to provide the relevant software
to carry out statistical analyses. In addition, in spite of a culture that en-
courages multidisciplinary activities, evaluating these activities has proven
difficult and sometimes controversial.

From Chapter 5, Statistics in Science and Industry, we can identify the
following important issues:

e The large amounts of data produced by modern biological experi-
ments and the variability in human response to medical intervention
produce an increasing demand for statisticians who can communicate
with biologists and devise new methods to guide experimental design
and biological data analysis.



62 7. Summarizing Key Issues

e There exists a software challenge that touches deeply in a number
of areas. It corresponds to a wide need for statistical methods to be
incorporated into open source software products, and a corresponding
lack of support for this infrastructure need.

e There exists a need for coordinated long term funding for interdis-
ciplinary projects so that the statistician can afford to develop the
scientific understanding vital to true collaboration.

7.4 Education

We have identified a growing need for statistics and statisticians from wide
areas of science and industry. As noted by the Odom Report, “There
is ample professional opportunity for young people in statistics, both in
academia, industry, and government.” At the same time, the profession
cannot meet demand with domestic candidates. Again, from the Odom
Report: “ A very high proportion of graduate students are foreign-born
and many remain in the United States upon graduation.”

At the same time that the demands on the profession have grown in the
research arena, there has been a startling growth in demand in statistical
education at lower levels:

e The statistics profession has started to feel the impact of the wide
growth of statistical training in grades K-12, led by the implemen-
tation of an AP course in statistics. This means many students are
coming to college with previously unheard of knowledge about statis-
tics.

e Undergraduate enrollments in statistics are up sharply-45%-between
1990 and 2000.

These circumstances point to the need for the profession as a whole to
consider how to handle this growth, and how to build a statistics education
infrastructure that can meet the changing and growing needs. Here are
some of the key issues and needs:

e The need for trained teachers of the Statistics AP courses, as well as
statistically literate instructors in other subjects in grades K-12.

e The need for an integrated K-16 curriculum that accounts for the
better high school training.

e The need for expanded statistics minor and major options in both
undergraduate and graduate programs.

e The need to encourage and enable students to acquire deeper and
broader subject matter knowledge in an area or areas of application.
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e At the graduate level, there is a large challenge in building training
programs that can offer sufficient depth over the wide breadth of tools
that the modern statistician is currently using.

e There is a growing need for more postdoctoral training opportunities
to help newly minted graduates develop their professional skills.

A second set of challenges to the statistics profession comes from the
need to fill the pipeline for tomorrow. The number of people with training
in statistics is not growing nearly fast enough for the exponential growth
in the demands for statistical expertise. This trend must be changed dra-
matically in order to meet the high demands for statistical expertise for
today’s complex, large, interdisciplinary research problems in science and
engineering.

No doubt recruitment at the lowest levels has been helped by the AP
course. At the same time programs for enhanced recruitment that are fo-
cused on the mathematics profession as a whole, such as VIGRE, are very
promising, but have many times lacked sensitivity to the special needs of
statistics.

7.5 Recommendations

The statistics profession faces many challenges at this time. The scientific
program of the workshop was very helpful as a way of identifying the broad
needs of the profession. In this report we have tried to summarize the
key elements of the workshop talks and presentations. In the end, this
leads us to ask if there are recommendations we can make to the statistics
community and to its constituents that will direct attention in the right
directions. The Odom report provided the following very useful summary
of its recommendations to NSF regarding mathematics as a whole:

Therefore, NSF’s broad objective in mathematics should be to
build and maintain the mathematical sciences in the United
States at the leading edge of the mathematical sciences, and to
strongly encourage it to be an active and effective collaborator
with other disciplines and with industry. NSF should also ensure
the production of mathematical students sufficient in number,
quality, and breadth to meet the nations’ needs in teaching, in
research in the mathematical sciences and in other disciplines,
and in industry, commerce, and government.

We wholeheartedly second this recommendation. Here we would like to
focus more specifically on those areas of opportunity and need in the statis-
tics profession. The sense of the workshop and the feeling of the leadership
in the profession is that enormous opportunities lie ahead for statistics.
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The realization of this potential, however, will not come easily. Resources
are too limited. The pipeline of students is too small. And the infrastruc-
ture supporting the field is too constrained. To deal with these and other
challenges, the following suggestions are put forth:

° Promote understanding of statistical science. Statistics is
hard to pigeon-hole. At NSF, it falls largely under the mathematical sci-
ences, yet most statisticians would agree that statistics is not a branch of
mathematics. Modern statistics is also close to computer science, especially
machine learning, yet most statisticians would agree that statistics is not a
branch of computer science. Statistics is a science in itself, and attempts to
group it here or there ultimately exacerbate misunderstandings about the
field. Statisticians need to take responsibility for articulating more effec-
tively the unique capabilities of their discipline. NSF can help by assuring
that, wherever it is housed, statistics can flourish without unproductive
constraints.

° Increase support for, and the autonomy of, the NSF statis-
tics program. To avoid stifling the momentum evident today in statistics
(and partially documented in this report) and to reap the benefits of the
multitude of opportunities presenting themselves, there are compelling rea-
sons for providing a substantial boost in resources that support statistics
at NSF. (See below for some specific needs.) In addition, we suggest that
NSF provide the DMS statistics program with increased autonomy within
its current organizational structure. This would be a logical step towards
full division status that many feel is already overdue.

e Develop more flexible funding models. The creation of the new
Statistics and Applied Mathematics Institute, SAMSI, is an excellent exam-
ple of creative new funding needed by the statistics profession. The needs,
however, are not solely institutional. Increasingly, individual researchers
are becoming involved in complex cross-disciplinary projects or in activities
that are more akin to running a laboratory than doing individual research.
One implication of this movement is the need for learning advanced pro-
gramming techniques and the development of sophisticated user-friendly
software. We propose that NSF develop novel funding arrangements that
would encourage these new ventures while being careful not to simply ex-
tract these monies from the individual research grant pool.

° Strengthen the core of statistics research. The risk of fragmen-
tation of the core of statistics has increased substantially as the field has
diversified and expanded. More attention must be given to consolidation of
knowledge and the development of new theories and methods with broad
applicability. We urge NSF to take responsibility for providing the level of
support necessary for strengthening the statistics core.

° Improve the support of multidisciplinary research activities.
Much of the excitement in science today stems from research that involves
multiple disciplines. While statistics comes by this naturally, it often suffers
from inclusion as an afterthought or exclusion as a minority player without
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a significant role. We encourage NSF to experiment with new vehicles for
funding this type of research and—when appropriate—to assure a role for
statistics. For example, in many cases statisticians should be partners in
projects with complex design and data analysis components. For such col-
laborations to succeed, statisticians will need to have the time and support
to understand the subject area.

e Develop new models for statistics education. The growth of AP
statistics courses in high schools, the burgeoning enrollments in undergrad-
uate statistics courses, and major improvements in computing technology
for data analysis underscore the need for reevaluation of the entire K-16
approach to statistics education. Graduate training is also due for reassess-
ment: keeping the right balance between training in the core parts of the
science, preparing students for cross-disciplinary work, and incorporating
relevant parts of computer science into the curriculum are among the con-
tributing factors to the awkward balancing act that departments face today.
The role of post-doctoral training and continuing education more generally
should also be part of the updated vision. To help the statistics community
develop appropriate new models for education, and to do it both holisti-
cally and systematically, we suggest that NSF sponsor or support a series
of focused, coordinated workshops on statistics education with the aim of
developing concrete plans for reform on these various fronts. It would be
natural to carry out this undertaking in collaboration with the scientific and
educational organizations that share responsibility for and concern about
statistics education.

° Accelerate the recruitment of the next generation. Workshop
participants pointed repeatedly to shortages in the pipeline of students and
unmet demand from key industries and government laboratories and agen-
cies. The long-range solution to this problem must lie in improvements to
the education system, starting even in elementary school and continuing
into high school and undergraduate school. However, changes of this type
will take much time and investment. Meanwhile, the shortage may prove
quite damaging to the nation’s infrastructure, especially in this period of
heightened concerns about national defense and security—areas to which
statistics has much to offer. Novel special programs designed to spur interest
in undergraduate and graduate training in statistics should be considered.
We encourage NSF to join forces with leaders of the statistics profession to
help solve the pipeline problem.
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Appendix A
The Workshop Program

This appendix contains the program that was given to the workshop par-
ticipants. (Some changes were made to the program during the workshop
in order to accommodate the schedules of the Foundation participants.)

STATISTICS: CHALLENGES & OPPORTUNITIES FOR
THE 215¢* CENTURY

In recent years, technological advances in instrumentation development
and the exponential growth of computing power have allowed researchers to
collect large amounts of data. Examples include the data collected from the
Hubble telescope or satellite photometry in the physical sciences, genetics
and the data bases it has spawned in the life sciences, and internet-related
data in engineering and the social sciences. Common characteristics of all
these data sets are size, complexity and noisiness. These massive data sets
and their collection create new challenges and opportunities for statisti-
cians, whose vital role is to collect data, analyze it and extract information
from it.

At the same time, science, industry and society are now tackling a multi-
tude of inherently data-poor situations, such as subsurface pollution mon-
itoring and remediation, reliability of complex systems, such as nuclear
plants and materials, and study of vehicle crash-worthiness. This is being
done by a combination of mathematical/computer modeling and statistical
analysis, and requires optimal use of scarce, and hence invaluable, data.
This poses new challenges and opportunities for statisticians who must op-
timally design experiments in situations of extreme complexity and then
extract the maximal information from the limited data.

Thus, whether it is because of the multitude of new data-rich or of new
complex, data-poor situations, it is a critical time to assess the current
status and needs of the field of Statistics to ensure that it is positioned
to meet these challenges. In this context, it is important to address the
following questions:

e  What is Statistics?

e  What are the distinct features that define Statistics as a discipline?
e  Given that, over the last 50 years, many major universities have sepa-
rated Statistics and Mathematics, what are the characteristics that distin-
guish Statistics from Mathematics?

e  Given that Statistics is in the Division of Mathematical Sciences (as
part of the Statistics and Probability program), what is its appropriate
share of funding for the mathematical sciences? What tools, data or re-
sources that are needed to address this question, now and in the future?
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e  What are the current and future exciting research directions and op-
portunities in Statistics?

e  What are the interactions of Statistics with other disciplines? In par-
ticular, what does Statistics contribute to these disciplines? And how do
these disciplines benefit from Statistics?

) Tools from Mathematics are used in Statistics, and vice versa. But is
there enough collaborative research involving both Statistics and Mathe-
matics? If not, what is preventing this from taking place?

e  What are areas of scientific investigation in which statisticians should
be involved but are currently not?

e  What should be the goals for the discipline of Statistics over the next
two decades?

e  What is needed, for example in terms of human resources and facili-
ties, to achieve these goals?

e  What is the role of Statistics in the international scene?

e  What are the funding trends?

e  How do other disciplines perceive Statistics and Statisticians?

° How do the statisticians perceive themselves?

Remark: The overall purpose of the workshop is to examine exciting re-
search directions and the discipline of Statistics.
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PARTICIPANTS:

Scientific Organization Committee:
*Jim Berger, Duke University
*Peter Bickel, UC Berkeley
Mary Ellen Bock, Purdue University
Lawrence Brown, University of Pennsylvania
Sam Hedayat, University of Illinois at Chicago
Bruce Lindsay, Chair, Pennsylvania State University
David Siegmund, Stanford University
Grace Wahba, University of Wisconsin

* indicates person is also a speaker

Speakers:
Sir David R. Cox, Oxford University, UK
Tain Johnstone, Stanford University, IMS President
Jon Kettenring, Telcordia
Vijayan Nair, University of Michigan
Eric Feigelson, The Pennsylvania State University
Chris Heyde, Australian National University, Australia, and Columbia Uni-
versity
Joel Horowitz, Northwestern University
Werner Stuetzle, University of Washington
Warren Ewens, University of Pennsylvania
Richard Smith, University of North Carolina, Chapel Hill
Philippe Tondeur, Division Director, NSF/DMS
Robert Eisenstein, Assistant Director, NSF/MPS
Adriaan De Graaf, Executive Officer, NSF/MPS
Rita Colwell, Director, NSF
Joe Bordogna, Deputy Director, NSF

Other Confirmed Participants:
Roger Koenker, University of Illinois Urbana-Champaign
Martina Morris, University of Washington
Alan Agresti, University of Florida
Wing Wong, Harvard University
Bruce Levin, Columbia University
Michael Stein, University of Chicago
Peter Guttorp, University of Washington
Karen Kafadar, University of Colorado-Denver
Jeff Wu, University of Michigan
Alan Karr, NISS
Regina Liu, Rutgers University
William Padgett, University of South Carolina
Peter Hall, Australian National University, Australia
Willem van Zwet, Eurandom, The Netherlands
Nancy Reid, University of Toronto, Canada
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Keith Worsley, McGill University, Canada

Robert Tibshirani, Stanford University

Brani Vidakovic, Georgia Tech

Mitchell Gail, NTH

Steve Marron, University of North Carolina Chapel Hill
Gary McDonald, General Motors Co.

Augustine Kong, deCODE Genetics, Iceland

David Scott, Rice University

David Madigan, Rutgers University

Stanley Wasserman, University of Illinois Urbana-Champaign
William B. Smith, American Statistical Association, Executive Director
Miron Straf, National Academy of Sciences, ASA President
Mark Kaiser, Iowa State University

Robert Kass, Carnegie Mellon

Diane Lambert, Bell Labs
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SCHEDULE

Day 1: May 6, 2002, Room 375

8:30- 8:45 Breakfast

8:45- 9:15  Rita Colwell, Director of the NSF

9:15- 9:30  Robert Eisenstein, Assistant Director, MPS
9:35-10:25 ~ What is Statistics? (D. R. Cox)

10:25-10:35  Break

10:35-11:25  The core of Statistics (Johnstone)
11:25-12:15  Statistics and the Biological Sciences (Ewens)

12:15- 1:00 Lunch (Lunch Speaker: Dr. Joe Bordogna,
Deputy Director, NSF)

1:30-2.20  Statistics and the Geophysical and Environmental
Sciences (R. Smith)

2:20- 3:10 Statistics and the Social and Economic Sciences
(Horowitz)

3:10- 3:25  Break
3:25- 4:15  Engineering and Industrial Statistics (Nair)
4:15- 5:05  Statistics and Information Technology (Stuetzle)

5:30 Program committee meets to discuss Day 2.
7:00 Dinner

Day 2: May 7, 2002, Room 110

8:30- 9:00 Institutes: The role and contribution to Statistics
(Jim Berger)

9:00- 9:30  Statistics in the International Scene (Chris Heyde)

9:30-11:30 Funding in the Statistical Sciences: Current modes
and future models

9:30-10:00 NSF perspective (Philippe Tondeur, Division Di-
rector, DMS)

10:00-11:00  Panel Discussion
Panelists: Feigelson, Heyde, Tondeur, Berger
Moderator: Bruce Lindsay

Floor Discussion
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11:30-12:30 Lunch (Lunch Speaker: Adriaan De Graaf,
Executive Officer, NSF/MPS)

12:30-5:30  Separate Groups are formed (discussion and writ-
ing. Please refer to the end of this program for information
about the composition of the different groups and room num-
bers.)

5:30 Program Committee meets to discuss Day 3

DAY 3: May 8, 2002, Room 110

8:30-9:50  All groups join for a general discussion. The group
moderators will present the group’s summary to the entire body
for discussion. The resulting (revised) summaries will form the
basis of sections for the final reports and other publications.

9:50-11:00  Break (room not available)

11:00-12:15 Continuation of discussion and presentation
12:15-1:15 Lunch

1:15-2:15  Vision 2020 (Kettenring and Bickel)
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Discussion Groups:

The composition of the groups is as follows (with members of the orga-
nization committee serving as moderators).

SOCIAL AND ECONOMIC: Moderator: Mary Ellen Bock

Participants: Agresti, Morris, Horowitz, Koenker, Wasserman, Straf

BIOLOGICAL SCIENCES: Moderator: David Siegmund

Participants: Wong, Levin, Kong, Gail, Worsley, Tibshirani, Ewens, Kass

INFORMATION TECHNOLOGY: Moderator: Grace Wahba

Participants: Marron, Stuetzle, Madigan, Scott, Lambert, Feigelson

ENGINEERING AND INDUSTRIAL: Moderator: Sam Hedayat

Participants: Kafadar, Nair, Liu, Kettenring, Padgett, McDonald, Karr

GEO AND ENVIRONMENTAL: Moderator: Larry Brown

Participants: Guttorp, Smith, Vidakovic, Stein, Kaiser

CORE: Moderators: Bruce Lindsay and Jim Berger

Participants: Johnstone, Cox, Hall, Reid, Heyde, Van Zwet, Wu, Bickel
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