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When Spatial Analysis was published in 1968, it drew together the fruits of the first

decade of geography’s quantitative revolution. In the decades that have followed,

quantitative geography has both diffused and concentrated, abandoned some themes,

made major progress on others, and in the contemporary form of geospatial analysis

has become an innovative multidisciplinary enterprise. In this article, we sketch the

broad outlines of this history, lay out the main threads along which technical capa-

bilities have developed, and describe what appear to us to be the leading questions at

the research frontier. Even as many geographers disavow social science, geospatial

science has emerged as a lusty arena marked by intellectual vigor, conceptual growth,

and enhanced analytic abilities. What now is taking shape is a spatially integrated

social–environmental science that is transcending older disciplinary attachments,

boundaries, and constraints.

Introduction

At the time that the forces of Marxism, deconstruction, and postmodernism have

combined with romantic reattachment to exceptionalism to deflect geography from

the cusp of scientific respectability, geospatial analysis has emerged as a vital new

force supporting spatially integrated investigation that crosscuts the natural and

human sciences. The roots of this force go back five decades. Berry and Marble’s

Spatial Analysis (1968) gathered key contributions that illustrate the themes that

emerged in the first of these decades, the period of geography’s quantitative

revolution. Many of these contributions have proved to be prescient—the stirpes

of contemporary geospatial research. It may thus be useful to examine their

contemporary manifestations and then to ask what is being contributed today that

may be a harbinger of the geospatial science that is yet to come.
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Prescient roots

Spatial Analysis began with the obligatory obeisance to history, set down in the

editors’ introduction and Burton’s brief account of the quantitative revolution of the

1950s. This concern for history and for the legitimacy of scientific geography has

continued. Burton’s paper was followed by Curry (1967) who in turn was followed

by Marchand (1974). After members of the discipline debated the merits and draw-

backs of quantification for the next two decades, Getis (1995) renewed the discus-

sion and Baker and Boots (2005) penned their 55-year retrospect.

Beyond legitimization, most other papers in Spatial Analysis were foundational

in nature. The entries by Chorley and Lowry helped usher in new modes of think-

ing, a new concern for models in geography, highlighted by the contemporaneous

publication of Chorley and Haggett’s Models in Geography (1967) and followed by

Haring and Lounsbury’s (1971) Introduction to Scientific Geographic Research. The

scientific approach promoted by these writings was bolstered by the applications

furnished by Court, King, Sabbagh, and Bryson, Robinson et al., and Wong

and Kendall. Meanwhile, Curry’s focus on stochastic conceptualizations was a

forerunner of thinking about superpopulations and contemporary model-based

geographic inference. Although these papers have disappeared from most contem-

porary reference lists, their indirect effects thus live on.

In a similar vein, the cluster of papers by MacKay, Warntz, and Knos, while

building on the older tradition of social physics, anticipated the revolutionary work

on spatial interaction forged by Wilson (1970). Today, widely practiced gravity

modeling of spatial interaction rests on a solid theoretical foundation. The recent

Massey–Lane (Massey 1999; Lane 2001) exchange is indicative of continued in-

terest in this type of underpinning for spatial analysis.

Closely related is the enormous amount of diffusion research motivated by

Hägerstrand, which also stimulated the adoption of simulation experimentation as

part of spatial analysis. Hägerstrand built the foundation for such masterpieces as

Cliff et al.’s (1981) Spatial Diffusion, an instrumental predecessor of the present-day

U.S. Centers for Disease Control’s AIDS data animation project (Stephenson 1995)

and its modeling of diffusion of the 2003 SARS epidemic (2004). The foundation

will no doubt also play a pivotal role in analysis of the current avian flu crisis, as it is

in continuing work on the spread of influenza (Viboud et al. 2006).

Among the variety of other beginnings, Nystuen’s promotion of geographic

concepts has exploded from his initial list. Choynowski’s treatment of probability

maps is a forerunner of auto-binomial modeling. Matui’s and Dacey’s papers point-

ed to modeling spatially correlated Poisson random variables. Berry’s, Garrison’s,

and Nystuen and Daceys’ papers laid the foundations for the eigenfunction analysis

championed by Gould (1967) and Tinkler (1972), Tiefelsdorf and Boots (1995), and

Griffith (2003). The entries by Chorley and Haggett, Harbaugh and Preston, and

Haggett similarly foreshadowed the development of the eigenfunction-based spa-

tial filtering model specification (Griffith 2003), whereas Berry and Baker’s paper
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established the groundwork for the later spatial sampling designs developed by

Stehman and Overton (1996) and refined by Griffith (2005). Griffith translated

geographic context into the independent and identical distribution (i.i.d.) frame-

work of classical statistics, which led him to the notion of effective sample size, or

the equivalent i.i.d. size of a geographic sample once spatial autocorrelation effects

have been taken into account. As geographic sample intensity increases, positive

spatial autocorrelation in a sample tends to increase, resulting in increasingly re-

dundant information and hence a continual decrease in the amount of new infor-

mation being acquired with each new sampled location. This insight has enabled

not only kriging but also spatial autoregressive and spatial filtering models to be

related to imputation via the estimation-maximization (EM) algorithm of statistics,

enabling the redundant information contained in spatial autocorrelation to be ex-

ploitable to produce estimates for locations for which values are missing (Griffith

and Layne 1999).

Spatial Analysis also included cautionary notes. The papers by Thomas and An-

derson and by Goodman on the use of aggregate geographic data anticipated the

publication of subsequent papers such as Openshaw and Taylor’s (1979) classic

about the modifiable areal unit problem and the myriad of more recent work about

the ecological fallacy authored by Amrhein (1995), Steel and Holt (1996), King

(1997), and Richardson and Montfort (2000). The ecological fallacy problem remains

unsolved, however, and as such continues to be the topic of continuing research.

Fundamental harbingers

The most important of the beginnings in Spatial Analysis have been left for last—

those that presaged the emergence of geographic information systems (GIS) and

geospatial science. Let us look briefly at the first and with some more detail at the

second.

GIS

With respect to GIS, Tobler’s entry signified the unfolding of new approaches to

map projection. This was followed by Snyder’s (1983) tome and its update by

Bugayevskiy and Snyder (1995). Map projections have become of sufficient general

interest that Robinson’s obituary in The New York Times (Wilford 2004) commem-

orates them. Beyond map projection, the matrix organization of geographic phe-

nomena spelled out by Berry has become the GIS attribute table (Sui 1995), while

Robinson’s concern for isarithmic interpolation may be viewed as a predecessor of

present-day kriging.

From these beginnings, and the crude computer-generated maps that accom-

panied them, the expansion of GIS has been truly phenomenal, driven by rapid

expansions in computer power—far beyond those anticipated by Kao in Spatial

Analysis—satellite technology and global positioning (themselves creatures of mil-

itary and intelligence demands), and pushing much further into computer science

(Goodchild 1992). To cite just one example, there is growing concern for the col-
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lection, management, processing, analysis, and delivery of real-time geospatial

data using distributed geosensor networks. The sensors can be static or mobile and

can be used to passively collect information about the environment or—and this is

clearly becoming critical—to actively influence it. Supportive research addresses

such issues as data stream processing, temporal–spatial queries over geosensor

networks, and sensor data integration and mining. Whether this makes GIS a toolkit

or a science is a matter of continuing debate (Wright et al. 1997).

Geospatial science

There is no question with respect to emergent geospatial science. The important

harbingers were Geary’s article on spatial autocorrelation, Dacey’s paper about

two- and K-color maps, and that of Bachi on geographic series. Their focus on

geographic dependence was quickly followed by Cliff and Ord’s (1973) pioneering

treatment of spatial autocorrelation that heralded the work on spatially autoregres-

sive and geostatistical analysis that now is central to geospatial inference.

Three spatial regression model specifications have emerged and seem to be

forming the backbone of the science. The autoregressive (AR) response model is

written as Y 5rWY1Xb1e, where W is the row-standardized version of a binary

geographic neighbors matrix, C. The simultaneous autoregressive (SAR) model is

Y 5rWY1(I� rW)Xb1e. Third, the conditional autoregressive (CAR) model is

DY 5 DXb1e, where DTD 5 (I� rC )M, and M is a diagonal matrix, often set equal

to I. The CAR model describes spatial autocorrelation in terms of a first-order inverse

covariance structure; the other two describe it in terms of a second-order structure.

All three models are connected. The SAR and CAR models are both members of

the family of Gaussian spatial processes. They differ only in their specification of

the covariance matrix but originate in the same spatial link matrix. A third member

in this family is the Gaussian moving average spatial process. The AR model, also

termed in spatial econometrics the spatial lagged model, is a special case of the

SAR model in which the lag component in the exogenous variables is restricted to

zero. Geostatistics shies away from this formulation because its underlying prob-

ability distribution cannot be given in closed form.

What is interesting is that there appear to be significant differences in user

preferences. The AR model is preferred by spatial econometricians who see the

term rWY controlling for spatial autocorrelation in a manner that is analogous to

procedures for controlling serial autocorrelation in time series models. The ap-

proach was pioneered by Paelinck and Klaasen (1979) and Anselin (1998), who

built off the treatment in Cliff and Ord’s (1973) work to introduce spatial effects into

the econometrics literature. The AR model has facilitated numerous tests of inter-

dependent behavior that are revealed through spatial dependence in cross–sec-

tional data. Behavior is often interdependent because of an externality, that is, a

situation where the behavior of one agent spills over and directly influences the

behavior of another. When the spillover is spatial, there are spatial externalities—

the behavior of agents at one location is influenced by behavior of agents at another
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location. In such cases the normal assumptions of regression analysis fail. Of the

numerous instances of spatial econometric models, perhaps the most noteworthy

involve strategic interaction between governments on a variety of issues including

provision of public goods, tax competition, and environmental quality. Examples of

other applications involve criminal behavior, regional industrial clusters, and valu-

ing real estate. Anselin, Florax, and Rey (2004) contains a compendium of recent

applications and presents the current specification and estimation issues.

Whereas the rapid growth of AR applications is in spatial econometrics, the

SAR model pioneered by Whittle (1954) is favored by spatial statisticians and the

CAR model by remote-sensing researchers, although it also is used in hierarchical

Bayesian modeling by spatial statisticians, and hence by epidemiologists who en-

gage in disease mapping. The reasons for these different preferences are complex

(Paelinck and Griffith 2004). The SAR model casts spatial autocorrelation as a

function of a model’s error term, and hence renders unbiased ordinary least-squares

estimators in the presence of spatial autocorrelation. The CAR model involves a

first-order covariance structure (i.e., only immediate neighbors have a direct effect

of a given location’s value), which relates to a more natural Markov-type depen-

dency structure and which always can capture positive spatial autocorrelation

when used to specify hierarchical models.

Spatial structure emerges in residuals when covariates are missing from a mean

response specification, when a nonlinear relationship is mistakenly specified as a

linear one, when heterogeneity arises because of the geographic aggregation of

nonhomogeneous units, or when spatial interaction among locations is present (i.e.,

spatial processes are at work). The SAR model accounts for redundant information

in georeferenced data that is due simply to geographic nearness (i.e., a spillover

effect) with a second-order covariance structure (i.e., both first- and second-order

neighbors have a direct effect on a given location’s value). The CAR model is often

preferred in image analysis because it achieves the maximum entropy among the

set of all stationary models with a given finite set of variances and covariances,

because it yields minimum variance predictions, and because it is directly extend-

able to space–time model specifications. Both the SAR and the CAR specifications

have strong conceptual linkages with geostatistical semivariogram modeling. Early

applications of these models were to data obtained during agricultural field exper-

iments. Cliff and Ord (1973) popularized them for a much wider variety of situa-

tions, many of which involve socio-economic and demographic variables. Griffith

and Layne (1999) furnish a set of example applications illustrating this scope.

Key issues

The nature of the spatial relationship

Almost all analyses in spatial statistics, spatial econometrics, geostatistics, or spatial

epidemiology rely on simple topological relationships among the spatial objects.

These binary indicator relationships are based either on dissimilarity metrics such
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as functions of interobject distances or on similarity metrics such as neighborhood

characteristics. These different metrics are closely linked to the configuration of the

spatial objects. The Young and Householder theorem can be used to retrieve a

configuration of the spatial objects which is approximately congruent with their

original planar layout (Tiefelsdorf 2000, section 3.2.3). This implies that statistical

methods of spatial autocorrelation analysis that utilize either distance or adjacency

relationships will produce highly correlated results because they ultimately are

based on the same spatial structure, an idea probed by Berry in Spatial Analysis.

Alternative specifications of spatial relationships are far less commonly adopt-

ed, despite Haggett’s (1976) initial success. He identified the most likely diffusion

pathways of a measles epidemic at different phases of the diffusion process,

explicitly specified hypothetical pathways of spatial interaction among the disease

carriers, and then checked the degree of correspondence of the endogenously ob-

served spatial patterns to the exogenously specified spatial diffusion link matrices.

Exogenous spatial link matrices may reflect functional relationships among the

spatial objects rather than simple distance decay or adjacency. For instance, a pat-

tern embodying a spatial hierarchy cannot be captured at higher levels of the hi-

erarchy by simple neighborhood relationships because observations are spatially

disjoint (see Berry 1972).

Spatial mixing in observational data

The values of variables observed at particular locations may result from spatial

mixing, in which case spatial modeling which controls for spillovers in the pres-

ence of local causal relationships will be inadequate. For example, a high inci-

dence of a particular disease in a particular location may not be a matter of local

causation but arise because immigrants bring the condition with them, simulta-

neously affecting the disease rate in their areas of origin. In such cases a spatial

mixing or exchange mechanism needs to be embodied in the analysis.

There are few such studies. Examples are Tiefelsdorf (1998), who argues that

migration is spatially mixing of observed disease rates for degenerative diseases

with a long latency, and Kim, Elliott, and Wang (2003), who use intercounty com-

muting flows to capture the economic integration of counties in a voting pattern

analysis. Tiefelsdorf demonstrates that in spatial epidemiology, spatial interaction

relationships are more relevant from a substantive point of view than simple spatial

spillovers, pointing to the need for more informed specification of spatial relation-

ships, as opposed to mechanical use of first- or second-order adjacency.

Spatial heterogeneity

Global models, which assume a common functional structure, may not be suffi-

cient to fully characterize underlying data-generating spatial processes. Systematic

local departures from the underlying global relationships lead to spatial heteroge-

neity. The common approach to understanding such heterogeneity, presaged by

Thomas in Spatial Analysis—and still good practice—is to identify influential
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observations, outliers, and patterns in global model residuals. This information may

point to local mechanisms operating on particular subsets of objects.

The evolution of local spatial analysis beyond such information-gathering

efforts has three sources. First, spatial interaction modelers noted spatial heteroge-

neity in local distance-decay parameters. Fotheringham (1991) put forward a be-

havioral theory of competing destinations to address these variations and modeled

them using a local accessibility proxy to the potential destinations. Second, Anselin

(1995) and Ord and Getis (1995) simultaneously introduced local indicators of

spatial association to the methodological repertoire of spatial autocorrelation anal-

ysis. They realized that the tendency of spatial data either to cluster or to manifest as

spatial outliers may vary locally throughout a map. Third, Fotheringham, Brunsdon,

and Charlton (2002) extended the standard regression model to its geographically

weighted form, arguing that the relationship between an endogenous variable and a

set of exogenous variables may vary across a study area. Marked spatial heteroge-

neities in local regression parameters imply the possibility of locally varying data-

generating mechanisms and thus locally varying theories.

Common to all systematic attempts to codify local variations in model param-

eters is a spatial filter that ties a local estimate at a pivot to its surrounding neigh-

borhood. These local neighborhoods can be specified either by an adjacency

metric or by a distance-decay relationship. In making such estimates, the available

data are reused several times because they fall simultaneously into the domain of

various pivots sliding slowly over the study region, however. While this provides

smooth map patterns of the local estimates, it comes at the price of high intercor-

relations among these estimates. The effect of these intercorrelations has been in-

vestigated by Tiefelsdorf (2000, 2003), who showed that local Moran’s I’s are

correlated even if their pivots are more than two spatial lags apart and that, for

spatial interaction models, a spatial pattern in the local distance-decay parameters

may very well be an outcome of a misspecified distance-decay function. Local

distance-decay parameters also have the tendency to correlate highly with other

estimated parameters of the model. This multicollinearity hampers substantive in-

terpretation of the estimated parameters because their individual effects can no

longer be identified. There will also be strong correlations among the spatial pat-

terns of different sets of local regression parameters (Wheeler and Tiefelsdorf 2005).

These also induce artifacts that confound substantive meaning and highlight the

necessity for more research on the properties of local statistical methods and in-

terpretation of their results.

Local statistical methods are a youthful addition to the repertoire of spatial

analysis and initial setbacks should not surprise us. A research agenda on these

methods needs to focus on three issues: first, the local statistics must link to the

associated global parameter because local parameters involve variation around the

global model structure (Anselin 1995). Second, the correlation among the local

statistics must either be controlled or explicitly incorporated in the local model

interpretations—a clear identification of the unique local effect is required (Ord and
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Getis 1995). And third, a joint statistical framework for testing local parameters

must be adopted to enable the significance of local patterns and the statistical

power of the local estimates to be assessed. Of course, these three issues converge

into a unified model structure that allows simultaneous estimation and testing of all

local and global effects.

Conclusion

There are, of course, a myriad of other technical problems to be solved. Not the

least of these are codifying the impacts of spatial autocorrelation on the full battery

of descriptive statistics, understanding negative spatial autocorrelation, developing

the distribution theory for testing for spatial autocorrelation in residuals from gen-

eralized linear and autoregressive models, and developing generalized linear

mixed models that account for spatial autocorrelation. All of which is to say that,

40 years after Spatial Analysis, Geospatial Science has emerged as a powerful new

locus with a technically proficient and socially significant research agenda—a

multidisciplinary enterprise that involves not only statisticians, geographers, and

economists, but also epidemiologists, demographers, and many others. Each brings

particular spatial problems and solution strategies to the table. The obvious

question is whether the result will be a new discipline or an integrative inter-

disciplinary pursuit that fosters the broader development of spatially integrated

human-environmental inquiry.
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