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1. Introduction: Mathematics and Science; On writing and reading
mathematics; how to study math

Mathematics is the “language of science”. This means that the phenomena, the
rules and the results of science experiment and theory are expressed in terms of
mathematics. Thus, the laws of physics, for example the laws of gravitation, electricity
and magnetism are written by means of mathematical formulas. The basic math
needed there is calculus, both one-dimensional (in the real numbers R) and in n-
dimensional Euclidean space Rn. The latter is vector calculus, the subject of this
course.

All of this is built upon Linear Algebra, since that is basic to understanding Eu-
clidean space. We emphasize first a proper understanding of basic Linear Algebra,
as necessary for a true understanding rather than just a manipulation of seemingly
interchangeable formulas.

Once we move to the study of waves, including in Quantum Mechanics, and also
of heat flow, we extend from Euclidean space to function spaces, which are infinite
dimensional vector spaces. So Linear Algebra is also essential there. The study of
Linear Algebra in infinite dimensions is known as Functional Analysis.

Also fundamental to science are differential equations : ordinary differential equa-
tions (ODE) which includes systems of ODE (this can also be called vector ODE), and
partial differential equations (PDE). PDE is essentially the study of ODE in infinite
dimensional spaces.

So far this is just referring to physics, but remarkably, in all branches of science,
the same mathematical theories come into play and indeed are essential.
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But what are the key differences between math and science? In science one tries
to find fundamental laws, from which in principle all the behavior can be derived.
Examples in physics are Newton’s laws of mechanics and of gravity; Einstein’s Spe-
cial Relativity; the foundations of Quantum Mechanics; the models of fundamental
particles. But in physics there are also higher level laws like for thermodynamics
and fluid flow. In Chemistry there are rules, or laws like the Periodic Table; chem-
ical equations... In Biology one has DNA and Natural Selection; the way cells and
viruses interact, the study of the brain and of intelligence, including Arificial Intel-
ligence. One also tries to find useful basic laws in Psychology, Botany, Climatology,
Economics and so on.

Probably most physicists believe that it should be possible to find precise mathe-
matical expressions for all the fundamental physical laws, though at present we are
still far off from this goal. And even if given a perfect set of laws, to actually de-
rive the consequences of those rules, although “in principle” possible, is practically
not achievable because of the immense amount of computation needed even to get
approximate predictions. Nevertheless, incredible progress in many areas has been
made, since say the mid 1800s. Of course this has been enormously accelerated in
recent decades by the exponential advancements in computing power, including AI.
However it should be kept in mind that AI is no replacement for a deep understanding
by a human being. Just as no one would care to watch a robot Simone Biles perform
gymnastics, or a robot soccer match (except as a joke, when they knock each other
over), so AI-aided research is at best one more tool which can only be useful in the
hands of a researcher who actually deeply understands, for themselves, the necessary
math and science. And for that, there is no substitute for actual in-person courses,
hard individual study, and interactions with others.

An analogy to math is that the fundamental physical laws are reminiscent of the
axioms of a mathematical system. There are however big differences here. From the
axioms one can in principle derive all the true statements for the system; in other
words, one can prove all theorems; we are skipping over the caveat here due to the
results in Logic of Goedel and others. In the next section, we explain the axiomatic
approach. The physical laws say Newton’s laws for gravity and mechanics can be
taken as axioms for those theories, but they are expressed in terms of Calculus which
is based on the axioms of mathematics, and which goes far beyond Physics in its
applications.

Mathematical axioms are assumed, that is they are defined to be true, and one
derives consequences (theorems) via the laws of Logic. By contrast, physical laws
must be justified by experiment. So experimental evidence in some sense takes the
place of proofs, or rather it provides the ultimate argument that both the laws and
the consequences derived from them are correct.

Thus when experiments showed Newton’s laws to not be quite exact, they were
improved by Einstein. But the underlying math did not change as once proved, it is
true forever, and in all possible worlds and universes.

The closest analogy to experiment in math is to study examples, including to work
out computer graphics simulations. That is how a math researcher comes up with
ideas; the next step is to prove them rigorously, which means precisely, following at
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each step the rules of logic. Like experiment, examples in math give a rough idea of
what is actually true; the real explanation, and the real understanding, comes from
proof.

1.1. Studying math. One can say that studying math consists of several aspects:
–the study of examples;
–understanding the definitions and statements of theorems;
–understanding the proofs of the theorems;
–working out exercises. Those are often special cases of the theorems, or simpler

examples.
The best way to learn math is to teach it, that is, to explain it to someone else.

The next best way is to work out exercises, and the third way is to thoroughly study
the theory, in lectures and on one’s own. Waching video lectures is, by comparison,
of little value. At best, it provides some motivation and inspiration to get back to
the actual, hard, work.

1.2. How books are written; how to read them. Math books are often written
in a “linear” manner, logically presented in the most efficient way possible, with
Definitions, then Theorems, the Proofs, followed by Examples and the Exercises.

But that is often not the best way to learn math, starting on Page 1 and preceeding
in order. Because, that is never the way mathematicians think about, understand, or
learn math themselves. Rather, that linear understand comes after years of prepa-
rations, as a kind of culmination which solidifies and reinforces the author’s own
understanding.

Rather, math is usually actually learned much more like a spiral rather than a
straight line, where we circle around and around and fill in more and more details all
the while.

The reason for this is that to learn, it is essential to remain curious, and interested.
(It is my own firm belief that math should always be interesting, and fun! So I try
to maximize my own enjoyment of learning, by letting my own curiosity run free.)

Thus, for example, if we find the material on Set Theory and Logic at the beginning
of these Notes to be intimidating or boring, it may be better to skip ahead to more
familiar material.

A reference for this course is a typical Calculus text, and often the best approach
there is to first try to do some of the exercises, picking up the necessary definitions
and consulting the worked-out examples; only then might we go back and read the
whole chapter in order. This has the advantage of challenging us immediately to
think, and spurs our curiosity and motivates our desire to master the material.

This text is not written exactly in the traditional linear fashion; rather we mix
styles as seems appropriate. But we encourage the reader to jump around! And to
then always come back and study what was missed on the first go-round.

1.3. How to study math. Learning math is very different from many other subjects,
where memorization can play an important role, as in the study of, say, medicine or
law. In mathematics we try to for example never memorize equations but rather to
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learn the concepts so well, to understand the material so deeply, that we can derive
the equations freshly each time we need them.

Math is hard and is challenging. And precisely becaue of that it is immensely
satisfying! That is one reason why I myself fell in love with it. Also I loved the
sudden discovery as a student that everything in math can, in principle, be totally
understood, from the bottom up. Furthermore, there are interesting logical or phili-
sophical challenges, like understanding infinity, limits, and paradoxes! Moreover, the
kind of rigorous logical training you get from proofs is fantastic preparation for any
other intellectual or human endeavor, from stuyng law to economics to politics and
History. The satisfaction one can get from finally understanding a difficult result is
like no other, and the immense reward from doing original research, or from teaching,
has no replacement. Grades are of secondary importance: getting good grades should
be a natural side effect of a study aimed at mastery. One should maintain always the
attitude that “I can understand it if I work hard enough, no matter what it is”, and
that attitude will provide incredible rewards. Once you learn something thoroughly,
once you really master it, you will never forget it, and even if you forget the details,
all that will come back quickly. The goal should never be to memorize, rather to
understand, deeply. That is where the true satisfaction lies. Superfical understand-
ing, or leaning only to chase the grade, is a waste of precious time which will never
come back, for any of us....Inspiration, curiosity, discipline and the will to take on
challenges are the key. Math is infinitely challenging and difficult; no matter how
smart you are, you can find problems that will challenge you to your limits. The goal
is to get to that point, over and over again. You can do it, we all can. The struggle is
the reward, and the best part is when you realize you are really confused, and push
yourself just a bit more with the confidence that you can do it.

1.4. A story about proofs. When I took Math 1C, 3rd quarter Calculus at the Uni-
versity of California, Berkeley, I had the fantastic luck to have an excellent Teaching
Assistant who met with us twice a week. This was the “honors section” of Calculus,
and was supposed to be harder or more abstract, which scared off most students, but
I had the overconfidence (despite a series of terrible previous grades) to take it, which
meant there was only a small group of, say, 15 people. For that reason the teaching
asistant, a brilliant grad student named David Solomon, allowed himself to be infor-
mal and concentrate only on the math, not on formalities. Actually he only met with
us in class sometimes; other times the meeting was at a colorful local café, and there
were other memorable encounters in his office. The very first day he announced to
us, “I’m supposed to teach you Differential Equations. But you are going to learn
that anyway, so instead we are going to do som REAL mathematics!” He began
with a beautiful and simple proof of Pythagoras’ Theorem, then went on to prove
there are an infinite number of primes, that

√
2 is irrational, and that though the

irrationals are dense, they are countable (just as numerous as the Counting Numbers
N); and moreover, there are more real numbers than irrationals. He left us with a
challenge: “If you choose a point randomly from [0, 1], is it rational, or irrational?”
More about that later! Here is the proof this TA showed us of Pythagoras. It is half
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geometry (pictures) and half algebra (formulas), and so a good introduction to much
of mathematics.

We are to show that for a right triangle, i.e. with one right angle, with sides of
length a, b, c, then a2 + b2 = c2, where c is the length of the hypotenuse. Draw a
square with sides of length (a + b). Divide each side into two pieces of length a, b,
in that order going counterclockwise. (Let’s choose a = b/4 to have a nice drawing.)
Now connect those four dots. This forms a twisted square in the middle which is c
by c.

Now calculate the total area, in two ways. First, it is (a + b)2 = a2 + 2ab + b2,
using algebra. Next, it is the sum of the areas of the 4 triangles plus the square in
the middle. This is c2 + 4(ab/2) = c2 + 2ab. These are equal, so

a2 + 2ab+ b2 = c2 + 2ab

and we have our proof!
When I ask my own students if they know a proof, they often draw the following

picture they learned in high school, which is not a proof at all but merely an illustra-
tion: draw the triangle with sides a, b, c and then draw three squares, one based on
each side, so with areas of a2, b2, and c2. They then claim, “See? The sum of areas
of the two smaller squares equals the area of the larger square, so a2 + b2 = c2!!”

This is the same “proof” I had been shown in high school, so no wonder I was
confused! For this proves nothing at all. Even to try to get proof from this, you
would have to divide each region into tiny squares, measure their lengths, add them
up. And this is only approximate! Moreove, it would have to be repeated for every
possible triangle.

The proof we have given is absolutely rigorous (i.e. logically correct) and works for
any shape of triangle. Furthermore, once you learn it, and explain it to a friend (or
to your grandmother), you can never forget it. And furthermore, it will remain valid
in 100 years, and on any planet, in any universe. That is the beauty of mathematics!

If you discover something new, you have discovered it for all time and all places....
The other proofs our TA showed us that day are “proofs by contradiction”. To

describe this, we first need a bit of logic.

2. Review of Logic

Mathematics is the language of science; and the language of mathematics is Set
Theory together with Mathematical Logic.

We give here a somewhat informal account of the basics.
A phrase is a collection of words (technically an ordered collection of words) which

make sense. Thus “boy goat dog swim or” is not a phrase as it does not make sense.
A proposition or a statement is a phrase which is a declarative sentence; it states or
declares something to be true. This can either be true (T ) or false (F ); if P is a
proposition then its truth value is either T or F . Thus “the dog flies quickly” is a
proposition as it does make sense (although it may be false!).

Given propositions P,Q,R the we can form more complicated propositions by the
use of the logical symbols ∼,∧,∨,⇒, ∀, ∃, read “not, and, or, implies, for every, there
exists”.
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We define the meaning of these symbols by meas of truth tables. The first shows
the possible truth values for a single proposition P , the second defines the meaning
of not (∼). The third shows the possible truth values for two propositions P,Q. The
next defines the meaning of and (∧) and or (∨).

P

T
F

P ∼ P

T F
F T

P Q

T T
T F
F T
F F

P Q P ∧Q P ∨Q
T T T T
T F F T
F T F T
F F F F

Implication ⇒ is defined by this truth table:

P Q P ⇒ Q

T T T
T F F
F T T
F F T

It is important to note that this meaning of implication does not always accord
with usage in common language. However this is always the meaning in mathematics!
Thus if we start with a false statement, we can reach any conclusion: “if Washington,
DC is the capital of Brazil then 2+2 = 4” is a true statement, but so is “if Washington,
DC is the capital of Brazil then 2 + 2 = 5.”

(This is one reason why we don’t want to have contradictions in any mathematical
theory: for then every proposition, and its opposite, are both true!)

The second line of the table agrees with our usual usage of “false statement”; for
example “if Washington, DC is the capital of the United States then 2 + 2 = 5” is
false as here we begin with a true hypothesis and end with a false conclusion.

Reverse implication, (P ⇐ Q), which can be read “P if Q” is defined to mean
(Q⇒ P ). P ⇒ Q can also be read “P only if Q”.
P ⇔ Q, read “P if and only if Q” is defined to mean (P ⇒ Q) ∧ (P ⇐ Q). We

also write this as P iff Q.
We say two propositions P,Q are equivalent iff P ⇔ Q.
We shall now use truth tables to prove the following result:

∼ (P ∨Q)⇔ (∼ P∧ ∼ Q). (1)

P Q ∼ P ∼ Q (P ∨Q) ∼ (P ∨Q) (∼ P∧ ∼ Q) ∼ (P ∨Q)⇔ (∼ P∧ ∼ Q)

T T F F T F F T
T F F T T F F T
F T T F T F F T
F F T T F T T T

Exercise 2.1. Prove, similarly: ∼ (P ∧Q)⇔ (∼ P∨ ∼ Q).
Try to think of “practical” examples of these results, with propositions from either

mathematics or day-to-day life.
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The results (2.1) and (1) are distributive laws (of ∼ over ∨ and of ∼ over ∧).
Here we have shown that ∼ (P ∨ Q) ⇔ (∼ P∧ ∼ Q) is always true, no matter

what are the truth values of P,Q. This means the two propositions are equivalent
and that this statement is a theorem of logic. Another word for a logical theorem is
a tautology: precisely, if R is a more complicated proposition defined using P,Q, the
R is a tautaulogy or logical theorem iff it is always true, i.e. it has the following truth
values:

P Q R

T T T
T F T
F T T
F F T

It is a contradiction iff always false, i.e. it has the truth values:

P Q R

T T F
T F F
F T F
F F F

Exercise 2.2. Prove using truthtables that P ∧ P and P∨ ∼ P is a tautology while
P∧ ∼ P is a contradiction.

Solution:
P ∼ P P∧ ∼ P P∨ ∼ P

T F F T
F T F T

Remark 2.1. The opposite of a tautology is a contradiction, and vice-versa. That is,
P is a tautology iff ∼ P is a contradiction.

The two statements P∨ ∼ P and ∼ (P∧ ∼ P ) are equivalent by the distributive
law (1).

“P∨ ∼ P is true” (which is half of “P∨ ∼ P is a tautology”) says that either a
statement or its opposite has to be true. This was called by Aristotle the Law of the
Excluded Middle. That is, there is no “middle ground” in mathematics; you cannot
have something which is neither true nor false, but indeterminate. Clearly this is not
the case in real life usage! “John is a good man” or “I am happy” or “I am strong”
might be partly true and partly false, as it might depend on the particular moment
and also on the criteria of judgement.

Half of the logically equivalent statement “∼ (P∧ ∼ P ) is a tautology” is “P
and ∼ P cannot both be true”. This says that there can be no contradictions in
mathematics.

Summarizing the two, in mathematical logic either P or ∼ P is true but not both.

Exercise 2.3.
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(i) Prove, using truthtables, the logical theorems

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

and
P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)

These are known as distributive laws (of ∧ over ∨, and of ∨ over ∧).
(ii) Prove, using truthtables, the logical theorem that

(P ⇒ Q)⇔ (∼ Q⇒∼ P )

.

Definition 2.1. The converse of the statement (P ⇒ Q) is (Q⇒ P ).

It is not usually the case that both are true; indeed that happens iff they are
equivalent! However we have the following relationship:

Exercise 2.4.
(ii) Prove, using truthtables, the logical theorem that

(P ⇒ Q)⇔ (∼ Q⇒∼ P )

.

The statement (∼ Q ⇒∼ P ) is known as the contrapositive of (P ⇒ Q). One
often proves theorems in this way.

We also have:

Exercise 2.5.
(iii) Prove, using truthtables, that

(P ⇒ Q)⇔ (∼ (P∧ ∼ Q))

.

Exercise 2.6. Prove, using truthtables, that

((P ⇒ Q) ∧ P )⇒ Q.

This is known as modus ponens and is perhaps the most basic form of logical argument.

Also very important, and one of the most useful strategies in mathematical proofs,
is proof by contradiction.

That is: to prove a proposition P , if we assume its opposite, and this leads to a
contradiction, then P is true.

This is: (∼ P ⇒ (contradiction) )⇒ P . Since as we saw above in Exercise 2.2,
(Q∧ ∼ Q) is a contradiction, we can write this as:

(∼ P ⇒ (Q∧ ∼ Q))⇒ P.

This can be proved using truthtables.
Both proof by contrapositive and proof by contradiction are very often used in

mathematics. What is fascinating is that even though these statements are logically
equivalent to (P ⇒ Q), they may be much easier to understand intuitively or to
verify. We shall see examples below.
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We will define ∃ and ∀, once we have a bit of set theory which will provide us with
some motivating examples.

We have seen above that P∨ ∼ P is a contradiction, hence is always false, no
matter what the truth value of P .

However, the general definition of a contradiction is a statement P such that P is
both true and false, that is, P∨ ∼ P is true.

2.1. Four proofs by contradiction. We need:

Theorem 2.1. (The Fundamental Theorem of Arithmetic) Each nonnegative integer
> 1 has a unique factorization as a product of primes, written in increasing order.

Thus, for example, 13, 608 = 23 · 35 · 7. We don’t include 1 here since 1 = 1 · 1 so
the factorization is not unique. (This is one reason many do not include 1 in the list
of primes.)

Theorem 2.2. There are an infinite number of primes.

Proof. (By contradiction). Suppose there are a finite number of primes, with the
largest being p. Let their product be q. Consider m = q + 1. Either m is prime
(which is larger than p, a contradiction) or not. We look at its prime factorization.
None of the primes up to p divide q + 1, as the remainder is 1. Hence all the primes
in that factorization are larger than p, again a contradiction, finishing the proof. �

Theorem 2.3. The square root of 2 is irrational.

Proof. (By contradiction). Suppose not. Then there are positive, nonzero integers
m,n such that

√
2 = m/n. We can suppose that m,n have no common factors,

otherwise we cancel those. We have
√

2 =
m

n
;

squaring both sides,

2 =
m2

n2

so
2n2 = m2.

Thus m2 is an even number. Now the square of an even number is even, the square
of an odd number is odd (exercise: verify this!) Thus m is even, so m = 2j. We have

2n2 = m2 = (2j)2 = 4j2

so
n2 = 2j2

and n2 is even, whence n is even by the previous reasoning. But then m,n have a
common factor of 2, giving a contradiction. �

Any set which can be put into one-to-one correspondence with N is termed count-
able. We shall show:

Theorem 2.4. The points in the unit interval I = [0, 1] ∩ R are uncountable.
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Proof. (By contradiction). Suppose I is countable. Then we can list them as a se-
quence, x0, x1, x2, . . . . We write each in its decimal expansion, as xk = 0.xk0xk1xk2 . . . ,
with each digit xij ∈ {0, 1, 2, . . . 9}. Thus we have an infinite matrix, with the kth

row giving the decimal expansion of the real number xk: x00 x01 x02 . . .
x10 x11 x12 . . .
...

...
...

...

 .
Cantor’s proof proceeds by producing a single real number w which is not on this

list. For that, he chooses its decimal expansion w = .w0w1 . . . so as to guarantee that
w 6= xk for each k. For this, it is enough to choose the digits so that each xk differs
from w in some digit, in fact in the kth digit. So, he simply chooses a different digit
in that spot; that is, wk 6= xkk. This gives a contradition to the hypothesis that R is
countable, and so completes the proof.

Since the digits xkk lie on the diagonal of the matrix, this is known as Cantor’s
diagonal argument. (We shall see similar arguments below in §4.5.)

�

This demonstrates that there is more than one type of infinity, for though both the
natural numbers and the real numbers are infinite sets, the reals are larger. Below in
Cor. 4.7 we find that in fact there are an infinite number of infnities! This again (in
key step Theorem ??) will be a proof by contradiction.

3. Review of Set Theory

A set is a collection of objects. This means that given some object x, and a set A,
since we know what objects are in A, we know whether x is in A or not.

That is: given A and x, exactly one of these statements is true:
–x ∈ A or
–x /∈ A.
Thus a set is exactly specified by what are its elements.
Another name for an element of A is a member of A. Another name for an element

of a set is an object or a point in the set.
We can define a set by means of a sentence S containing a variable x, as follows:

we write
A = {x : S(x)} which is read: “A is the set of all x such that S(x) is true.”
For example, the collection of all students in the course Calc 2 could be defined as:

A = {x : x is enrolled in Calc 2}.
Here is another example. Given two sets A,B we define the intersection and union

as follows: A ∩ B = {x : x is is in either set A or set B}, in other words, A ∩ B =
{x : (x ∈ A) ∨ (x ∈ B}.

Similarly, A ∪B = {x : (x ∈ A) ∧ (x ∈ B}.

Exercise 3.1. Prove, making use of the logical theorems we proved above, that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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and
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

These are the distributive laws, for intersection over union, and union over intersec-
tion, respectively, analogous to the distributive law of multiplication over addition for
the real numbers: a(b+ c) = ab+ ac.

Definition 3.1. Given sets A,B we say A is a subset of B, written A ⊆ B, iff
x ∈ A⇒ x ∈ B.

Sometimes we can define a set by listing its elements. Thus A = {0, 1, 2, 3} is
a subset of B = {0, 1, 2, 3, 4} and also of the infinite set of natural numbers N =
{0, 1, 2, . . . } (which we discuss in more detail below).

We write #X for the number of elements in a set X. Thus #A = 4, and #N =∞.
However it will be more correct to write #N = ω, as it turns out that there are some
infinite sets that are bigger than others! This is one of the most fascinating aspects
of Set Theory, which we explain below.

Definition 3.2. The simplest set is the empty set ∅, also written as {}. This is
defined to be the set which contains no elements. Thus (x /∈ A) is true for any object
x, and #∅ = 0.

It is interesting that ∅ can be defined as follows, since for any x, x 6= x is false:

∅ = {x : x 6= x}.

Exercise 3.2. Prove that ∅ is a subset of every set A.

We define two sets A,B to be equal iff they have exactly the same elements. This
just agrees with our definition of set as a collection of objects.

Thus: A = B ⇔ (x ∈ A) ⇒ (x ∈ B) and also (x ∈ B) ⇒ (x ∈ A). Equivalently
A = B iff A ⊆ B) and B ⊆ A). We often prove two sets are equal in this way.

Exercise 3.3. Prove, making use of the logical theorems we proved above, that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

and
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

These are the distributive laws, for intersection over union, and union over intersec-
tion, respectively.

Definition 3.3. Given a set X, we say X is the universe (of discussion) if we shall
only be talking for the moment about subsets of X. Thus if we are studying statistics,
and choosing points form the set X = {0, 1, 2, 3, 4}, then this is our universe. If we
are studying Calculus, our universe may be the real numbers R or three-dimensional
space R3.

Such a universe X can also be termed a relative universe as we are studying things
relative to this restriction.

Given a relative universe X, and a subset A ⊆ X, the complement of A is Ac =
{x : (x ∈ X) ∧ (x /∈ A)}. This is also called the complement of A in X, or the
complement of A relative to X.
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Exercise 3.4. Given a universe X, prove, using the theorems of logic shown above,
that for A,B ⊆ X,

(A ∪B)c = Ac ∩Bc

and

(A ∩B)c = Ac ∪Bc.

Definition 3.4. These very important theorems are known as de Morgan’s laws.

Remark 3.1. Notice how the logical statements and the set theory statements parallel
each other! Here is another example:

Exercise 3.5. Prove that

(A ⊆ B)⇔ (Bc ⊆ Ac).

3.1. What is a “proposition”, and what is an “axiom”, really? In mathe-
matics, everything has to be defined rigorously, which is math-talk for: “absolutely
precisely”. For each area of mathematics, we carry this out, always specifying the
particular mathematical theory we will be dealing with.

Example 1. For a first example, let us consider Set Theory itself. We begin with the
most simple phrase possible, which is x ∈ A. We say this as “x is an element of the
set A” but actually as we see below, x can itself be a set, with say an element a, and
A can be an element of a further set, say B. In this case we have a ∈ x, x ∈ A, and
A ∈ B which we can summarize as: a ∈ x ∈ A ∈ B.

Indeed, in classical Set Theory, all elements will in fact themselves be sets. This is
the case for example in the excellent book by Halmos, [Hal74].

We describe the axioms for what we shall call Cantor’s Set Theory as it was pro-
posed by Georg Cantor, the inventor in the period 1874-1884 of Set Theory. This was
initially a huge success as it transformed our way of thinking about and working with
basically all of mathematics. However a fundamental problem with this approach
was discovered (by Russell), and it was necessary to reformulate the axioms to put
everything on a logically consistent foundation. The most usual way to do this is via
the Zermelo-Frankel Set Theory, which is that developed in Halmos’ book. He calls
this “naive Set Theory” as his approach is still somewhat informal, as expalined in
the Introduction to that book.

Here are Cantor’s axioms (there are only two!):
(1) Given a set A and x, then (x ∈ A) ∨ x /∈ A but not both.
This tells us when two sets are equal. We then have a second Axiom:
(2) Given a statement S, containing a variable x, whose truth value depends on

what x is, then A = {x : S(x)} is a set.
From this, as explained above, we can define these concepts: emptyset, union,

intersection, subset, complement. Cantor’s Set Theory could be used as a foundation
for nearly all of mathematics, and greatly clarified all areas of mathematics.

However, as we shall see below, Cantor’s Axioms although they apparently make
perfect sense, are (to everyone’s surprise at the time) not consistent , as they lead to
a contradiction.

That is why they were replaced by the Zermelo-Frankel and other lists of axioms.
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Example 2. For a second example, take the study of vector spaces: Linear Algebra.
Here we begin with Set Theory, and then define a vector space to be a set of a special
type, with properties given by the axioms of vector spaces.

The axioms are theorems. That is, they are statements which we assume to be true
for our set. Then, using the laws of logic, we construct proofs of all the other true
statements of the theory, called the Theorems, Propositions and Lemmas of Linear
Algebra.

A mathematical theory is determined by a list of definitions and fundamental true
statements which are assumed to be true, but not proven. The theory is then the
collection of all true statements building on this; these are called theorems. (Since
the axioms are true statements, they themselves are theorems). One tries to prove
all the theorems from the axioms, using the laws of mathematical logic.

It is important to know that the axioms of a theory are coherent or consistent,
meaning that you cannot arrive, by proof, at a contradiction.

In principle, it should be possible to prove this! However in practice finding such a
proof can be difficult, depending on deep ideas of Set Theory and of Logic.

In fact, for Cantor’s version of Set Theory this is impossible, as one can prove a
contradiction! This famous result, due to the British mathematician and philosopher
Bertrand Russell, in 1901, threw the world of mathematics into a turmoil and led
to much further remarkable work. This is known as Russell’s Paradox and will be
described below.

Furthermore, on an even more fundamental level, a list of axioms should be found
for mathematical logic itself, and again, it should be shown that these are coherent.
This question is also very subtle and interesting, as shown by work of Goedel and
others. The study of these matters is known as the foundations of mathematics.

3.2. Russell’s Paradox. Is is perhaps strange, but not ruled out in Cantor’s set
theory, that a set could be an element of itself. That is, A ∈ A. Since this is
questionable behavior, let us call a set such that this does not happen a good set. Let

V = {A : A /∈ A}.
Thus V is the set of all good sets. This is allowed by Cantor’s theory, since A /∈ A
is a perfectly good sentence with the variable A. Then Russell asks the innocuous
question:
Is V a good set itself, of not?

We know from the Law of the Excluded Middle, Remark 2.1 that either V ∈ V or
V /∈ V .

However if V ∈ V , then V /∈ V by the definition of V . On the other hand, if
V /∈ V , then V ∈ V !

So we have a contradiction. This shows: Cantor’s set theory is not consistent, as
the axioms lead to a contradiction.

We add a few details:

Theorem 3.1. (Russell) Cantor’s set theory is not consistent.

Proof. (by contradiction!) Assume the opposite, that Cantor’s set theory is consistent.
Then according to Cantor’s Axiom 1 either x ∈ A or x /∈ A for any sets x,A. Taking
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x = A we know that either A ∈ A or A /∈ A, but not both. By Cantor’s Axiom 2 we
can define

V = {A : A /∈ A}.
By Axiom 1 the sentence V ∈ V (call this P ) is a valid statement. Now P ⇒∼ P ,
and ∼ P ⇒ P . By Modus Ponens, if P is true, then ∼ P is true, and similarly if ∼ P
is true, then P is true. So P is true iff P is false. Thus we have proved P∧ ∼ P .

By the Calculus of Propositions Q = P∧ ∼ P is always false. Hence if R is any
statement, Q ⇒ R is true. But also as we proved above Q is true. So by Modus
Ponens (Q ⇒ R) ∧ Q implies R. Thus we can prove any statement R. Hence we
can also prove its opposite, ∼ R. Thus the theory is empty, as there are no true
statements, only contradictions. �

This means it was necessary to find a new set of axioms for Set Theory which
does not have this problem. The standard version good enough for much of modern
mathematics is Zermelo-Fraenkel set theory, usually with the Axiom of Choice and
Continuum Hypothesis added in. This is known as ZFC set theory. See [Hal74].

Remark 3.2. Even a theorem we proved in Cantor’s theory, such as

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

is no longer proved, as it is now both true and false! However the argument we gave
is essentially valid, as it can be converted to a real proof in the Zermelo-Fraenkel
theory.

One explanation for what goes wrong in Cantor’s theory is that he allows sets
which are “too large”. A way around this is to call very large collections of sets by
a different name, a class. A set will also be a class (called a small class); these are
the sets which are guaranteed by the Zermelo-Fraenkel theory. But there are classes
(large clases) which are too big to be sets.

And example is the universe U , defined to be the collection of all sets.

Theorem 3.2. The universe cannot be a set, as if so this leads to a contradiction.

Proof. This is much like the proof of Russell’s Paradox. Suppose U is a set.
Then by the Axiom of Specification of the Zermelo-Fraenkel theory, V = {A :

A is a set and A /∈ A} is also a set. That is, V = {A ∈ U : A /∈ A} and V ∈ U .
Now either V ∈ V or V /∈ V . Suppose V ∈ V . Then V /∈ V . And if V /∈ V then

V ∈ V , a contradiction! �

Remark 3.3. Other collections which are large classes are: the collection of all groups,
of all vector spaces, and the collection of all ordinal numbers. See [Wik].

4. Review of numbers

Definition 4.1. In this course we write N for the for the natural numbers, N =
{0, 1, 2, . . . } and Z for the integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }. If we want only
the positive integers, we denote this by N∗ = {1, 2, . . . }. (There is a difference of
notation here depending on the country and the mathematician).
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4.1. The Peano Axioms. We begin with the natural numbers N.
The usual axioms we use for N are the Peano Axioms, see e.g. [Hal74]. Here (for a

reason explained below, involving ordinal numbers), it is usual to write ω rather than
N.

–(1) 0 ∈ ω;
–(2) if n ∈ ω then n+ ∈ ω (here n+ is the successor of n and equals n+ 1)
–(3) if S ⊆ ω and satisfies (1), (2) then S = ω;
–(4) there is no predecessor for 0;
–(5) if two numbers n,m have the same sucesor then they are equal.
(The reason we write n+ rather than n+1 is that addition has not yet been defined.)
Property (3) is the basis for proofs by induction. The reason we use the notation ω

here rather than N is that ω is part of the ordinal numbers, a beautiful approach to
understanding infinity which is complementary to cardinality, see [Hal74]: the ordinal
numbers start off 0, 1, 2 . . . , ω, ω+ = ω + 1, ω + 2, . . . , 2 · ω, . . . , ω · ω, . . .

4.2. von Neumann’s construction of the natural numbers. Given an axiom
system in mathematics, we would like to show that this system is coherent, i.e. con-
tains no contradictions, as then we can go on and prove theorems without ending up
in the useless situation that every ststement is true (and false!) As explained above,
this can actually happen with axiom systems that seem perfectly ok, such as Can-
tor’s axioms for Set Theory. If this happens, we have to start over and find a better,
coherent set of axioms.

One way to show an axiom system is coherent is to actually construct the object
the axioms want to describe. Thus, we would like to not only list axioms for the
natural numbers N, the integers Z, the rational numbers Q and the real numbers R,
but to construct them.

That is, how do we show there actually exists a set which satisfies the given axioms?
The Hungarian-American mathematician von Neumann found a brilliant way to

do this, starting with a construction of N. This is then used as a foundation to go on
and build the other types of numbers. His definition is inductive:

–0 = ∅;
–Given n, then n+ = n+ 1 = n ∪ {n}.
Thus 0, 1, 2, 3 will be: 0 = {}; 1 = {0} = {∅} = {{}}; 2 = {0} ∪ {1} = {0, 1} =
{∅, {∅}}; 3 = {0, 1, 2} = . . . and so on.

To form the infinite set N of all natural numbers, we need a new axiom: the Axiom
of Infinity.

This says simply:
–There exists a set containing 0 and the successor of each of its elements.

4.3. The Power Set. The next axiom we need is:
–Power set axiom: Given a set A, there is a set P(A) which is the collection of all

subsets of A.

Proposition 4.1. If A is a finite set, with n elements, then #P(A) is 2n.

Proof. Say A = {a, b, c}. Then for each subset B, either a ∈ B or a /∈ B, giving 2
choices. The result is 2 · 2 · 2 = 8.
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Another way to see this is as follows. For A = {a1a2, . . . , an}, each subset B
corresponds to a sequence x1, x2, . . . xn with xi = 1 or 0, depending on if ai ∈ B or
not. The number of such sequences is 2n. �

Definition 4.2. Given a set X and a subset A ⊆ X, we define the indicator function
χA : X → {0, 1} to be

χA(x) =

{
0 if x /∈ A
1 if x ∈ A

(2)

The name is because χA indicates which points are in A and which are in its comple-
ment.

Note that there is a bijective correspondence from the subsets of X to the collec-
tion of all indicator functions defined on a set X. Recalling that in von Neumann’s
definition 2 = {0, 1}, then this is {f : X → {0, 1}} = {f : X → 2}.
Definition 4.3. Given sets X, Y we define Y X = {f : X → Y }. That is, we denote
the set of all functions from X to Y in that way.

Example 3. Here are some examples of this notation. As above, since 2 = {0, 1},
then for a set X, 2X = {f : X → {0, 1}}, which is the set of all indicator functions
of subsets of X. This is convenient notation: for example, as seen above, if #X = n,
then #P(X) = 2n. (This explains why P(X) is called the power set!! Again using
von Neumann’sdefinition 2 = {0, 1}, then R2 = {f : 2 → R}. Writing x instead of
f, and writing xi = x(i), then the function x is the ordered pair (x0, x1). Similarly,
Rn = {(x0, x1, ..., xn)} = {x : n→ R} since n = {0, 1, ..., (n− 1)}.

Note that also, R2 = R× R and so on.
It is interesting that if X, Y are both finite sets, with n,m elements, then the

number of functions from X to Y is mn. That is, #(Y X) = (#Y )#X . An example
we already saw is for the number of subsets of X: this is #(2X) = (#2)#X = 2#X .

This is a different way to see that #(2X) gives the number of subsets of X.
This gives us a different way to look at Cantor’s diagonal argument.
We show:

Theorem 4.2. The number of subsets of N is uncountable.

Proof. (By contradiction). As we have just seen, P(N) corresponds to 2N, the set of
all functions from N to 2 = {0, 1}, which is the set of all indicator functions defined
on N. Such a function x is just a 0 − 1 sequence, that is, a sequence x0, x1, x2, . . .
with values xi ∈ {0, 1}. Suppose Suppose 2N is countable. Then we can list these
sequences in order, as rows of a matrix with entries 0 or 1, x00 x01 x02 . . .

x10 x11 x12 . . .
...

...
...

...

 .
As before, by switching the diagonal entries we produce a sequence x not on this

list, which is the indicator function of a subset not on the list!
�
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4.4. Integers, rationals, reals.

Definition 4.4. In this course we are writing N for the for the natural numbers,
N = {0, 1, 2, . . . }. We denote the integers by Z = {. . . ,−2,−1, 0, 1, 2, . . . }. We
write N∗ for the positive integers N∗ = {1, 2, . . . }. (There is a difference of notation
here depending on the country and the mathematician). The prime numbers are
{1, 2, 3, 5, 7, 11, 13, 17, . . . }; again there is a difference of custom as many number
theorists begin the primes with 2, but as someone working in dynamical systems
theory I prefer these choices! (Conventions like this- meaning mathematical customs
- are not really important as long as one is clear about one’s definitions when writing
a book or article!) Q denotes the rational numbers, Q = {m/n : m,n ∈ Z, n 6= 0}.
Z and Q are both rings: there are two operations on it, addition and multiplication,
denoted by + and ·, satisfying the following axioms:
(1) There exists a unique number 0 such that 0 + x = x (existence of an identity
element for +)
(2) x + y = y + x (the commutative law for +) We note that another name for
commutative is abelian.
(3) (x+ y) + z = x+ (y + z) (the associative law for +)
(4) 1 · x = x (existence of an identity element for ·)
(5) x · (y · z) = (x · y) · z (the associative law for ·)
(6a) x · (y + z) = x · y + x · z
(6b) (x+ y) · z = x · z + y · z (the two distributive laws).

For a commutative ring the multiplication is also commutative.

Remark 4.1. We can either assume the identity element 0 is unique as in (1) and
prove from that:
(1’) there exists an additive inverse for each x, denoted −x, or we can drop the
uniqueness assumption and replace it by (1′) and then prove uniqueness from that.

A field is a set K, with two operations + and ·, which is a commutative ring and
such that also:
(8) each x 6= 0 has a multiplicative inverse: there exists x̃ such that x · x̃ = 1. We
write x−1 for this number.

The basic examples to keep in mind of fields and the only ones we use in this
course, are R (the real numbers) and C (the complex numbers) Other examples are
Q (the rational numbers) and the finite fields Zp for p prime, and extension fields

of Q such as Q[
√

2] (see any algebra text). There are few fields, and many rings!
A group G is a set with only one operation which is associative but not necessarily
commutative, and with inverses. This is usually called multiplication and is written ·;
however if the group is commutative this operation may be written +. Thus the fields
are commutative groups for + but also their non-zero elements form a commutative
group for multiplication. Any ring is a group for addition. N with addition gives an
example of a semigroup as it does not have additive inverses.

There are many, many more groups than rings. Other examples are invertible
(n× n) matrices with the operation of matrix multiplication. The quaternions are a
four-dimensional example of something which is not quite a field, as multiplication is
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noncommutative, and the octonions are an eight-dimensional example which is even
worse: multiplication is not even associative! Both of these find uses in Physics, and
both can be represented by certian collections of matrices.

Abstract Algebra is the study of all these sorts of things: groups, rings, fields, vector
spaces and much, much more. Each of these can be called an algebraic theory. For
example, group theory consists of all the definitions and theorems for groups.

The basic idea of any mathematical theory is that we study certain objects (usually
sets) satisfying certain properties called axioms. The axioms are the most basic true
statements. We use calculations and intuition to try to guess at new true statements,
and then endeavor to use the rules of logic to prove all these statements, called
theorems. (Thus the axioms themselves are also theorems!)

4.5. Cardinality; different infinities.

Definition 4.5. Given two nonempty sets X, Y , a function f from X to Y , written
f : X → Y , assigns to each x ∈ X (called an input) a value y = f(x) ∈ Y (the output
of the function corresponding to x).

Note that from this definition, each x has only a single output.
If for each y ∈ Y there exists an x with this output, the function is called surjective

or onto.
If for two different inputs x1, x2 ∈ X the outputs are different, then we say f is

injective or one-to one, also written 1− 1.
If a function is both injective and surjective, then we say f is bijective, or a bijection

from X to Y . We then say f defines a one-to one correspondence from X to Y .
The identity function id = idX : X → X is id(x) = x.
f is a bijection from X to Y if and ony if it has an inverse function g defined by

g(y) = x where x is the unique element of X such that f(x) = y.
Given two functions f : X → Y and h : Y → Z, the composition f ◦ h is the

function from X to Z defined by f ◦ h(x) = f(h(x)).
Note that if f has an inverse g then g ◦ f(x) = x and f ◦ g(y) = y. That is,

g ◦ f(x) = idX and f ◦ g = idY .
We say two sets A,B have the same cardinality iff there exists a bijection between

them. In this case we write A ∼ B. and say they are equivalent.
We compare two sets as follows: A ≤ B if and only if the exists a bijection from A

to a subset of B. If A ≤ B but they do not
We have:

Theorem 4.3. For sets, ≤ satisfies these three properties:
(i) A ≤ A;
(ii) A ≤ B and B ≤ C implies A ≤ C;
(iii) A ≤ B and B ≤ A implies A ∼ B.
(iv) Given two sets A,B then either A < B or B < A or A ∼ B.

Parts (i), (ii) are easy to prove. Part (iii) is the famous Schroeder-Berstein The-
orem. See [Hal74] for a proof. All these properties taken together say that any two
sets are comparable in the sense of cardinality.
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If a set A is equivalent to N we say it is countable or countably infinite. The idea
is that the bijection to the set allows us to count the set, as we have a first, second,
third element and so on.

Here are examples:
– (1)The set of natural numbers N is equivalent to Z, so Z is countable.

Proof. Geometrically, picture Z on the real number line, and count them via a “spi-
ral”, in this order: 0, 1,−1, 2,−2, 3,−3 and so on. �

– (2)Q is countable.

Proof. Q can be identified with the pairs of integers (p, q) such that p, q ∈ Z, q 6= 0,
and p, q have no factors in common, including negative numbers. (In other words,
p and q are relatively prime, written (p, q) = 1.) This gives a 1 − 1 correspondence,
with (p, q) 7→ p/q.

Now count the et of all ordered pairs of integers, Z × Z, in a spiral, in this order:
(0, 0), (1, 0), (1, 1), (0, 1), (−1, 0), (−1, 1), (−1, 0), (−1,−1) and so on (draw a picture!).
Then make a 1− 1 correspondence to

{(p, q) ∈ Z× Z : q 6= 0, (p, q) = 1}

by drawing the same spiral, now skipping over all those points (p, q) which have q = 0
or are not relatively prime.

�

– (3) R is uncountable.
– (4) the set of all subsets of N is larger than N, so it is uncountable.
We have seen this above in Theorem 4.2.
– (5) the set of all subsets of R is larger than R. That is to say:

Theorem 4.4. R < P(R)

Proof. (By contradiction). We give a “diagonal” proof of this, imitating the proof of
Theorem 4.2.

Suppose there exits a bijection Φ from R to P(R). Thus Φ(t) = At ⊆ R. Now each
A ⊆ R can be identified with its indicator function (6), χA : R→ {0, 1} with

χA(x) =

{
0 if x /∈ A
1 if x ∈ A

(3)

so we do this for each At. We define a function f(t, x) from R× R to {0, 1} by

f(t, x) = χAt(x).

We think of this as an infinite matrix, but instead of N×N, as in (4.2), it is R×R.
It is a function on R×R, with values 0 and 1, with “rows” indexed by t: the function
rt(x) = f(t, x) and “columns” cx(t)) = f(t, x).

The “diagonal” of this “matrix” is d(t) = f(t, t).
Now the tth row corresponds to the subset At.
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We shall find a set A which is not in the image of Φ. For this we define a function
with the opposite values of the diagonal:

d̃(t) =

{
1 if d(t) = 0

0 if d(t) = 1.
(4)

We define from this the set A such that χA(t) = d̃(t). Then A is not in the image
of Φ since A 6= At for each t, as

χA(t) 6= χAt(t).

�

A fascinating fact is:
– (5) More generally, for any set A, the set of all its subsets, written P(A), is larger

than A.
We give two proofs. The first will again imitate Cantor’s diagonal argument. The

second will imitate that for Russell’s paradox. Then we will try to see if there is a
connection between these!

Theorem 4.5. (Cantor’s Theorem) For any set X, the power set P(X) has strictly
greater cardinality.

First proof. (Diagonal proof)
This is basically word-for-word the proof given that R < P(R), but we write it

down for completenss. Suppose there exits a bijection Φ from X to P(X). Thus
Φ(x) = Ax ⊆ X. As above each A ⊆ X can be identified with its indicator function
χA : X → {0, 1}

We do this for each Ax, and then define f : X ×X → {0, 1} by

f(x,w) = χAx(w).

We think of the graph of this function as an infinite matrix, but instead of N×N,
as in (4.2), it is X ×X. The “rows” and “columns” are defined as above.

As before, “diagonal” of this “matrix” is d(x) = f(x, x).
Now the xth row corresponds to the subset Ax.
We shall find a set A which is not in the image of Φ. For this we define a function

d̃ to be the opposite of the diagonal function, that is:

d̃(x) =

{
1 if d(x) = 0

0 if d(x) = 1.
(5)

We define from this the set A such that χA(x) = d̃(x). Then A is not in the image
of Φ since A 6= Ax for each x, as

χA(x) 6= χAx(x).

Second proof. (By contradiction; we need to assume here that we know the Zermelo-
Frankel axioms are coherent, which is a theorem of more advanced logic and Set
Theory).

The cardinality of P(A) is at least as big, since for each a ∈ A, the singleton set
{a} is an element of P(A).
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Now suppose they have the same cardinality. Then there exists a bijection ϕ : A→
P(A).

Exercise 4.1. The rest of the proof is reminiscent of that for Russell’s paradox- so
try to do it yourself before going on!

We know that Cantor’s first axiom is valid: for any sets x,A either x ∈ A or x /∈ A.
So either x ∈ ϕ(x) or not.
Let V = {x : x /∈ ϕ(x)}.
Since ϕ is a bijection, there exists some a ∈ A such that ϕ(a) = V .
Now is a ∈ V ?
If a ∈ V then from the definition of V , a /∈ ϕ(a), but ϕ(a) = V so this means

a /∈ V , a contradiction.
If on the other hand a /∈ V , then since ϕ(a) = V , a /∈ ϕ(a). But this means a ∈ V ,

again a contradiction!
The hypothesis cannot be true, as otherwise our axioms are not coherent, so the

theorem is proved.

Remark 4.2. These two proofs are really the same! This is easiest to understand for
the case of X = N: we have an X ×X “matrix”, i.e a function x : X ×X → {0, 1},
where x(a, t) = 1⇔ t ∈

...(To Do!)  x00 x01 x02 . . .
x10 x11 x12 . . .
...

...
...

...

 .
This raises the question as to whether Russell’s paradox itself also has a “diagonal”

proof (that there is a contradiction)!
Let us prove:

Theorem 4.6. Cantor’s Set Theory is not consistent.

Proof. (Diagonal proof)
In Cantor’s Set Theory we can define the Universe U .
We claim that P(U) > U .
Suppose the contrary, that there exits a bijection Φ from U to P(U). Thus Φ(x) =

Ax ⊆ U . As above each A ⊆ U can be identified with its indicator function ΦA : U →
{0, 1}. We do this for each Ax, and then define f : U × U → {0, 1} by

f(x,w) = χAx(w).

We think of the graph of this function as an infinite matrix, but instead of N×N, as in
Theorem 4.2, it is U ×U . The “rows” and “columns” are defined as above. As before,
the “diagonal” of this “matrix” is d(x) = f(x, x). Now the xth row corresponds to
the subset Ax.

We shall find a set A which is not in the image of Φ. For this we define a function

a function d̃ to be the opposite of the diagonal function, that is:
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d̃(x) =

{
1 if d(x) = 0

0 if d(x) = 1.
(6)

We define from this the set A such that χA(x) = d̃(x). Then A is not in the image of
Φ since A 6= Ax for each x, as

χA(x) 6= χAx(x).

So far the proof is identical to that of Theorem 4.5. Note that in this case, P(U) = U .
So clearly, there is a bijection: the identity map. Thus Cantor’s Set Theory leads

to a contradiction, and hence is not consistent.
�

Corollary 4.7. (of Cantor’s Theorem, Theorem 4.5). Within Zermelo-Frankel Set
Theory, there are infinitely many infinities.

Proof. We have at least one infinite set, N, by the Axiom of Infinity. The above
theorem shows that P(N) has strictly larger cardinality.

But then we can continue in this way forever:

N < P(N) < P(P(N)) < . . .

�

In fact, R and P(N) have the same cardinality, so we have:

N < R < P(R) < P(P(R)) < . . .

As we have seen above, starting from the empty set, von Neumann gave his con-
struction of the natural numbers. One then verifies that these satisfy the Peano
Axioms. The next step is to define the integers Z, then the operations of addition
and multiplication, and prove that Z is a ring. One next defines, from the integers,
the rational numbers. See [Hal74] for a full treatment of all of this. The next step is
to define the real numbers; our approach above is to define them via decimal expan-
sions; to do this rigorously we should study infinite series, but see any analysis text
or for example the excellent calculus texts [Spi06], [HH15].

5. Review of Linear Algebra

5.1. Vector spaces. One of the most important and useful algebraic theories (in
math, as well as in physics) is the theory of vector spaces, called Linear Algebra.

What is magnificent about the axiomatic approach to math is that any theorem
proved is then valid in all examples, which at first sight may seem completely different.
So it is a very powerful approach. Also, many things become much clearer when
presented this way.

For example, theorems proved for real vector spaces are valid (with the same proofs)
for complex vector spaces, and of any dimension, including infinite dimension (al-
though new axioms are introduced in those cases, to handle other issues: Hermitian
inner products; convergence of infinite series in the case of infinite dimensions....)

We now give a brief introduction to Linear Algebra. An excellent text is [Axl97].
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Definition 5.1. A vector space (sometimes called a linear space) over the real numbers
R (sometimes over a different field, such as the complex numbers C or the rational
numbers Q) is a set V with two operations +, · (addition of vectors, multiplication of
a vector by a real number) satisfying these properties, called the vector space axioms.
The elements of the field are also called scalars.
(1) There exists a unique vector 0 such that 0 + v = v (existence of an identity
element for +)
(2) v + w = w + v (the commutative law for +)
(3) (u + v) + w = u + (v + w) (the associative law for +)
(4) 0 · v = 0 (multiplication by 0)
(5) 1 · v = v (existence of an identity element for ·)
(6a) a · (v + w) = a · v + a ·w
(6b) (a+ b) · v = a · v + b · v (two distributive laws).

Note that the associatve law allows us to define the sum of more than two vectors,
as u + v + w + x = ((u + v) + w) + x = (u + v) + (w + x) and so on.

Exercise 5.1. Show that for each v ∈ V there exists a vector ṽ such that ṽ + v = 0:
(the existence of an additive inverse.) Show that this is unique. See Remark 4.1
above!

Example 4. The Euclidean plane; the vector space of arrows in the plane, based at a
point 0. This is a purely geometrical definition. We are given a geometrical plane.
By this we mean that we have a flat plane in the usual sense, so we know what lines
are, and we also know what length of a line segment is, and what angles are. We
draw a line segment from a point labelled 0 to another labelled v. The arrowhead
is located at v. The collection of all such arrows is V . We define our operations: to
form u = v + w we move in parallel the second vector w to the tip of v; this gives
the tip of u.

Multiplication by the real number a > 0 multiplies the length by a, and by −1
gives us the opposite arrow.

We call this collection of arrows, and equivalently points (the location of the end-
points of the arrows) the Euclidean plane.

Sketching this in a bit more detail, given a flat plane with no additional information,
we remark on what we need to be able to add the above geometrical structure. We
choose an origin point, callled 0, and assume we have a a straightedge and a compass.
We draw a straight line, which will be the x-axis. Using the compass, we choose a unit
length on this line. We then bisect it, and bisect again, and so can can define rational
and by approximation (limits) real lengths. We can draw a right angle, giving the y
axis, and then bisect the right angle to approximate any real angle. The standard
basis for V are the unit arrows along these axes, called B = (e1, e2). Similarly
we can define three-dimensional Euclidean space. Thus, by using our compass and
straightedge in three dimensions, we can define a vertical z-axis and so on.

Definition 5.2. A linear combination of two vectors v,w is a sum av + bw. A linear
combination of vectors v1, . . . ,vn is a1v1 + · · ·+ anvn. We also write this as

∑n
1 aivi.
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Exercise 5.2. Draw the picture for arrows, for a linear combination of 2 and of
3 vectors. Verify the axioms for the space of arrows V geometrically (by drawing
pictures). No coordinates are used. Note that the same pictures work for arrows in 2
and in 3 dimensions!

Example 5. Euclidean space Rn. The points are n-tuples x = (x1, x2, . . . , xn). We
define addition in Rn by adding coordinates, similarly for multiplication by a scalar.
Thus (a, b) + (c, d) = (a+ c, b+ d) and t(a, b) = (ta, tb).

Example 6. (m × n) matrices, the space Mm×n. Addition and multiplication are
defined coordinate-by-coordinate.

Exercise 5.3. Show the axioms hold for the last two examples.

Example 7. A function space. We define C0([a, b],R) to be the collection of all con-
tinuous functions from the closed interval [a, b] to R. Cn([a, b],R) for n ≥ 1 denotes
the function with n derivatives such that the nth derivative f (n) is continuous. We
also write C for C0.

Exercise 5.4. Define addition and multiplication by a scalar in an appropriate way
for the last example, and show the axioms hold.

Definition 5.3. Given two vector spaces V,W , a map (i.e. a function) T from V to
W is called a linear transformation iff it preserves the operations, that is, iff
(i) T (v + w) = T (v) + T (w);
(i) T (av) = aT (v).

We can summarize this by:
(L) T (av + bw) = aT (v) + bT (w). We call property (L) linearity.

Exercise 5.5. Show that the map from the space V of arrows to R2 defined by
sending an arrow v with tip at location (a, b) to (a, b) ∈ R2 is a linear map. Show it is
bijective i.e. it is 1− 1 and onto. This is called an isomorphism of the vector spaces.
Isomorphic spaces like this are not the same, but we say they can be identified via
the isomorphism.

Exercise 5.6. Show that Rn is isomorphic to the space of column vectors Mn×1 and
also to the space of row vectors M1×n.

Show that a linear transformation T : V → W always sends 0V (the zero element
in V ) to 0W .

Definition 5.4. A subspace U of a vector space V is a subset that is also a vector
space, with the same operations. Show that a subset U is a subspace iff for all
v,w ∈ U , then v + w ∈ U and for any a ∈ R, then av ∈ U . In other words, any
linear combination of elements of U remains in U .

Exercise 5.7. Show that the intersection of two subspaces of V is a subspace. Show
that this can be false for unions.

Definition 5.5. Given a collection of vectors S ⊆ V we say the vector space generated
by S is the smallest vector space that contains S. We denote this by 〈S〉. Show that
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this makes sense (hint: use the previous exercise). Show that 〈S〉 is the collection of
all linear combinations of elements of S. We call 〈S〉 the span of S. Given a subspace
U ⊆ V , we say S ⊆ V spans or generates U iff 〈S〉 = U .

Definition 5.6. A collection S = {v1, . . . ,vn} of vectors in V is linearly independent
iff
(def 1)

∑n
1 aivi = 0⇒ ai = 0 for all i.

(def 2) If u =
∑n

1 aivi and also u =
∑n

1 bivi, then ai = bi for all i. Thus, any vector
u in the span of the vectors vi has unique ai, called the coefficients or coordinates of
u with respect to these vectors.

A basis for U ⊆ V is an ordered collection B of vectors in U which spans U and
is linearly independent. Thus, any u ∈ U can be expressed as a linear combination
of the vectors (v1, . . . ,vn) in B and this expression is unique. In particular u has
well-defined (i.e. uniquely defined) coordinates in the basis B.

Theorem 5.1. If V is a vector space and there exists a finite number of vectors which
generate V , we say V is finite-dimensional. A finite dimensional vector space has a
basis. The number of element in this basis is well-defined (does not depend on the
choice of the basis).

Proof. This takes some work: see [Axl97] for a nice proof. �

Definition 5.7. This number is defined to be the dimension of V .

Proposition 5.2. Given a vector space V of dimension n, then V is isomorphic to
Rn.

Proof. We express u ∈ V as a linear combination of the basis B = (v1, . . . ,vn):
u =

∑n
1 aivi, and define Φ : V → Rn by Φ(v) = a ≡ (a1, . . . , an). We show that this is

an isomorphism: it is linear: if u =
∑
aivi and w =

∑
bivi then u+w =

∑
(ai+bi)vi

whence Φ(u + w) = Φ(u) + Φ(w). The proof is similar for scalar multiplication.
Note that the properties of an isomorphism come from the two defining properties

of a basis, generating and being linearly independent: Since B is linearly independent,
Φ is well-defined on the span of B. Since B generates, Φ is defined on all of V . It is
onto because, given a = (a1, ..., an), the vector u =

∑n
1 aivi will be sent to a. �

Exercise 5.8. Let ek ∈ Rn be the vector which has a single entry 1 in the kth entry,
the rest 0. Thus e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0) and so on.

Show that the collection of all such vectors (e1, . . . , en) is a basis for Rn. This is
called the standard basis for Rn.

Find a similar basis of nm vectors for the space Mm×n of (m× n) matrices, which
is therefore has dimension nm.

Given a vector space V with basis B = (v1, . . . ,vn), we define a map Φ : V → Rn

by sending vi to ei, and extending linearly. That is, for u =
∑n

1 aivi, we define
Φ(u) =

∑n
1 aiei. Thus Φ(u) = (a1, . . . , an) so this is the isomorphism of Prop.5.2.

So far the space Mm×n of matrices is just a vector space. What makes it special
(and useful) is that we can also multiply matrices:
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Definition 5.8. (Definition of matrix products; see also Lectures and handwritten
notes.)

We say a matrix M with n rows and m columns is of size (n×m). We write Mij

for the ijth entry of M to be that number on the ith row and jth column.
We can only multiply matrices M ·N if they have compatible sizes: The simplest

case is a row times a column, thus

[
a1 a2 a3

]  b1

b2

b3

 = [a1b1 + a2b2 + a3b3]

Here we had (1 × 3)(3 × 1) = (1 × 1). More generally, if M is (m × k) and N
is (k × n) then MN will be (m × n), with the ijth entry of MN defined to be the
product of the ith row of M with the and jth column of N . So to have MN defined,
the number of columns of M must equal the number of rows of N .

That is, we have the formula:

(MN)ij =
k∑
l=1

MilNlj

Lemma 5.3.
(a) Write Ej for the (m× 1) matrix (i.e. column vector) with m entries, all 0 except
for a 1 in the jth row. That is,

Ej
i1 =

{
1 if i = j

0 if i 6= j
(7)

Then the product of an (n × m) matrix M with the column matrix Ej is the jth

column of M .

(b) Write Ẽi for the (1×n) matrix (i.e. a row vector) with n entries, all 0 except for
a 1 in the ith column.

Then ẼiM is the ith row of M .

(c) ẼiMEj is the (1× 1) matrix with entry Mij.

Proof. Note that

MilE
j
k1 =

{
Mij if k = j
0 if k 6= j

(8)

Hence from the formula for matrix product, we have

(
MEj

)
i1

=
k∑
l=1

MilE
j
l1 = Mij

The proof of (b) is similar, and (c) follows from (a), (b).
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The best way to understand this result is to work out a simple example.
Note that (E1, E2, . . . , Em) is a basis for the space Mm×1 of column matrices.

�

Exercise 5.9. To better understand the Lemma, calculate:

(i)
[

3 2 1
]  1

4
2

 =

(ii)

 1 3 2 1
3 1 5 7
2 4 6 8




0
1
0
0

 =

(iii)
[

0 0 1
]  1 3 2 1

3 1 5 7
2 4 6 8

 =

(iv)
[

0 0 1
]  1 3 2 1

3 1 5 7
2 4 6 8




0
1
0
0

 =

(v)

 1
4
2

 [ 3 2 1
]

=

Definition 5.9. Given an (n×m) matrix M , the transpose M t of M is the (m× n)
matrix with entries M t

ij = Mji.

Theorem 5.4. The transpose of a matrix poduct switches order:
(MN)t = N tM t.

Proof. Note that this works for the product of a row vector with a column vector:

[
a1 a2 a3

]  b1

b2

b3

 = [a1b1 + a2b2 + a3b3] =
[
b1 b2 b3

]  a1

a2

a3

 .
The general case follows from this, as by definition, the ijth entry of MN is the
product of the ith row of M with the and jth column of N . And this equals the ijith

entry of (MN)t as this is the product of the jth row of N t with the and ith column
of M t,

�

We also recommend that the reader work out a couple of easy examples.
Linear transformations and matrices. Given a vector space V of dimension m,

with basis B = (v1, . . . ,vm), and W of dimension n with basis B̃ = (w1, . . . ,wn), we

know from Prop. 5.2 that we have isomorphisms Φ, Φ̃ from V,W to Rm,Rn.
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Suppose we are given a linear transformation T : V → W . We then define an
(n×m) matrix M as follows.

We consider the first element v1 of the basis for V . Applying T , this has expansion
T (v1) =

∑n
i=1 aiwi in the basis for W . Then the first column of M is

a1

a2
...
an

 .
We continue in this way, with the image of vj giving us the jth column of M .

That is: ai = Mi1 and more generally,

T (vj) =
n∑
i=1

Mijwi

Now since as we have seen above, the jth column of M is given by

MEj

with the 1 in the jth row of the column vector Ej, we have the commutative diagram

V
T−−−→ WyΦV

yΦW

M1×m
M−−−→ M1×n

As an example, we have:

Example 8. (Rotation matrix)
Recalling the Euclidean plane V from Example 4, we define Rθ : V → V to be the
rotation of points (or arrows) about 0 in at counterclockwise direction.

Proposition 5.5. Choice of the basis B defines the isomorphism Φ : V → R2. Defin-
ing the matrix

Mθ =

[
cos θ − sin θ
sin θ cos θ

]
we then have the following commutative diagram:

V
Rθ−−−→ VyΦ

yΦ

M1×2
Mθ−−−→ M1×2
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Proof. We note that the image of the point (the location) (1, 0) after rotation by angle
θ is the point (cos θ, sin θ). (This is from the definition of the functions cos, sin).

This gives us the first column of the matrix Mθ, since[
a c
b d

] [
1
0

]
=

[
a
b

]
=

[
cos θ
sin θ

]
.

Similarly,

[
a c
b d

] [
0
1

]
=

[
c
d

]
=

[
− sin θ
cos θ

]
giving the second column of the matrix. Hence in conclusion, our matrix is as claimed
above, and acts on points as[

cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x̂
ŷ

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
.

�

Corollary 5.6. The inverse of the matrix Mθ =

[
cos θ − sin θ
sin θ cos θ

]
is M−theta =[

cos θ sin θ
− sin θ cos θ

]
Proof. For the first proof, compute that for A =

[
a −b
b a

]
, then AAt = AtA =

(a2 + b2)I. For the second, note that R−θ ◦Rθ is the identity map. �

Proposition 5.7. Matrix multiplication satisfies the following:

(i)the distributive law: for A,B both (m× k) and C(k × n), then

(A+B)C = AC +BC

(ii) the associative law: for A(m× k), B(k × j) and C(j × n), then

A(BC) = (AB)C

Proof. The distributive law follows immediately from the formula, by the distributive
law for real numbers.

To prove the associative law by the formula is more difficult, so we prove it indirectly
using...

(TO DO!)
�

Exercise 5.10. (function spaces) Show that the collection of all Riemann integrable
functions and the collection of all differentiable functions on [a, b] are subspaces of
the space of continuous functions C = C0, of Example 7. Precisely, we define Ck
to be the subset of all f in C0 such that the kth derivative f (k) of f exists and is
continuous. (The kth derivative f (0) of f is just f itself, so C = C0.) We define C∞
to be the infinitely differentiable functions. Show that differentiation defines a linear
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transformation, from Ck+1 to Ck, and from C∞ to C∞. (Therefore these are vector
subspaces). Show that the indefinite integral (defined up to a constant) is a linear
transformation. Show that the polynomials Pn of degree ≤ n, for some n ≥ 0, form a
vector space of dimension (n+1). (Hint: find a basis!) Find a matrix which represents
the derivative map from Pn+1 to Pn. Show the space C0 has infinite dimension.

5.2. Norms, metrics, and inner products.

Definition 5.10. A norm || · || on a vector space V is a function with values in R
which satisfies:
(i) ||av|| = |a| · ||v|| (homogeneity);
(ii) ||v + w|| ≤ ||v||+ ||w|| (triangle inequality);
(iii) ||v|| ≥ 0, and ||v|| = 0 iff v = 0. (positive definiteness).

We then say that (V, || · ||) is a normed space.
In math, the term “positive” can mean either nonnegative or strictly positive, ≥ 0

or > 0. The terminology “positive definite” indicates that for nonzero vectors, the
norm is definitely (i.e. strictly) positive.

Given a set X (not necessarily a vector space!), a metric on X is a function d :
X ×X → [0,+∞] satisfying:
(i) d(x, y) = d(y, x) (symmetry);
(ii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality);
(iii) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y (positive definiteness).

We then say that (X, d), is a metric space.
Having a norm allows us to define a metric on V , as explained shortly.

Exercise 5.11. Verify this!

Example 9. For V the space of arrows in 2 or 3 dimensional space (Example 4),
the standard norm is the length of the line segment. For Rn, the standard norm of

a = (a1, . . . , an) is ||a|| =
(∑n

1 a
2
i

)1/2
. This is also called the l2-norm.

Remark 5.1. The isomorphism from V to R2 or R3 preserves the norm.

The notion of norm gives us the size or length of the vector. This allows us to
define a metric (a notion of distance) on V , with the distance between points defined
by the length of their difference vector: d(v,w) = ||w − v||.

Remark 5.2. An example of a metric not give by a norm (since the set is not a vector
space) is distance on the surface of the Earth, which is the length of a great circle
(the largest possible circle, like the Equator or a meridian of longitude) between two
points. More generally, on a differentiable manifold a metric can be defined as the
shortest length of any curve connecting the two points.

Definition 5.11. An inner product is a function from V × V to R, written v ·w or
〈v,w〉, satisfying the following;
(1) v ·w = w · v (commutative law);
(2) (av) ·w = a(v ·w) (associativity of scalar multiplication)



32 ALBERT M. FISHER

(3) u · (v + w) = u · v + u ·w (distributive law)
(4a) v · v ≥ 0 and
(4b) If v · v = 0 then v = 0.

These imply that also:
(2′) v · (aw) = a(v ·w).
(3′) (u + v) ·w = u · v + u ·w.

Properties (2, 2′), (3, 3′) tell us that this is a bilinear form; (1), (4a), and (4b) add
that the form is symmetric, positive and positive definite. Note that a positive definite
bilinear form defines a norm, via

||v|| ≡ (v · v)1/2.

(Geometric definition)
The standard inner product for the space of V of arrows in the plane (Example 4),

is

v ·w = ||v||||w|| cos θ

where θ is the angle measured from v to w in the counterclockwise direction.
Let us verify the commutative law. Then for w · v the angle is measured in the

clockwise direction from w to v, which is θ̃ = 2π − θ which is the same angle as −θ
since all angles are taken to be in [0, 2π], with 0 = 2π. But cos(θ) = cos(−θ) (in
other words, cos is an even function):

Definition 5.12. A function f : R→ R is even iff f(x) = f(−x) for all x. It is odd
iff f(−x) = −f(x).

This is lucky since it implies that the same definition works in 3-dimensional space,
where we don’t know what “counterclockwise” means!! (Looking at a clock from
above or below changes this meaning).

This definition works in any vector space V if we are given the following additional
information: length, that is, the length of any vector; and magnitude of angle, the
absolute value of the angle betwen two vectors.

Conversely, if we are given an abstract inner product on V , that is, something which
satisfies the axioms, we can define these concepts (angle magnitude, and length) from
the geometric definition.

Exercise 5.12. Check that sin is odd, cos is even. Check that xn is even iff n is even.
Prove that the sum of two even functions is even, and the sum of two odd functions
is odd. Therefore a polynomial p(x) is even iff it only has even powers. Verify that
the product of two even polynomials is even, the the product of two odd polynomials
is odd, and the product of an even polynomial with an odd polynomial is odd (just
like for natural numbers)!

Harder (and more interesting!): show that any function f(x) can be written, in a
unique way, as the sum of an even and an odd function.

Show that the derivative of an even function is odd, and vice-versa.
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(Algebraic definition) The standard inner product for Rn is (x1, . . . , xn)·(y1, . . . , yn) =∑n
1 xiyi.

Proposition 5.8. The two definitions each satisfy the axioms for an inner product.

Proof. That the algebraic definition satisfies the axioms is due to the corresponding
properties of real numbers. For example, to prove the commutative law, given v =
(a, b) and w = (c, d), then v ·w = ac+ bd = ca+ db = w · v, using the commutative
law of multiplication for R. To verify the rest is left as an easy exercise.

However, though the proofs for R2 (which are the same for Rn! ) are purely com-
putations from the definitions, and so are easy, they provide no real geometrical
understanding.
By contrast, for the geometric definition, the proofs all give some geometrical insight.
For example, to prove the commutative law we need to know that for θ the angle from
v to w, measured in the counterclockwise direction, then cos(θ) = cos(−θ), since this
is the angle from w to v.

The only part not yet proved for arrows is the distributive law. This is done
below. �

Given the above remark, the standard inner product on Rn determines a notion
of length and angle magnitude. We shall show these are the standard notions for
Euclidean space in 2, 3 dimensions. For this we show that the two definitions are
equal in R2 and R3, that is, for our isomorphism from V to R2 or R3.

We shall then use this to prove the distributive law for arrows, since it holds for
the algebraic definition.

We begin in the plane:

Proposition 5.9. Our isomorphism Φ from the space V of arrows in the plane (based
at 0) to R2 preserves the inner product.

Proof. That is, for v,w ∈ V so v ·w ≡ ‖v‖‖w‖ cos θ, we decompose these vectors in
the standard basis (e1, e2) as v = ae1 + be2,w = ce1 + de2.

Hence Φ(v) = (a, b) and Φ(w) = (c, d). Now (a, b) · (c, d) = ac+ bd. Therefore we
are to show that v ·w = Φ(v) · Φ(w), that is,

‖v‖‖w‖ cos θ = ac+ bd

It is sufficient to check this for vectors of unit length (since in both cases we have
proved Axiom (2) for the inner products).

Let us simply further and take (c, d) = (1, 0). Then v·w = (ae1 + be2)·(1e1 + 0e2) =
a, while (a, b) · (1, 0) = a, so it is true.

Next we consider the case of two unit vectors. We reduce to the previous case, by
a rotation Rθ of the plane, such that Rθ(w) = e1.

We knowRθ on V is represented by the matrix rotation matrix: Mθ =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=[

x̂
ŷ

]
. �

Lemma 5.10. Then for Rθ the rotation map, and Mθ the asociated matrix, we have
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v ·w = Rθv ·Rθw.

Proof. We write the inner product corresponds to the product of a row with a column
vector; for example

(a, b) · (c, d) corresponds to[
a b

] [ c
d

]
= [ac+ bd] = [(a, b) · (c, d)] .

Then for v = (a, b).w = (c, d), we have that Rθv ·Rθw corresponds to

[
a b

] [ c
d

]
...
Rθv ·Rθw (Mθv)tMθw = (vtM t

θ)(Mθw) = vt(M t
θMθ)w by the associative law, but

(M t
θMθ) = I since M t

θ = M−θ. �

Corollary 5.11. (Distributive law for the standard inner product of V , the vector
space of arrows in 2- or 3-dimensional space)

Proof. We have shown the distributive law for the standard inner product of Rn.
Now from Prop. 5.9, we know V is isomorphic to R2 via an isomorphism which
preserves the inner product. This implies that the distributive law also holds for two-
dimensional V . To prove this for three dimensions, note that the distributive law is
stated for two vectors v,w. We consider the plane generated by them, and we apply
a rotation of space to bring this plane to the xy-plane. The result then follows. �

Example 10. (Hilbert space). This is an example which comes up and also in any
study of waves.

For this L2 = Lp([a, b]) is defined to be the vector space of all f : [a, b] → R such
that

∫
[a,b]
|f |2 dx <∞. We define the norm

||f ||2 =

(∫
[a,b]

|f |2 dx

) 1
2

.

Thus L2 is the space of all function with finite norm.
We define an inner product by f · g = 〈f, g〉 =

∫
[a,b]

fg dx.

Note that this gives the norm as above.
Hilbert space is infinite-dimensional; a basis is given by all functions of the form

(taking [a, b] = [0, 2π] for simplicity) sin(nx), cos(nx). The expansion is called Fourier
series. Here we have to use infinite linear combinations, and the key point is that the
series must converge. For this all to work properly, we should use a fancier integral
than the Riemann integral: the Lebesgue integral, for which we need to study Real
Analysis and in particular Measure Theory.

In applications to Physics (especially Quantum Mechanics) the field is C, then we
have to use the complex conjugate to define a Hermitian inner product, which has
slightly different axioms.
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6. Vector Calculus, Part I: Derivatives and the Chain Rule

6.1. Metrics, open sets, continuity. Let us recall:

Definition 6.1. A norm || · || on V is a function with values in R which satisfies:
(i) ||av|| = |a| · ||v|| (homogeneity);
(ii) ||v + w|| ≤ ||v||+ ||w|| (triangle inequality);
(iii) ||v|| ≥ 0, and ||v|| = 0 iff v = 0. (positive definiteness).

Given a set X, a metric on X is a function d : X ×X → [0,+∞] satisfying:
(i) d(x, y) = d(y, x) (symmetry);
(ii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality);
(iii) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y (positive definiteness).

We then say that (V, || · ||), respectively (X, d), is a normed space, respectively a
metric space.

Having a norm allows us to define a metric on V , with the distance between points
defined by d(v,w) = ||w − v||.

Exercise 6.1. Verify this!

A topology on X is a collection T of subsets of X (these will be called open sets)
satisfying:
(i) ∅, X ∈ T ;
(ii) an arbitrary union of open sets is open;
(iii) a finite intersection of open sets is open.

A set C ⊆ X is closed iff its complement Cc = X \ C = {x ∈ X : x /∈ C} is open.
The collection F of closed sets satisfies:

(i) ∅, X ∈ F ;
(ii) an arbitrary intersection of closed sets is closed;
(iii) a finite union of closed sets is closed.

These properties of F are equivalent to the corresponding properties for T via the
laws for unions and intersections of complements of sets:

(A ∩B)c = Ac ∪Bc, (A ∪B)c = Ac ∩Bc

and more generally,

(∩i∈IAi)c = ∪i∈I(Ai)c;

(∪i∈IAi)c = ∩i∈I(Ai)c.
where I is some index set, for example N = {0, 1, 2, . . . } or even an uncountable set
like R.

Exercise 6.2. Verify these statements!

For a metric space a limit point of A ⊆ X is x ∈ X such that for each r > 0, there
is some point of A in Br(x). For a metric spaces a set C is closed iff it contains all of
its limit points. Thus for example (a, b) is not a closed set as a, b are limit points.

Having a metric allows us to define a topology on X, as follows.
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Definition 6.2. Given a metric space (X.d), the (open) ball of radius r ∈ [0,∞]
around x ∈ X is Br(x) = {y ∈ X : d(x, y) < r}.

A set U ⊆ X is open iff, equivalently,
(i) U is a union of open balls;
(ii) for every x ∈ U , ∃r > 0 such that Br(x) ⊆ U .

Exercise 6.3. Verify that this does give a topology.

Convergence and continuity.
Given a sequence (xn)N∈N, we say (xn) converges to x, equivalently written limn→∞ xn =

x or xn → x, iff for every open set U containing x, then for n sufficiently large, xn ∈ U .
For a metric space, equivalently given r > 0, ∃N such that for all n > N , d(xn, x) < r
(since we can use balls of radius r).

Definition 6.3. Given two metric spaces (X1, d1) and (X2, d2), then f : X → Y is
coninuous iff
(i) if xn → x then f(xn)→ f(x). (This is the usual definition for f : R→ R.)

Equivalently, iff:
(ii) if f(x0) = y0, then given ε > 0, ∃δ > 0 such that if d(x, x0) < δ then for y = f(x),
then d(y, y0) < ε. (This is the famous “ε− δ”- definition.)
(iii)the inverse image of every open set is open.

This third definition works for the more general situation of two topological spaces,
(X, T ) and (Y,S).

Exercise 6.4.
(i) Use each of the three definitions to prove:

Proposition 6.1. A composition of continuous functions is continuous.

(ii) Show that (for metric spaces), all three definitions are equivalent. Hint: first
prove (i)⇔ (ii), then (ii)⇔ (iii).

Remark 6.1. For some unusual non- metric topological spaces one has to replace
sequences by so-called nets or filters.

6.2. Curves.

Definition 6.4. A (parametrized) curve in a vector space V is a function γ : [a, b]→
V .

The image of the curve is the image of this function, i.e. the collection of all values:
{γ(t) : t ∈ [a, b]}. Thus the parameter t parametrizes the image.

The simplest example is a parametrized line; the curve l(t) = p + tv where p,v
are elements of some vector space V . The image of l is a straight line in V ; the
parametrized line passes through the point p going in the direction v.

Note that the image of a curve is different from the graph. Here we recall that
by definition the graph of a function f : X → Y (where X, Y can be any sets) is
graph(f) ≡ {(x, y) ∈ X × Y : y = f(x)} = {(x, f(x) : x ∈ X}. (Here X × Y is the
product space, defined to be the collection of all ordered pairs.)

Thus the graph of the curve γ in V is {(t, γ(t)) : t ∈ [a, b]}, a subset of [a, b] × V .
The image shows where you go on the curve, but not how fast or in what direction
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you go along this image. We see shortly how you can change the parametrization of
a curve, keeping the same image.

Let us suppose that V has a norm defined on it. Then V is a metric space with
d(v,w) = ||v − w||, so we know what it means for a curve to be continuous. We
define the derivative of γ to be

γ′(t) = lim
h→0

γ(t+ h)− γ(t)

h

if the limit exists; this is also called the tangent vector to γ at time t. See Fig. 5.

Lemma 6.2. We have in coordinates: γ′(t) = (x′1(t), . . . , x′m(t)).

Proof. This is immediate from the definition. For example, in R2, for γ(t) = (x, y)(t) =
(x(t), y(t)) then

γ(t+ h)− γ(t)

h
=

(
x(t+ h)− x(t)

h
,
y(t+ h)− y(t)

h

)
→ (x′(t), y′(t)).

�

Note that given a differentiable curve γ : [a, b] → Rm then γ′ is a second curve in
Rm. We can keep going and define the higher derivatives γ′′ = (γ′)′ and so on, all
curves in Rm.

The most common interpretation of the tangent vector of a curve comes from
physics. There we interpret t as time and γ as position:

Definition 6.5. If γ(t) represents the position of a particle at time t, then the
derivative γ′ (the tangent vector) gives the velocity of the particle v(t) = γ′(t), and
the acceleration at time t is the vector a(t) = v′(t) = γ′′(t). Note that all of these
are vector quantities, having both a magnitude and a direction. The speed is the
magnitude of the velocity vector, the scalar quantity ||v||.

Now we prove some basic facts about curves and their derivatives:

Proposition 6.3. (Leibnitz’ Rule for curves) Given two differentiable curves γ, η :
[a, b]→ Rm, then (γ · η)′ = γ′ · η + γ · η′.

Proof. We just write the curves in coordinates, and apply Leibnitz’ Rule (the Product
Rule) for functions from R to R. �

Proposition 6.4. Let γ be a differentiable curve in Rm such that ||γ|| = c for some
constant c. Then γ ⊥ γ′.

Proof.
We use Leibnitz’ Rule. We have c = ||γ||2 = γ · γ so for all t,

0 = (γ · γ)′ = γ′ · γ + γ · γ′ = 2γ · γ′

using commutativity of the inner product.
�
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The meaning of ||γ|| = c is intuitively clear: for R2 this says that the curve is in
a circle; for R3 that the image of the curve is in a sphere, and the statement is that
the tangent vector to the curve is tangent to the sphere as it is perpendicular to the
position vector. See Fig. 5.

Corollary 6.5. If γ : [a, b] → Rm is twice differentiable then if ||γ′|| is constant, we
have γ′ ⊥ γ′′.

Proof. We just apply the Proposition to the curve γ′. �

Corollary 6.6. If γ : [a, b]→ Rm is twice differentiable and represents the position of
a particle at time t, then if the speed ||γ′|| is constant, the acceleration is perpendicular
to the curve (i.e. a ⊥ v).

In other words if you are driving a car at a constant speed around a track, the only
acceleration you will feel is side-to-side. If you apply the brakes or the accelerator
pedal, a component vector of acceleration tangent to the curve will be added to this.

If we reparametrize a curve to have speed 1, then the magnitude of the acceleration
vector can be used to measure how much it curves: we explain this next.

Proposition 6.4 allows us to make the following definition.

Definition 6.6. The curvature of a twice differentiable curve γ in Rn at time t is the
following. For its unit-speed parametrization γ̂(s) we define the curvature at time s
to be κ̂(s) = ||â(s)||; for γ the curvature at time t is κ(t) = (κ̂ ◦ l)(t) = κ(t)

For example, the curve γr(t) = r(cos t/r. sin t/r) has velocity γ′r(t) = (− sin t/r, cos t/r)
which has norm one; the acceleration is γ′′r (t) = 1

r
(cos(t/r). sin(t/r)) = − 1

r2
γr(t), with

norm 1
r
. The curvature is therefore 1

r
. So if the radius of the next curve on the race

track is half as much, you will feel twice the force, since by Newton’s law, F = ma!
This is the physical (and geometric) meaning of the curvature.

6.3. Arc length of a curve. Given a curve γ1 : [c, d]→ Rn, by a reparametrization
γ2 of the curve we mean the following: we have an invertible differentiable function
h : [a, b] → [c, d] with h′(t) 6= 0 for all t, such that γ2 = γ1 ◦ h. Note that γ1 and γ2

have the same image, and that the tangent vectors are multiples: γ′2(t) = γ1 ◦ h′(t) =
γ′1(h(t))h′(t). We call this a positive or orientation–preserving parameter change if
h′(t) > 0, negative or orientation–reversing if < 0.

Definition 6.7. We define the arc length of γ to be:∫ b

a

||γ′(t)||dt.

We introduce a special formula for this:∫
γ

ds =

∫ b

a

||γ′(t)||dt.

As we shall explain below, ds is interpreted to mean integration with respect to arc
length, and “

∫
γ
” is read “the integral over the curve γ”, so all together this is read

“the integral over the curve γ with respect to arc length”.
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For an example we already know from Calculus I, consider a function g : [a, b]→ R,
we consider its graph {(x, g(x)) : a ≤ x ≤ b}. We know the arc length of this graph
is ∫ b

a

√
1 + (g′(t))2dx.

We claim that the new formula includes this one: parametrizing the graph as a curve
in the plane γ(t) = (t, g(t)). Then γ′(t) = (1, g′(t)) so ||γ′(t)|| =

√
1 + (g′(t))2,

whence indeed the arc length is
∫
γ

ds =
∫ b
a

√
1 + (g′(t))2dx as claimed.

Proposition 6.7.
(i) The arc length of a curve is unchanged for any change of parametrization, inde-
pendent of orientation. That is, ∫

γ1

ds =

∫
γ2

ds.

Proof. (i) We have h : [a, b] → [c, d] so writing u = h(t), then γ2 = γ1 ◦ h with
γ1 : [c, d] → Rn and γ2 : [a, b] → Rn. So γ2 ≡ γ1 ◦ h with γ2(t) = (γ1 ◦ h)(t) =
γ1(h(t)) = γ1(u), so γ′2(t) = (γ1 ◦ h)′(t) = γ′1(h(t))h′(t). Then du = h′(t)dt, and using
the Chain Rule, we have:∫

γ2

ds ≡
∫ t=b

t=a

||γ′2(t)|| dt =

∫ t=b

t=a

||(γ′1(h(t))h′(t)|| dt

Assuming first that h′ > 0, this equals

=

∫ t=b

t=a

||(γ′1(u)||h′(t)dt =

∫ u=d

u=c

||(γ′1(u)|| du =

∫
γ1

ds.

(7)

If instead h′ < 0, then we have as before

∫
γ2

ds ≡
∫ t=b

t=a

||γ′2(t)|| dt =

∫ t=b

t=a

||(γ′1(h(t))h′(t)|| dt

and now because, since h′ < 0, h(b) = c, h(a) = d,

= −
∫ t=b

t=a

||(γ′1(u)||h′(t)dt = −
∫ u=c

u=d

||(γ′1(u)|| du =

∫ u=d

u=c

||(γ′1(u)|| du =

∫
γ1

ds.

(8)
�

We next see how this can be used to give a unit speed parametrization of a curve
γ : [a, b] → Rn. Set l(t) =

∫ t
a
||γ′(r)|| dr, so l(t) is the arclength of γ from time a to

time t. Let us denote the length of γ by L. Thus function l maps [a, b] to [0, L]]. Note
that l is a primitive (antiderivative) for ||γ′|| so l′(t) = ||γ′(t)||. We shall assume that
||γ′(t)|| > 0 for all t; in this case, the function l is invertible. Our parameter change
will be given by its inverse, h(t) = l−1(t); then h′ is also positive.

Proposition 6.8. Assume that ||γ′(t)|| > 0 for all t. Then the reparametrized curve
γ̂ = γ ◦ h has speed one.
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Proof. Now (l ◦ h)(t) = t so 1 = (l ◦ h)′(t) = l′(h(t)) · h′(t). We have (by the
Fundamental Theorem of Calculus) that l′(t) = ||γ′(t)|| so l′(h(t)) = ||γ′||(h(t)) =
||γ′(h(t))|| since h′(t) > 0. Thus

||γ̂′(t)|| = ||(γ ◦ h)′(t)|| = ||γ′(h(t)) · h′(t)|| = ||γ′(h(t))|| · h′(t) = l′(h(t)h′(t) = 1.

�

The function l maps [a, b] to [0, L]] whence the parameter-change function h maps
[0, L] to [a, b]. We keep t for the variable in [a, b] and define s = l(t), the arc length
up to time t, so now s is the variable in [0, L] and h(s) = t.

The change of parameter gives γ̂(s) = (γ ◦ h)(s) = γ(h(s)) = γ(t). This indeed
parametrizes the curve γ̂ is by arc length s.

Note further that∫
γ

ds ≡
∫ b

a

||γ′(t)|| dt =

∫ l(b)

0

||γ̂′(s)||ds ≡
∫
γ̂

ds

From s = l(t) we have ds = l′(t)dt = ||γ′(t)||dt. Now we understand rigorously what
is ds: it represents the infinitesimal arc length; this helps explain the notation

∫
γ

ds

for the total arc length.

6.4. Level curves of a function. We would like to visualize a function F : R2 → R.
We do this in two main ways, by drawing the graph of the function (the subset
{(x, y, z) : z = F (x, y)}) or by drawing the level curves of the function. The level
curve of level c ∈ R is the following subset of the plane R2:

{(x, y) : F (x, y) = c}.

Remark 6.2. In geography, a topographic map of a region X shows the level curves of
the altitude function F (x, y) with F : X → R. See Fig. 1.

For a function F : R3 → R we can no longer draw the graph (we would need four
dimensions!) but can still draw the analogue of the level curves. These are the level
surfaces. An example is F (x, y, z) = x2 + y2 + z2 for which the level surfaces of level
c2 are the spheres of radius c. See §6.13.

Remark 6.3. In weather maps we see curves which could indicate constant pressure
or temperature. These actual functions are defined on space (since height above
the ground is also a variable) so are the part close to earth of these level surfaces;
if the Earth were perfectly flat, these would be the level curves of G defined by
G(x, y) = F (x, y, 0), in other words, the level surfaces for F meet sea level z = 0 in
the level curves for G.

6.5. Partial derivatives; directional derivative. Given a map F : R2 → R,
choosing a point p ∈ Rn then the directional derivative of F at p in the direction u
is the following. Here we assume ||u|| = 1, i.e. u is a unit vector.

Above (Def. 6.4) we have defined the parametrized line l(t) = p + tu: the curve
which starts at p and moves in the direction u at unit speed.

Now f(t) = F (l(t)) is a function from R to R. We define

Du(F )|p = f ′(0).
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Figure 1. From Wikipedia, Topographic Map: a topographic map of
the ski area of Stowe, Vermont and a shaded version of the map which
helps to visualize the landscape.

This gives the amount of increase of the function F in the direction u at that point.
The partial derivative with respect to the variable x is the special case where u =

(1, 0); that is,

∂F

∂x
(p) = Du(F )|p

Similarly for the partial with respect to y we take u = (0, 1) and have define

∂F

∂y
(p) = Du(F )|p
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See Fig. 1.
It is very easy to calculate the partial derivatives:

Lemma 6.9. The partial derivative ∂F
∂x

is the usual derivative with respect to the
variable x, when the variable y is taken to be constant.

Proof. Defining, for u = (1, 0), the curve l(t) = p + tu, take p = (a, b). Then

Du(F )|p =
d

dt
F ((a, b) + t(1, 0)) =

d

dt

∣∣∣∣
t=0

F ((a+ t, b))

That is, for f(t) = F ((a+ t, b)), then this is f ′(0).

�

Thus for the partial with respect to x, we fix the variable y and find the derivative
with respect to x alone. Another notation for partial derivative is Fx = ∂F

∂x
.

For example, when F (x, y) = x2y3, then (since y is taken to be constant) ∂F
∂x

= 2xy3

while ∂F
∂y

= 3x2y2.

We define the derivative of F to be the row matrix

DF =
[
Fx Fy

]
=
[

∂F
∂x

∂F
∂y

]
.

This can also be called the full derivative in contrast to the partial derivatives which
are only a part of it!

For F : Rm → R the definitions are similar. Below we give a more complete
definition of the derivative DF , which works for any map F : Rm → Rn.

To give the punch line (it will take some time to develop all this!): DF will be an
(n × m) matrix, each entry of which is a partial derivative: the ijth entry will be
the jth partial derivative of the ith component of F . In fact, we shall first define
the derivative as a linear transformation, approximating F at that point p, and then
write it as a matrix, using the work we have done above. But in words, the derivative
of F : Rm → Rn (see §6.9 ) will be a matrix of partial derivatives.

6.6. Properties of the gradient of a function. Given a map F : Rm → R we
define a vector at each point p ∈ Rm, ∇F = ( ∂F

∂x1
, . . . , ∂F

∂xm
), called the gradient of F

at p.
The term may be related to, for example, a road going up a steep grade.
As we shall see in the next sections, the gradient has the following important

properties:
(1) This defines a vector field, called the gradient vector field of F .
(2) The gradient vector field is everywhere orthogonal to the level sets of F . These are
level curves for F : R2 → R and level surfaces for F : R3 → R. We prove this via the
Chain Rule, see §6.12. In general, the level sets are submanifolds, i.e. differentiable
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Figure 2. Graph of the function F (x, y) = x2 − y2 (a parabolic hyperboloid).
From Google, search “x2 − y2” (rotatable image there) and from

https://web.ma.utexas.edu/users/m408m/Display12-6-2.shtml. Horizontal slices
(these project to the level curves) give a family of hyperbolas in the plane. Sliced
vertically parallel to the x and y axes gives parabolas, sliced parallel to the lines

x = ±y one way gives hyperbolas.
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Figure 3. Graphs of parabolic hyperboloid with level curves (a family
of hyperbolas), and of the paraboloid F (x, y) = x2 + y2).
From https://web.ma.utexas.edu/users/m408m/Display12-6-2.shtml.

subsets, of Rn, of dimension (n − 1); this is a consequence of the Implicit Function
Theorem, §6.19. (Here we have to assume that n 6= 0).
(3) The gradient vector points in the direction of steepest increase of the function F
at the point p; its magnitude is the amount of increase in that direction.
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Figure 4. Partial derivatives; figure from https://activecalculus.org/vector/

(4) The directional derivative of F at p, in the direction of the unit vector u, is given
simply by the inner product:

Du(F )|p = ∇F |p · u.
(5) The gradient ∇F is the vector form of the derivative DF of the function F .
(6) The gradient can be used to easily write the equation of the tangent line to a
level curve of F : R2 → R at the point p = (x, y). For F : R3 → R, the gradient
can be used to write the equation of the tangent plane to a level surface at a point
p = (x0, y0, z0). We explain this below in §6.12.

6.7. Three types of curves and surfaces. In the course we actually encounter
three different (but related) types of curves and surfaces. First, recall:

Definition 6.8. For f : [a, b]→ R then its graph is

graph(f) = {(x, f(x)) : x ∈ [a, b]}

which is the subset of the plane we usually draw for this. Similarly, for F : R2 → R
then graph(F ) = {(v, F (v)) : v = (x, y) ∈ R2}. Thus graph(F ) = {(x, y, z) : z =
F (x, y)}.

The different types of curves are:
(i) the graph of function f : R→ R;
(ii) a level curve of a function F : R2 → R;
(iii) a parametrized curve γ : R→ Rm.

Note that the first two are curves in the plane, while the second is a curve in Rm

for any dimension m.
For surfaces we have, similarly:

(i) the graph of function F : R2 → R;
(ii) a level surface of a function F : R3 → R;
(iii) a parametrized surface S : R2 → Rm.
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Now the first two are surfaces in R3, while the last is a surface inside of m-
dimensional space so is much more general. Usually we will require that these func-
tions be continuous and in the case of (iii) that the derivative DS exists, is continuous,
and is surjective at every point. This guarantees the the image surface does not have
creases or folds.

We also have non-parametrized curves and surfaces: the image of one of the func-
tions in parts (iii).

In both situations, curves and surfaces, these are all related, with (i) being a special
case of (ii) and (ii) a special case of (iii). Regarding the passage from (ii) to (iii)
see Exercise 6.7.

In all three cases it is important to first consider the linear (or affine) situation.
That is because, first, it is the simplest case, and secondly, because these will describe
the tangent line and the tangent plane, of a curve or surface, in all cases. These are
exactly the affine lines or planes which bext approximate the curve or surface at a
chosen point.

Here are the affine versions in all cases:
(i) An affine function f : R→ R is f(x) = y where y = ax+ b.

An affine function F : R2 → R has the form F (x, y) = z where z = ax+ by + c.
Note that the graph of f is a line in the plane, while the graph of F is a plane in

R3.
(ii) The level curve of an affine function F : R2 → R: given F (x, y) = ax + by then
the level curve of level c is the line in the plane,

ax+ by = c,

equivalently
Ax+By + C = 0,

for A = a,B = b, C = −c. This is now in the form of the general equation of a line
in the plane in R3.

Given the affine function F : R3 → R defined by given F (x, y, z) = ax + by + cz
then the level surface of of level d is the plane in R3:

ax+ by + cz = d

or equivalently the general equation of a plane

Ax+By + Cz +D = 0,

for A = a,B = b, C = c,D = −d.
(iii) A parametrized affine curve l : R→ Rm: this is a parametrized line,

l(t) = p + tv.

A parametrized affine surface is L : R2 → Rm: this is a parametrized plane:

L(s, t) = p + sv + tw.

Exercise 6.5.
(̃i) Which lines in the plane, or planes in R3, can (or cannot) be written as the graph
of an affine function as in (i)?
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(ĩi) For which values of a, b or a, b, c in (ii) do you get a line or plane?

(ĩii) For which vectors v and v,w in (iii) do you get a line or plane?

(ĩv) Make sure you know how to go from one type of line (or plane) to the other,
whenever possible (see the Linear Algebra lecture notes and exercises)!
(ṽ) Write each type of line or plane in matrix form.

Solution: We explain (ĩi). We claim that the equation Ax+By + C = 0 gives a line
in the plane R2 exactly when not both A,B are 0. Here we have to understand the
meaning of “gives the equation of a line in the plane.”

There are two important points:
(1) This means that we are in the plane, this is our Universe of Discourse (we are
talking only about points in the plane R2, not about R or R3).
(2) “gives the equation of a line” means that the collection of all solutions to the
equation forms a line.

That is,

{(x, y) ∈ R2 : Ax+By + C = 0}
is a geometrical line in R2.

It makes a huge difference what is our Universe of Discourse (i.e. what we are
talking about). For example, the equation x = 2 in R is a point, in R2 it is a vertical
line, {(x, y) : x = 2}, in R3 it is a vertical plane.

Now for Ax+By + C = 0 to be a line means that

{(x, y) ∈ R2 : Ax+By + C = 0}

is a line. Let us consider the case where B 6= 0. Then this equation is equivalent, i.e.
it has the same solutions:

y = −A/By − C/B = ax+ b

which we know is a line.
Next suppose A,B are both 0. Then we have

{(x, y) ∈ R2 : 0x+ 0y + C = 0}

equivalently

{(x, y) ∈ R2 : C = 0}
and there are two cases:
(i) C = 0: this statement is true, hence is true for all (x, y), so the solution set is all
of R2;
(i) C 6= 0: this statement is false, hence is false for all (x, y), so there are no solutions,
and the solution set is the empty set.

This proves the Claim.
Planes are handled similarly.

Exercise 6.6.
(i) Given vector spaces V,W and a linear transformation T : V → W , prove that:

Proposition 6.10. The image of T , Im(T ) and the kernel (null space) of T , ker(T )
are (vector) subspaces of W,V respectively.
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(ii) Interpret these statements for T : R2 → Rm (for the image), respectively T :
R3 → R (for the kernel) as matrix equations, and describe the connection to the
parametric and general equations of a plane.

Finding the tangent line or plane: as the graph of a function.
Next, for each of the three cases of curves and surfaces, we show how to find the

tangent line, respectively the tangent plane. These are exactly the affine lines or
planes which bext approximate the curve or surface at the point.

First, given a function f : R→ R the formula for the tangent line to its graph is

l(x) = f(p) + f ′(p)(x− p).
(Draw a picture!)

Note that l(t) is itself a curve, and that it satisfies:
(i) it is an affine function, that is, linear plus a vector;
(ii)l(p) = f(p);
(iii) l′(p) = f ′(p).

The formula for the tangent line to a (parametrized) curve γ : R → Rm is nearly
identical:

l(t) = γ(p) + (t− p)γ′(p).
This now satisfies similar properties:

(i) it is an affine function;
(ii)l(p) = γ(p);
(iii) l′(p) = γ′(p).

For a level curve there are two ways to approach finding the tangent line. The
first is to parametrize the level curve somehow and apply the previous case of a
parametrized curve.

Exercise 6.7. For F (x, y) = x2 + y2, the curve of level 1 is the unit circle, the
solutions of the equation (i.e. all pairs (x, y) which satisfy the equation)

x2 + y2 = 1.

Find parametrizations for this level curve, and use that to find the tangent line at
a point.
Solution: We can parametrize this for example by the variable x. Then

y = ±
√

1− x2

and we have two parametrized curves, with t = x, so γ(t) = ±
√

1− t2. This works at
all points except where y′(x) =∞, that is, x = ±1. If we instead parametrize it by y
then this works except where x′(y) = 0, that is, for y = ±1. We can also parametrize
the entire curve at once, by the angle θ, with

γ(t) = (cos t, sin t)

and t = θ.
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When we parametrize by the variable x, we say the functions f(x) =
√

1− x2, f̃(x) =
−
√

1− x2, are defined implicity by the equation x2 + y2 = 1.
That is, they are explicit functions which are “implied” by the equation.
The Implicit Function Theorem, §6.19 describes when this can be done, basically

when (partial) derivatives become infinite as above.
Given this, we can apply the formulas for the graph of a function, or for a curve in

the plane, to find the tangent line of the level curve.

Finding the tangent line or plane: using the normal vector to find the
tangent space. The second way to find the tangent line to a level curve is to find a
normal vector to the curve. We explain this in §6.12.

Definition 6.9. Given F : Rn → R the tangent space Tp to the level set at the point
p = (x1, x2, . . . , xn), for level c = F (p), is an affine subset of Rn, all vectors v such
that (v − p) is othogonal to the gradient, n = ∇Fp.

We consider first the case of n = 2. We write the equation of the tangent line,
recalling that given a point p and a normal vector n = (A,B) then the line passing
through p and perpendicular to n is the collection of all x = (x, y) such that

n · (x− p) = 0.

Thus for n = (A,B) and x = (x, y) and p = (x0, y0) then

(A,B) · (x− x0, y − y0) = 0

giving the general equation for the line,

Ax+By + C = 0

where C = −n · p = −(Ax0 +By0).
Since ∇F = n = (∂F

∂x
|p, ∂F∂y |p) this gives the formula for the tangent line as

z0 +
∂F

∂x
|p(x− x0) +

∂F

∂y
|p(y − y0) = 0 (9)

We know the formula for the tangent line to the graph of a function f : R → R
is l(x) = f(p) + f ′(p)(x− p). We can also use the normal vector method to find this
formula in a second way. To do this we define F : R2 → R by

F (x, y) = f(x)− y.

Then the level curve of level 0 gives f(x)− y = 0, so y = f(x) which is the graph of
f .

(Consider a simple example like f(x) = x2 to understand what is going on!)
Note that at the point p = (p, f(p)) we have ∇Fp = (f ′(p),−1) so the formula (9)

gives

n · (x− p) = 0

where p = (p, f(p)) so we have

(f ′(p),−1) · ((x− p, y − f(p)) = 0
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so
f ′(p)(x− p)− (y − f(p)) = 0

so
y = f(p) + f ′(p)(x− p)

as claimed.

Exercise 6.8. See Exercise 6.9 below.

6.8. The gradient vector field; the matrix form of the tangent vector and
of the gradient. The gradient ∇F of a function F : R → Rm gives an important
example of a vector field. In general, a vector field V on Rm is a function V from Rm

to Rm.
As we mentioned above and shall prove in Proposition 6.17, the level curves of a

function F are orthogonal to the gradient vector field, so the gradient can help us
understand the level curves of F .

We draw the vector wv = V (v) based at each point v. See Fig. 6.
The tangent vector gives the first definition of derivative of a curve γ : R→ Rm, the

vector form of the derivative; the second definition, the matrix form of the derivative,
is the (n× 1) matrix, i.e. the column vector with those same entries:

Dγ =

 x′1(t)
...

x′n(t))

 .
Thus Dγ : R→Mn×1.

For a function F : Rn → R, the vector form of its derivative is the gradient ∇F .
This has a matrix form, the row vector i.e. (n× 1) matrix with the same entries:

DF |x =
[
∂F
∂x1

. . . ∂F
∂xn

]
.

Given γ : R → Rm and F : Rm → R then the composition is F ◦ γ : R → R, so
we can take its derivative (F ◦ γ)′(t). The Chain Rule says we can compute this in a
second way. In vector notation it states:

(F ◦ γ)′(t) = ∇Fγ(t) · γ′(t).
This is even simpler to remember in matrix notation, as we have the product of a

row vector and a column vector. For example, with γ : R→ R3 and F : R3 → R, we
have

D(F ◦ γ(t)) = DF |γ(t)Dγ|t =
[
Fx Fy Fz

]
|γ(t)

 x′1(t)
x′2(t)
x′3(t))

 .
Exercise 6.9. F (x, y) = x2y3; γ(t) = (et, et

2
).

(1)Find F ◦ γ′(0).

First method (directly): f(t) = F ◦ γ(t) = e2te3t2 . f ′(t) = 2e2te3t2 + 6t · e2te3t2 .
f ′(0) = 2.

Second method (Chain Rule): ∇F = (2xy3, x23y2). γ′(t) = (et, t2et
2
).
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Figure 5. The normal vector to the surface is normal (orthogonal) to
the tangent plane at that point. Tangent plane to the graph of a func-
tion defined on the plane, showing the meaning of the partial derivatives
at the point. A tangent vetor to a curve in a surface is in the tangent
plane. From https://web.ma.utexas.edu/users/m408m/Display14-
4-2.shtml From https://www.researchgate.net/figure/Figure-S3-
Geometric-illustration-of-tangent-vector-tangent-space-curve-and...
From: Wikipedia, Normal (geometry)
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Figure 6. A vector field in the plane, from Wikipedia. Compare to
the pictures of curves below!

Figure 7. Equipotential curves for the electrostatic field of two oppo-
site charges in the plane. Colors indicate different levels of the potential.
This can also be interpreted as a gravitational field, where the potential
function is height above sea level, and the positive charge is a mountain
top while the negative charge is a valley. Orthogonal to the equipoten-
tials are the lines of force; these are tangent to the gradient vector field
of the potential function. One can imagine flowing along the lines of
force from positive to negative charge, as in a fluid, although this is a
force not a velocity field. (Because of this analogy with fluids, they are
also called the lines of flux of the electrostatic field.
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Figure 8. Equipotential curves and lines of force for the electrostatic
field of two opposite charges in the plane, now closer together.

γ(0) = (1, 1). ∇F (1, 1) = (2, 3). γ′(0) = (1, 0).
So F ◦ γ′(0) = (2, 3) · (1, 0) = 2.
Which is easier depends on the problem!

(2)Find ∇F at p = (2, 5).
(3) Find the equation of the tangent plane to the graph of F at that point.

6.9. General definition of derivative of a map. Both the matrix version of tan-
gent vector and of gradient are special cases of the general notion of derivative of a
map from F : Rn → Rm. We state this more generally for normed vector spaces.

Definition 6.10. Let V,W be Banach spaces (a vector space, possibly infinite-
dimensional, on which we have a complete norm defined; complete here means that
there are “no holes” as Cauchy sequences converge; this only can be an issue in infi-
nite dimensions. The reader can think of Rn with the standard norm to get the basic
idea). We say a function (or map) F : V → W is differentiable at the point p ∈ V
iff there exists a continuous linear transformation L : V → W such that

lim
h→0
||F (x + h)− F (x + h)− L(h)||/||h|| = 0. (10)

We write DFp = L for this transformation, called the derivative of F at p.

Remark 6.4. If V,W are finite dimensional spaces, then any linear map is continuous
(since they are isomorphic to Rn ), but for infinite dimensions (general Banach spaces)
this is not automatic and we assume continuity.

Remark 6.5. The idea of the definition is that the derivative should give the “best
linear approximation” to F at each point p.
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To understand this better, we explain the idea of the kth -order approximation
near that point, for k = 0, 1, 2 . . . . Let us begin with f : R → R. The best 0th -
order approximation at p ∈ Rn is simply the value at that point. This means we
approximate f by the constant function p 7→ f(p). This is the crudest approximation,
but works to some extent providing the function is continuous. The best first-order
approximation near p makes use of not only the value at p but also the derivative
f ′(p). This is the affine map l(x) = f(p) + f ′(p)(x − p), whose graph is the tangent
line to f at p. The best kth -order approximation will use the first k derivatives at p
(including the “0th derivative“ which is just f itself!)

For higher dimensions, the best first-order approximation at p + h will be the
value F (p) plus the linear part L = DF |p applied to h. This gives the affine map

(p+v) 7→ p+Lv. The kth -order approximations get better and better as k increases,
as guaranteed by Taylor series at p. See §6.11 and §6.23.

We compare this to the usual definition of derivative for a function f : R → R,
that is,

f ′(p) = lim
h→0

f(p+ h)− f(p)

h
= c (11)

These are equivalent:

lim
h→0

f(p+ h)− f(p)

h
− c→ 0

f(p+ h)− f(p)− ch
h

≡ ϕ(h)→ 0 as h→ 0. (12)

Note that (12) is equivalent to

|f(p+ h)− f(p)− ch|
|h|

→ 0

which is a special case of Def. 6.10 since h 7→ ch is a linear map of R.

Theorem 6.11. (Chain Rule for one dimension) Let f,G : R→ R be differentiable.
Then (g ◦ f)′(p) = g′(f(p))f ′(p).

Remark 6.6. If we write this in Newton’s notation, y = f(x), w = g(y) that is,

f ′(x) =
dy

dx
= lim

∆x→0

∆y

∆x
then

(g ◦ f)′(x) =
dw

dx

= lim
∆x→0

∆w

∆x
= lim

∆x→0

∆w

∆y

∆y

∆x
= lim

∆y→0

∆w

∆y
lim

∆x→0

∆y

∆x

=
dw

dy

dy

dx
= g′(f(x))f ′(x).

(13)

This provides some intuition, however this is not rigorous because we have to
be careful about how ∆y depends on ∆x. The problem is that ∆y will be 0 if
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f(x + ∆x) = f(x) but then we will be dividing by 0 which is not okay. To see the
problem more clearly we use the definitions

f ′(p) = lim
h→0

f(p+ h)− f(p)

h

g′(p̃) = lim
h̃→0

g(p̃+ h̃)− g(p̃)

h̃

(14)

Now we define p̃ = f(p), h̃ = f(p + h) − f(p). This implies that g(p̃ + h̃) =
g(f(p) + f(p+ h)− f(p)) = g(f(p+ h)).

Note that since p̃ = f(p),

(g ◦ f)′(p) = lim
h→0

g(p̃+ h̃)− g(p̃)

h
.

We have

g(p̃+ h̃)− g(p̃)

h
=
g(p̃+ h̃)− g(p̃)

h̃

f(p+ h)− f(p)

h
(15)

so in the limit we have

(g ◦ f)′(p) = g′(f(p))f ′(p)

providing at no point we have ĥ = f(p + h)− f(p) = 0 so are dividing by 0. This is
just like the argument in (13).

To avoid this problem we multiply the equations by the denominator and use
estimates.

Rigorous proof of Chain Rule for one dimension. In this proof we adapt Lang’s
proof for higher dimensions, [Lan01], see below for that more general case.

Definition 6.11. We recall the “little o notation” of analysis. For f, g : R→ R, if g
is eventually positive (i.e. there exists a0 such that for all x > a0, g(x) > 0) then one
says f = o(g) if

lim
x→∞

f(x)

g(x)
= 0.

The definition is extended to allow for g sometimes 0 by saying: for any ε > 0, ∃a0

such that ∀x > a0, then
|f(x)| < ε|g(x)|.

This notation is convenient for comparing two functions. For some examples, if g
is a constant c > 0, f = o(c) means that f(x) → 0 as x → +∞. If f(x) = x2 and
g(x) = x3, then f = o(g). We think of this as saying that f grows slower than g as x
increases. For another example, exp(x) = ex grows faster than any polynomial p(x),
as p = o(exp). Further, if for positive functions, lim f(x), g(x) = 0, then f = o(g)
expresses that f goes to 0 faster than g as x increases; for example, for If f(x) = x−2

and g(x) = x−1, then f = o(g) at +∞, and e−x → 0 faster than x−n for any n, as
x→ +∞.
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We have a similar notion at 0: for g > 0 near 0, then f = o(g) at 0 if

lim
x→0

f(x)

g(x)
= 0.

Extending the definition to allow for g to take on the value 0, we say this holds iff for
any ε > 0, ∃a0 such that ∀|x| < a0, then

|f(x)| < ε|g(x)|.
Again for a constant c > 0, f = o(c) means that f(x) → 0 as x → 0. Since at 0,

x3 → 0 faster than x2, which goes to 0 faster than x, this is expressed precisely by
noting that x3 = o(x2), x2 = o(x) and x = o(1).

This notation will be useful in discussing properties of the derivative, and also later
on when we treat Taylor series.

Now from (12), the derivative of f at p exists iff:

f(p+ h)− f(p)− ch
h

≡ ϕ(h)→ 0 as h→ 0. (16)

Equation (16) is equivalent to

f(p+ h)− f(p)− ch = hϕ(h) = o(h), (17)

since this holds iff hϕ(h)/h = ϕ(h)→ 0 as h→ 0.
This means that to prove the theorem, that (g ◦ f)′(p) = g′(f(p)f ′(p), it will be

equivalent to show that

g(f(p+ h))− g(f(p)) = g′(f(p))f ′(p)h+ hϕ(h) (18)

where hϕ(h) = o(h).
Let k(h) = f(p+ h)− f(p). We know from (17) that

k(h) = f(p+ h)− f(p) = f ′(p)h+ hϕ(h) and similarly for g,

g(p+ h)− g(p) = g′(p)h+ hϕ̃(h)
(19)

where ϕ(h), ϕ̃(h)→ 0 as h→ 0.

Now we define p̃ = f(p) and h̃ = k(h) = f(p+ h)− f(p), so

f(p+ h) = f(p) + k(h) = p̃+ h̃.

Then using (19),

g(f(p+ h))− g(f(p)) = g(p̃+ h̃)− g(p̃) =

g′(p̃)h̃+ h̃ϕ̃(h̃) = g′(p̃)k(h) + k(h)ϕ̃(k(h))

= g′(p̃)
(
f ′(p)h+ hϕ(h)

)
+ k(h)ϕ̃(k(h))

= g′(f(p))f ′(p)h+ g′(f(p))hϕ(h) + k(h)ϕ̃(k(h))

(20)

We are trying to show that in (18), hϕ(h) = o(h). Equivalently we wish to show
that

g(f(p+ h))− g(f(p))− g′(f(p))f ′(p)h ≡ hϕ(h) = o(h).
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From (20), this is
hg′(f(p))ϕ(h) + k(h)ϕ̃(k(h)) (21)

The first term is o(h) since from (17), hϕ(h) = o(h).
For the second, we have from (19) that

k(h) = f ′(p)h+ hϕ(h) = h(f ′(p) + ϕ(h))

so
k(h)ϕ̃(k(h))

h
=
h(f ′(p) + ϕ(h))ϕ̃(k(h))

h
=
(
f ′(p) + ϕ(h)

)
ϕ̃(k(h))→ 0

so the second term is also o(h), completing the proof.
�

6.10. The general Chain Rule. Now we study the general definition (10), for
F : Rn → Rm: that

lim
h→0
||F (p + h)− F (p + h)− L(h)||/||h|| = 0. (22)

Let us first show:

Proposition 6.12. If F is differentiable, then it is continuous.

Proof. For F to be continuous at p we need

‖F (p + h)− F (p)‖ → 0

as ‖h‖ → 0. That F is differentiable at p equivalent to: for each ε > 0, there exists
δ > 0 such that for ‖h‖ < δ, then there exists L linear such that

‖F (p + h)− F (p)− L(h)‖ ≤ ‖h‖ε
We have

‖F (p + h)− F (p)‖ = ‖F (p + h)− F (p)− L(h) + L(h)‖
≤ ‖F (p + h)− F (p)− L(h)‖+ ‖L(h)‖
≤ ‖h‖ε+ ‖L(h)‖

using the triangle inequality. Now for any ε > 0 fixed, since L is continuous linear
(see Remark 6.4), both terms go to 0, proving the claim.

�

The main theorem involving derivatives is the:

Theorem 6.13. (Chain Rule) A composition of differentiable maps is differentiable,
and the derivative is the composition of the corresponding linear maps.

That is, for F : V → W and G : W → Z then for G ◦ F : V → Z we have:

D(G ◦ F )|p = DG|f(p) ◦DFp.

The proof given above for one dimension can be modified to work in the general
case. See [Lan01].
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Remark 6.7. We know that for V,W finite dimension, then once we have chosen a
basis for each space, a linear map is given by a matrix. Thus for the finite-dimensional
case the chain rule is stated using the product of matrices. See below.

V

F
##

G◦F

77W

G
##
Z

V

DF |x
##

D(G◦F )|x

66W

DG|F (x)

##
Z

Remark 6.8. We remark on why the general definition is more complicated than
that for functions given in (11). Now this simpler definition still works for a curve
γ : R → W , where the derivative is the tangent vector (or rather, its matrix form,
see below), since this is:

γ′(p) = lim
h→0

γ(p+ h)− γ(p)

h
.

This ratio makes sense since we are dividing a vector, γ(p+h)−γ(p), by a number,
h.

However for F : V → W where W has dimension larger than 1 this makes no sense,
as we cannot take the ratio of two vectors.

Or nearly. Consider the following: given a linear map L : V → V , so Lv = w,
then in some sense

w

v
= L :

the ratio “should be” a linear transformation!!
However L is not well-defined by this: many linear maps will solve the equation

Lv = w; it is only well-defined if V has dimension 1. What the definition of derivative
requires is that L works for all directions h, and this does make L well-defined, as
expressed in the above definition.

Remark 6.9. We introduce the notation L(V,W ) for the collection of all continuous
linear transformations from V to W . If we choose a basis for V = Rn and W = Rm,
then L : Rn → Rm is represented by an (m × n) matrix. Then L(Rn,Rm) can be
identified with the matrices Mmn ∼ Rmn, so DF : Rn → L(Rn,Rm) ∼ Rmn.

When considering F : Rn → Rm then both x ∈ Rn and F (x) ∈ Rm can be written
in components, with x = (x1, . . . , xn) and F (x) = (F1(x), . . . , Fm(x)). We write the
components of F as a column vector, so

F (x) =

F1(x)
...

Fm(x)

 .
Each component Fk is a function from Rn to R so has a gradient,∇Fk = (∂Fk

∂x1
, . . . , ∂Fk

∂xn
).

Now DFk is by definition is the corresponding row vector so
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DFk =
[
∂Fk
∂x1

. . . ∂Fk
∂xn

]
.

We define the matrix of partials of F : Rn → Rm to be the (m × n) matrix with
the kth row this gradient vector. Let us write [∇Fk] for the row vector DFk.

Then the ijth-matrix entry is the partial derivative

(DF )ij =
∂Fi
∂xj

and so we have the (m× n) matrix

DF |x =

 [∇F1]
...

[∇Fm]

 =


∂F1

∂x1
. . . ∂F1

∂xn
...

...
∂Fm
∂x1

. . . ∂Fm
∂xn

 .
The most basic cases are f : R1 → Rm and Rn → R1. The first is a curve, discussed

above, and usually written γ : R → Rm. The general formula then gives the matrix
form of the tangent vector; since γ is a column vector, with

γ(t) =

 x1(t)
...

xm(t))


then Dγ is the (m × 1) matrix with the same entries as the tangent vector γ′(t) =
(x′1, , . . . , x

′
m)(t), so

Dγ|t =

 x′1(t)
...

x′m(t))

 .
The second type of map F : Rn → R we call simply a function. The general formula

above then gives the (1× n) matrix:

DF |x =
[
∂F
∂x1

. . . ∂F
∂xn

]
x
.

This row vector is the matrix form of the gradient ∇F , since as explained above,
∇F = ( ∂F

∂x1
, . . . , ∂F

∂xn
).

As we shall see in Proposition 6.17, the level curves of a function F are orthogonal
to the gradient vector field.

An example of level curves is seen in Fig. 9.

One can think of the matrix of partials for a function F : Rn → Rm as consisting of
lined-up column vectors (tangent vectors) or row vectors (gradients) respectively. We
have explained this regarding the rows. To understand this for the columns, writing a
vector in the domain as x = (x1, . . . , xn) then fixing say x2, . . . , xn and setting t = x1

we have a curve γ(t) = F (t, x2, . . . , xn); note that the first column of the derivative
matrix DF is the derivative of this curve, the column tangent vector Dγ.

We have described how the derivative at a point defines a matrix of partial deriva-
tives. The converse also holds. Here is the full statement:
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Theorem 6.14. For V,W of finite dimensions m,n, let us fix a basis for each. Then
given a differentiable map F : V → W , the linear transformation DFp at a point
p is given by the (n ×m) matrix of partial derivatives: writing F in components as
F = (F1, . . . , Fn), then the ijth-matrix entry is the partial derivative

(DF )ij =
∂Fi
∂xj

. The Chain Rule is expressed in terms of the matrix product. If F is continuously
differentiable at p, then the partial derivatives are continuous, and conversely, if all
the partials exist and are continuous, then DF exists and is continuous at p.

See e.g. [Lan01], §11.2 of [Gui02], Theorem 6.4 of Marsden’s book [Mar74]. The
properties of derivatives are very clearly developed on pp. 158-185 of Marsden.

6.11. Best affine approximation: tangent line and plane. Given a map F :
Rn → Rm, the terminology “kth-order approximation” to F at a point x ∈ Rn comes
from the Taylor polynomials and Taylor series. For a function f : Rn → Rm, the best
kth-order approximation at x ∈ Rn is the polynomial of degree k which best fits the
map near that point. This is the polynomial (in k variables!) which has all the same
partial derivatives at that point, up to order k. See §6.23.

Thus the best 0th-order approximation of F at p ∈ Rn is the constant map with the
value at that point: the map x 7→ F (p). To get the best first-order approximation
we add on the linear map given by the derivative matrix DF |p.

This is the affine map

x 7→ F (p) +DF |p(x− p),

which we mentioned above for the case of R2, where this gives the equation of the
tangent plane to the graph of F .

Example 11. (Derivative of a linear or affine map) What is the best linear
approximation to a linear map? Answer: it should be the linear map itself!

Let us understand this precisely.
Consider the matrix

A =

[
a b
c d

]
Acting on column vectors, this defines the linear transformation[

x
y

]
7→ A =

[
a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
or written as vectors,

T (x, y) = (ax+ by, cx+ dy).

We want to compute the matrix of partials DTp at a point p = (x0, y0). Now the
components of T are T = (T1, T2) where

T1(x, y) = ax+ by

T2(x, y) = cx+ dy.
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Then
∇T1 = (a, b)

∇T2 = (c, d)

for each point p. Thus at each point p,

DTp =

[
a b
c d

]
.

This shows:

Proposition 6.15. For an affine map F : Rn → Rm, defined by F (v) = v0 + T (v)
where T : Rn → Rm is linear, the derivative is

DFp = T.

That is to say, the derivative is constant, is constantly equal to the linear part of the
map.

Remark 6.10. To really understand this, consider the case of Rθ, the rotation coun-
terclockwise of the plane by angle θ.

The first example is γ : R→ R3 and F : R3 → R, where have seen the Chain Rule
above; in matrix notation it is:

D(F ◦ γ(t)) =
[
Fx Fy Fz

]
|γ(t)

 x′1(t)
x′2(t)
x′3(t))


The product gives a (1× 1) matrix, whose entry is a number.

In vector notation the Chain Rule is:

(F ◦ γ)′(t) = ∇Fγ(t) · γ′(t).
This number is the same as the entry of the (1× 1) matrix above.

Now we can give a second proof of Proposition 6.4 above, which we repeat here:

Proposition 6.16. Let γ be a differentiable curve in Rn such that ||γ|| = c for some
constant c. Then γ ⊥ γ′.

Proof. (Second Proof, using gradient) We define a function F : Rn → R by F (x) =
||x||2 = x ·x =

∑n
i=1 x

2
i . Then since ||γ|| = c is constant, c2 = ||F ◦ γ|| whence by the

Chain Rule,
0 = (F ◦ γ)′(t) = (∇F (γ(t)) · γ′(t)

but F (x) = F (x1, . . . , xn) = x2
1 + · · ·+x2

n whence ∇F (x) = 2(x1, . . . , xn) = 2x. Thus
0 = 2γ(t) · γ′(t), as claimed.

�

Directional derivative and the gradient.
The gradient gives us a simple way of calculating the directional derivative. Given

F : Rn → R, with gradient vector field ∇F , and given a unit vector u, then the
directional derivative of F in direction u is given simply by the inner product:

Du(F )|p = (∇F (p)) · u.
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Exercise 6.10. Check this on the standard basis vectors and compare to the partial
derivatives! What is the direction of steepest increase of F at a point p? Of steepest
decline? What is the rate of increase of F if in a direction tangent to a level curve?

6.12. Level curves and parametrized curves. There are two very distinct types
of curves we encounter here: the curves of this section, which are parametrized curves
(with parameter t = time), and the level curves of a function. Next we describe a link
between the two:

Proposition 6.17. Let G : R2 → R be differentiable and suppose γ : [a, b]→ R2 is a
curve which stays in a level curve of G of level c. Then γ′(t) is perpendicular to the
gradient of G.

Proof. We have that G(γ(t)) = c for all t. Hence G(γ(t))′ = 0 for all t. Then by
the chain rule, this equals 0 = D(G ◦ γ)(t) = DG|γ(t)Dγ|t. The derivatives here are
matrices, with DG a (1×2) matrix (a row vector) and Dγ a column vector; in vector
notation, these are the gradient and tangent vector, so this gives 0 = (G ◦ γ)′(t) =
(∇G)(γ(t)) · γ′(t), so ∇G|γ(t) · γ′(t) = 0, telling us that the gradient is perpendicular
to the tangent vector of the curve, as claimed. �

Example 12. (Dual hyperbolas) See Fig. 9, depicting level curves of the functions
F (x, y) = (x2 − y2) and G(x, y) = 2xy.

Exercise 6.11. Plot the level curves of F for levels 0, 1,−1 and for G of levels 0, 2,−2.
Compute the gradient vector fields and find their matrices (they are linear!) Compare
to the earlier examples of linear vector fields.

These functions are related algebraically by a change of variables, u = 1√
2
(x − y),

v = 1√
2
(x + y) and geometrically by a rotation Rπ/4. To verify this we define the

function H : R2 → R2 by H(x, y) = (u, v) =
√

2
2

(x− y, x+ y) then

G ◦H(x, y) = 2 · 1

2
(x− y)(x+ y) = x2 − y2 = F (x, y)

so F = G ◦H.
Now H is a linear transformation of R2 given by

√
2

2

[
1 −1
1 1

] [
x
y

]
=

[
u
v

]
and so by the matrix √

2

2

[
1 −1
1 1

]
=

[√
2

2
−
√

2
2√

2
2

√
2

2

]
which is indeed rotation counterclockwise by π/4.
We next check Proposition 6.17 for this example.
The gradient of F is ∇F = (∂F

∂x
, ∂F
∂y

) = (2x,−2y) and of G is ∇G = (∂G
∂x
, ∂G
∂y

) =

(y, x). Note that (2x,−2y) · (y, x) = 0 so these vector fields are orthogonal. Further-
more we can find tangent vectors to the level curves as follows. Let us parametrize
the level curve F (x, y) = x2 − y2 = c by the variable x. Then y = y(x), so the curve
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Figure 9. Dual families of hyperbolas: Level curves for the functions
F (x, y) = (x2−y2) andG(x, y) = 2xy. Note that in this special example
the level curves of F are orthogonal to the level curves of G. In fact,
the gradient vector field of F is orthogonal to the level curves of F , and
is tangent to the level curves of G, and vice-versa!

is γ(x) = (x, y(x) with tangent vector (1, y′(x))taking the derivative of the equation
with respect to x gives 2x − 2yy′ = 0, so y′ = x/y. Thus γ′(x) = (1, x/y). This is
proportional to the vector (y, x) = ∇G which as we have already noted is orthogonal
to the gradient of F at that point.

6.13. Level surfaces, the gradient and the tangent plane. In Proposition 6.17
of §6.12 we showed that the gradient vector field of F : R2 → R is orthogonal to the
level curves of F . In fact something similar is true for any dimension. For the case
of R3 we get a new formula for the tangent plane, as we now explain.

Proposition 6.18. Let G : R3 → R be differentiable and suppose γ : [a, b]→ R3 is a
curve such that the image of γ remains inside the level surface of level c, {(x, y, z) :
G(x, y, z) = c}. That is, for all t, G(γ(t)) = c. Then γ′(t) is perpendicular to the
gradient of G.

More generally this is true for higher dimensions, G : Rn → R.

Proof. We have that G(γ(t)) = c for all t. Hence G(γ(t))′ = 0 for all t. Now by the
chain rule, 0 = D(G ◦ γ)(t) = DG(γ(t)Dγ(t). DG is now a (1× n) matrix and Dγ a
(n× 1) column vector; in vector notation, these are the gradient and tangent vector,
so this gives 0 = d

dt
c = (G ◦ γ)′(t) = (∇G)(γ(t)) · γ′(t) = 0. �
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Exercise 6.12. First we have a review problem from Linear Algebra: Recall that
the general equation for a plane in R3 is:

Ax+By + Cz +D = 0

where not all three of A,B,C are 0. Given a point p = (x0, y0, z0) and a vector
n = (A,B,C) then find the general equation of the plane through p and perpendicular
to n.
Solution: We know that the plane is the collection of all x = (x, y, z) such that

n · (x− p) = 0,

so for n = (A,B,C) and x = (x, y, z) and p = (x0, y0, z0) then

(A,B,C) · (x− x0, y − y0, z − z0) = 0

giving the general equation for the plane,

Ax+By + Cz +D = 0

where D = −n · p = −(Ax0 +By0 + Cz0).

See also Exercise 6.5.

Exercise 6.13. Given the function F (x, y, z) = x2 + y2 + z2, find the tangent plane
to this sphere at the point (1, 2, 3).
Solution: Note that F (1, 2, 3) = 14. Therefore this point is on the level surface of F
of level 14. (This is the sphere about the origin of radius

√
14).

Now the gradient of F is ∇F (x, y, z) = (2x, 2y, 2z). We know the gradient is
orthogonal to the sphere hence to the tangent plane. This normal vector (to both)
is n = ∇F (1, 2, 3) = (2, 4, 6). We are in the situation of the previous exercise: the
equation of the plane is

Ax+By + Cz +D = 0

where the normal vector is n = (A,B,C) = (2, 4, 6) and the plane passes through the
point p = (1, 2, 3).

The equation of the plane is therefore

n · (x− p) = 0

or
n · ((x, y, z)− p) = 0

so

(A,B,C) · (x− 1, y − 2, z − 3) = 0

giving
2x+ 4y + 6z +D = 0

where
D = −n · p = −(2, 4, 6) · (1, 2, 3) = −(2 + 8 + 18) = −28,

so we have the plane with general equation

2x+ 4y + 6z +−28 = 0.
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Exercise 6.14. We solve an exercise requested by a student.
Guidorizzi Vol 2 # 2 of §11.3, p. 204. [Gui02],
Find the equation of a plane which passes through the ponts (1, 1, 2) and (−1, 1, 1)and

which is tangent to the graph of the function f(x, y) = xy.
Solution. We use normal vectors, as follows. The graph of f is

{(x, y, z) : z = f(x, y)}
which equals

{(x, y, z) : z = xy}
equivalently written

{(x, y, z) : xy − z = 0}.
This is the level surface of F : R3 → R defined by F (x, y, z) = xy − z. This has
gradient vector ∇F = (y, x,−1). Let p = (x0, y0, z0) denote the point where the
plane meets the graph. Then at the point p we have ∇Fp = (y0, x0,−1). We know
that the gradient is orthogonal to the level surfaces, in other words it is orthogonal
to the tangent plane to the surface at that point. So n = ∇Fp is a normal vector to
the tangent plane of the level surface at p. This gives us the equation for the tangent
plane

n · (x− p) = 0

so
(y0, x0,−1) · ((x, y, z)− (x0, y0, z0)) = 0

(y0, x0,−1) · (x− x0, y − y0, z − z0) = 0

so
y0x− x0y − z + z0 = 0

Now z0 = x0y0 since p is also on the graph of the function. This gives

y0x− x0y − z + x0y0 = 0

We need to find x0, y0. The two points are on this plane so satisfy the equation.
Substituting (x, y, z) = (1, 1, 2) and (−1, 1, 1) gives us the equations

y0 − x0 − 2 + x0y0 = 0

−y0 − x0 − 1 + x0y0 = 0

Subtracting,

2y0 − 1 = 0

y0 = 1/2

We now have from the first equation,

y0 − x0 − 2 + x0y0 = 0

so
1/2− x0 − 2 + x01/2 = 0

multiplying by 2,
1− 2x0 − 4 + x0 = 0
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x0 = 3

Thus z0 = 3/2 giving the equation of the plane:

n · (x− p) = 0

with n = (y0, x0,−1) = (1/2, 3,−1) and p = (x0, y0, z0) = (3, 1/2, 3/2). Finally in
the form

Ax+By + Cz +D = 0

we have

1/2x+ 3y − z − 3/2 = 0

or equivalently

x+ 6y − 2z − 3 = 0.

To check our numbers we can verify that the three points are indeed on this plane.

Remark 6.11. In these notes we have emphasized the role of three distinct ways of
presenting, or of viewing, the same object: for example a curve may be the graph of
a function, a level curve, or a parametrized curve. We wish to indicate how this fits
into a larger context, in other parts of mathematics.

First, here is a solution to part of Exercise 6.6: to write the image and kernel in
matrix form.

Consider 2 3
1 2
4 5

[s
t

]
= s

2
1
4

+ t

3
2
5

 (23)

Thus if we write the columns of a (3×2) matrix as v = (v1, v2, v3),w = (w1, w2, w3)
we have more generally v1 w1

v2 w2

v3 w3

[s
t

]
= s

v1

v2

v3

+ t

w1

w2

w3

 (24)

defining the map T : R2 → R3 where T (s, t) = sv+ tw. This is a parametrized plane,
which in this case passes through 0.

Given a parametrized plane in R3, we should be able to find the general equation.
To do this we bring in the vector product, which we next explain. But first, a few
words about the determinant!

6.14. Elementary row and column operations. A good reference on matrix op-
erations in Linear Algebra is Strang’s text [Str12].

For the next section we recall:

Definition 6.12. Given an (n×m) matrix M , a basic elementary row operation has
two types:
(1) We exchange two rows;
(2) We replace a chosen row by itself added to a multiple of a different row.

In many texts, a third operation is permitted:
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(3) We multiply a row by a constant.
But we don’t need this and it will be more convenient for us to not include this

one.
An elementary row operation is the result of applying the basic operations 1 and 2

finitely many times.
Elementary column operations are defined similarly.
A basic elementary matrix is a (d×d) matrix formed by carrying out an elementary

row operation on the identity matrix I.

Lemma 6.19.
(i) A basic elementary matrix can also be formed by carrying out an elementary
column operation on I.

(ii) Given an (n × m) matrix M , let M̃ be the matrix which results after carrying

out an elementary row operation. Then M̃ = EM where E is the (n×n) elementary
matrix formed by carrying out the same elementary row operation on I.

The same is true for column operations except now E is (m×m) and M̃ = ME.

Proof. First we consider the basic elementary matrices. (i) If we form E by exchanging
row i and row k, then E has a 1 in place i of row k and place k of row i. Thus Eki = 1
and Eik = 1. If we exchange column i and column k then E has a 1 in place i of
column k and place k of column i. Thus Eik = 1 and Eki = 1, the same thing.

If we form E by replacing row i with a times row k, then E is the identity matrix
except for Eik = a. If we form E by replacing column k with a times row i, then E
is the identity except for Eik = a, the same thing!

(ii) For etk the standard basis row vector, so it is (1×n) with (ek)k = 1, then etkM
gives the (1×m) row vector which is the kth row of M . It follows from this that if an
(n× n) matrix N has etk as its jth row, then row j of NM is the kth row of M . This
implies the claim, but it is much better to see this by trying out some examples; see
(27), (25), (26) below.

The case of operation (2) is similar.
General elementary matrices: by what we have just shown, a general elementary

matrix E is a product E = El . . . E2E1, proving (i). Part (ii) follows.
For column operations, we take the transpose, using the fact that (EM)t = M tEt.

�

Pictorially, 0 1 0
1 0 0
0 0 1

−→ u −→
−→ v −→
−→ w −→

 =

−→ v −→
−→ u −→
−→ w −→

 (25)

and 1 0 0
a 1 0
0 0 1

−→ u −→
−→ v −→
−→ w −→

 =

−→ u −→
−→ au + v −→
−→ w −→

 (26)

6.15. Geometrical meaning of elementary matrices: reflection and sliding.
For this, we first consider elementary row operations. Let us consider the (2 × 2)
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basic elementary matrix E =

[
0 1
1 0

]
. In its action on column vectors it interchanges

i and j. We have [
0 1
1 0

] [
x
y

]
=

yy
x

 .
Geometrically, this is a reflection in the line y = x.

Next consider (3× 3) matrix E =

0 1 0
1 0 0
0 0 1

. Now we have

0 1 0
1 0 0
0 0 1

xy
z

 =

yx
z


which is reflection in the plane y = x.

So these elementary matrices of the first type give reflections. Next, the matrix
given by the second type of basic elementary operation gives what we shall call a
sliding transformation; a more common name is a skewing transformation. We explain
why we call this “sliding”: For an example note that[

1 t
0 1

] [
x
y

]
=

[
x+ ty
y

]
which moves the unit square to a parallelogram, sliding the top horizontally by dis-
tance t.

From (26) we see that left multiplication by E =

 1 0 0
−a 1 0
0 0 1

 transforms the

parallelopiped P (i, ai + j,k) to P (i, j,k) which slides the top of it over so it is the
unit cube.

By applying successively these operations we can turn any parallelopiped in R3 into
a rectangular solid. In algebraic terms, this says (equivalently) that we can apply the
elementary row operations on a (3×3) invertible matrix M and end up with a diagonal
matrix D. We note that by the way we have defined elementary matrices, they all
have determinant 1, explained in the next section.

6.16. Two definitions of the determinant.
Algebraic definition: Let A be an (n× n) real or complex matrix. We begin with
the usual algebraic definition, which is inductive on n. For n = 1, A = [a] = [A11]

and detA is just the number a. For n = 2, A =

[
a b
c d

]
, and we set det(A) = ad− bc.

This is extended as follows: we define a matrix with entries Sij ∈ {1,−1} as
follows: Sij = (−1)i+j. To visualize this, we write simply the corresponding signs, in
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a checkerboard pattern:

S =


+ − + −
− + − +
+ − + −
− + − +


The ij minor A(ij) of A is defined to be the (n − 1) × (n − 1) matrix formed by
removing the ith row and jth column of A.

Then we expand along the top row by forming the sum of (±1)detA(1j), where the
signs are given by the top row of S, i.e.

det(A) =
n∑
j=1

(−1)1+jdetA(1j).

Similarly we define the expansion along, say, the ith row to be
∑n

j=1(−1)i+jdetA(ij)
or indeed along any column.

Lemma 6.20. These are equal, giving the same number whatever row or column
chosen!

Proof. The proof depends on the following two facts:

Fact 1: If Ã is the matrix formed from A by exchanging two rows, then detÃ =
(−1)detA; and
Fact 2: detAt = detA.

Now if we expand along the second row of A, the formula we get is that for expand-

ing along the first row of Ã, times (−1), which is −detA, and the two sign changes
cancel.

If we expand along the first column of A, this is the same formula as expanding
along the first row of At. This completes the proof.

�

Note that this algorithm also works for the (2× 2) case!

Geometric definition:

Definition 6.13. Let M be an (n× n) real matrix. Then

detM = (±1)(factor of change of volume)

where we take +1 if M preserves orientation, −1 if that is reversed. (Here this is
n-dimensional volume and so is length, area in dimensions 1, 2).

Theorem 6.21. The algebraic and geometric definitions are equivalent.

Proof. For a (2 × 2) matrix A, note that the factor of change of volume is the area
of the image of the unit square, that generated by the standard basis vectors (1, 0)
and (0, 1), which equals the area of the parallelogram with sides the matrix columns,
(a, c) and (b, d).
Case 1: c = 0. Then the matrix is upper triangular and its determinant algebraically
is ad. But the parallelogram area is (base)(height)= ad as well.
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The formula area(parallelogram)= (base)(height) is usually proved by cutting off a
triangle vertically and shifting it to the other side, thus forming a rectangle of the same
base and height. Here is a different way to picture this: imagine the parallelogram is
a pile of horizontal layers, like a stack of cards, and straighten the pile to a vertical
pile by sliding the cards, ending up with the same (a× d) rectangle. See §6.15 where
we define sliding transformations.
General Case: We reduce to Case 1 as follows, not by rotating (also possible!) but
by sliding the far side of the parallelogram along the direction (b, d). A simple con-
putation shows the area is indeed ad− bc.
Higher dimensions: We note that the above “sliding” operations can be done alge-
braically by an operation of column reduction, equivalently, multiplying on the right
by an elementary matrix of determinant one. This reduces to the upper diagonal
case, and beyond to the diagonal case if desired.

We observe that the same procedure works in R3 and beyond.
We can visualize that a parallelopiped P (v1,v2,v3) in R3 can be transformed by

sliding parallel to these three vectors into a rectangular solid, with sides parallel to the
axes. To prove this we again note that the operation of sliding is given algebraically
by an elementary column operation, or equivalently by right multiplication by an
elementary matrix (of determinant ±1). And we know that column-reduction (just
like row-reduction except the transpose) of an invertible matrix can always be done
to end up with a diagonal matrix.

�

6.17. Orientation. We may be accustomed to thinking of a certain basis as having
positive orientation and another negative, but this has no intrinsic meaning: what
does make sense is to say that two given bases have the same or opposite orientation.
As we shall explain, there are only two choices for this.

A basis B1 of Rn is an n-tuple (v1, . . . ,vn) of linearly independent vectors which
generate. (Recall that in fact, n L.I. vectors will always generate). From this we form
the matrix MB with those columns. This is an invertible matrix. (Exercise: verify
this!)

We let B̂ denote the collection of all bases of Rn.
The change from one basis B1 to another B2 is given by an invertible matrix A.

What we mean by this is:

MB1A = MB2 .

An example is to simply change the order of the basis, defining B2 = (v2,v1,v3, . . . ,vn).
Thus to get the matrix MB2 we have performed on MB1 the elementary column oper-
ation of switching the first two columns. This is given by right multiplication by the
elementary matrix E which is I with the first two columns switched: (!!!)

a e ∗ ∗
b f ∗ ∗
c g ∗ ∗
d h ∗ ∗




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =


e a ∗ ∗
f b ∗ ∗
g c ∗ ∗
h d ∗ ∗

 (27)

where ∗ stands for any number.
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Given our invertible matrix A, we know it is a product of elementary matrices Ei
times a diagonal matrix D , since by column reduction we have: AE1E2 . . . Em = D.
Thus the change of basis can always be given in this way.

Now by definition GL(n,R) is the collection of invertible (n × n) matrices. The
collection of those with detA > 0 is called GL+; these are the orientation-preserving
matrices. (From the point of view of Group Theory, GL+ is a subgroup of index 2 of
GL, and its coset is GL−, the collection (not a subgroup!) of orientation-reversing

matrices). Letting GL act on the bases B̂, we define two bases B1,B2 to have the same
orientation iff one is taken to the other by an element of GL+. Since this subgroup
has index 2, there are only these two choices, and the second case is expressed by
saying they have opposite orientation.

Then, choose one basis B1 we declare (arbitrarily) that this has positive orientation.

The image of this by applying all elements of GL+ defines B̂+, the bases with positive

orientation, and the complement defines B̂−, the bases with negative orientation.

Note that B̂− is the GL+-image of any B2 not in B̂+.

Example 13. We give some examples. Suppose B1 = (v1,v2 . . . ,vn) has a certain ori-
entation (say, positive). Then switching the order of two of them, (v2,v1,v3,v4 . . . ,vn)
has the opposite orientation. Also, as just shown above for the (4×4) case, this change
is give by multiplication by the matrix A with columns (e2, e1, e3, . . . , en) in other
words I with the first two columns interchanged. Note A has determinant −1.

For R3, this gives: (i, j,k) has the opposite orientation from (j, i,k).
For a second example, (−v1,v2 . . . ,vn) also has opposite orientation from B1. (Ex-

ercise: what is A in this case?)
Geometrically, this is a reflection in the subspace generated by the vectors {v2 . . . ,vn}.
For example, reflection in the xy-plane is the map R(a, b, c) = (a, b,−c) which is

given by the matrix

1 0 0
0 1 0
0 0 −1

 (times column vectors), and that sends the standard

basis (i, j,k) to (i, j,−k).
Exercise: write the formula for reflection in a line, for example in the x− axis!
How can you find from this the formula for reflection in a general plane, or in a

general line? For reflection in the point 0?

Definition 6.14. The standard orientation for Rn is defined by the choice that
(e1, e2, . . . , en) has positve orientation. Thus for R1 this is (e1), for R2 is e1, e2) = (i, j)
and for R3 this is (e1, e2, e3) = (i, j,k).

Theorem 6.22.
(i) det(AB) = det(A)det(B).
(ii) det(B−1AB) = det(A).

Proof. Part (i) can be proved algebraically, but it is much easier to use the geometric
definition of determinant, that det(A) = (±1) · (factor of change of volume). (Since
(AB)v = A(Bv)- this is a multiplication of matrices, and we have the associative
law- multiplication of the volume by b and then by a changes it by the factor ab).
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Now we have the factor of 1 if A preserves orientation, −1 if not. This again works
for the product; changing the orientation twice leaves it fixed, and (−1)(−1) = 1.

Part (ii) follows from this. �

6.18. Three definitions of the vector product. The vector product v ∧ w is
defined only on R3, and gives a vector in R3. (In R2, we make the special definition
(a, b)∧(c, d) = v∧w ∈ R3 where v = (a, b, 0) and w = (c, d, 0)). Here we present three
equivalent definitions of the vector product. We write i, j,k for the standard basis
vectors in R3. We write P (v,w, z) for the paralelopiped spanned by v,w, z ∈ R3, that
is, P (v,w, z) ≡ {av + bw + cz : a, b, c ∈ [0, 1]}, and P (v,w) for the parallelogram
spanned by v,w ∈ R3, so P (v,w) ≡ {av + bw : a, b ∈ [0, 1]}.

Theorem 6.23. The following definitions are equivalent.
(1) (Via the “determinant” formula):

v ∧w =

∣∣∣∣∣∣
i j k
v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ = i

∣∣∣∣ v2 v3

w2 w3

∣∣∣∣− j

∣∣∣∣ v1 v3

w1 w3

∣∣∣∣+ k

∣∣∣∣ v1 v2

w1 w2

∣∣∣∣
(2) (The geometric definition):

v ∧w satisfies the following properties:
(i) z = v ∧w is perpendicular to v and to w;
(ii) The norm of z is equal to the area of the parallelogram P (v,w); thus

||v ∧w|| = ||v||||w|| · | sin(θ)|.
(iii) If z 6= 0, then (v,w, z) forms a positively oriented basis for R3.

(3) (The algebraic definition) : The vector product is a bilinear operation such that
i ∧ j = k, j ∧ k = i, k ∧ i = j.

Remark 6.12. (1) is the usual definition given in texts.
Regarding (2), we remark that θ is the angle from v to w, where in the plane this

would mean measured in the counterclockwise sense from v to w; in R3, together
with an orientation, “counterclockwise” is defined by looking down along the thumb
for the right-hand rule. Note that since the modulus is taken, this is the same for the
angle −θ from w to v and in any case is positive as a norm should be.

The formula in (3) is easy to remember as it follows a circle from i to j to k.

Proof. To prove that (1) ⇒ (2) we note that for any vector u, we used the mixed
product, a mixture of the inner and vector products u · (v ∧w), and note that:

u · (v ∧w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ (28)

Taking u = v in (28) it follows that v · z = 0, similarly for w, proving (i). Recall

that

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ = ± (volume of the paralellopiped spanned by u,v,w), using
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the fact that detM = detM t, where the sign is + iff the map preserves orientation,
since the parallelopiped is the image of the unit cube, and since from Theorem 6.23
we know the determinant gives ± (factor of change of volume).

Now taking in (28) u = z = v ∧w, then ||z||2 = z · z =

∣∣∣∣∣∣
z1 z2 z3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ ≥ 0 so the

orientation of (z,v,w) is positive. Using this, from the geometric definition of the
determinant, ∣∣∣∣∣∣

z1 z2 z3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ = vol(z,v,w)

where this means the volume of the parallelopiped spanned by the basis (if linearly
independent) (z,v,w). Here we use the fact that we can exchange rows for columns
as detA = detAt. But since z is orthogonal to the base parallelogram, this volume is
(base area)(height).

This gives
||z||2 = (base area)(height) = (base area)||z||

so ||z|| = (base area) as claimed. This concludes the proof that Def. (1) implies
Def. 2.

It is clear that both Defs. (1), (2) imply Def. (3), but knowing Def. (3) for the
basis vectors i, j,k determines v ∧w for all v,w, by bilinearity. Hence all three are
equivalent.

�

Corollary 6.24. We have the nice (and useful!) formula

||v ∧w||2 = (v · v)(w ·w)− (v ·w)2.

Proof. From Theorem 6.23 we know that

||v ∧w||2 = (area)2 = (||v||||w||| sin θ|)2

and this is

||v||2||w||2(1− cos2 θ) = ||v||2||w||2 − (||v||||w|| cos θ)2 = ||v||2||w||2 − (v ·w)2.

�

We shall next see how the vector product satisfies three important properties, the
first two of which we have already proved:

Definition 6.15. A Lie bracket [x, y] on a vector space V is an operation on V (a
function from V × V to V ) which satisfies the axioms:
– bilinearity;
–anticommutativity: [y, x] = −[x, y];
–the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Proposition 6.25. The vector product v∧w on R3 is a Lie bracket, setting [v,w] =
v ∧w.



74 ALBERT M. FISHER

Proof. We have shown the first two properties.
Now from (3) we have an exceptionally easy proof of the Jacobi identity, since by

bilinearity it is enough to check this on the basis vectors, and for example

[i, [j,k]] + [j, [k, i]] + [k, [i, j]] = 0

since each term is 0, and similarly for the other cases. �

General equation of a plane; matrix form. Going back to the parametric
equation of a plane in (29), we had the linear transformation T : R2 → R3 where
T (s, t) = sv + tw. Writing H for the (3 × 2) matrix and z for the (2 × 1) column

vector z =

[
s
t

]
, then in matrix form this is

Hz =

v1 w1

v2 w2

v3 w3

[s
t

]
= s

v1

v2

v3

+ t

w1

w2

w3

 (29)

The image of the map H is a plane which passes through 0. The plane parallel to
this which passes through some point p is the image of the function Hp : (s, t) 7→
T (s, t) = sv + tw + p. Note that H is a linear transformation, while Hp is affine but
not linear (unless p happens to lie on the plane Im(H)).

Given this parametric equation we can find the general equation of the plane
Im(Hp) as follows: we take our normal vector to be n = (A,B,C) where n = v∧w.

Then points (x, y, z) in the plane T (s, t) = sv+ tw+p = (x, y, z) satisfy the equation

(A,B,C) · ((x, y, z)− p) = 0

so giving
Ax+By + Cz +D = 0

where D = −n · p.
We have explained this above, in Exercise 6.12.
In matrix form this is

Mv =
[
A B C

] xy
z

 =
[
−D

]
. (30)

Defining S : R3 → R to be the function S(x, y, z) = Ax+By + Cz then the plane
is the level surface of level −D of S.

Putting these two maps together, we have the composition of maps, with the two
matrices acting on column vectors:

M2,1
H−−−→ M3,1

M−−−→ M1,1

or as linear transformations:

R2 T−−−→ R3 S−−−→ R1 (31)

Restricting to the image of T , the geometrical plane P ⊆ R3, we have:

R2 T−−−→ P
S−−−→ {−D} (32)
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The plane P is a set of points (x, y, z), which on the one hand is the image of the
map T , and on the other is a translate of the kernel of the map S by the vector p.

Level surfaces of different levels (that is, planes which are parallel, with different
constants D) fit together as described by Equation (31).

Remark 6.13. The important point in this is the following: The plane P is,
by itself, simply a subset of points, a two-dimensional subspace of R3. However,
Equation (32) gives us two very different ways of viewing P : via the map T or the
map S.

Summarizing, P is the image of R2 via the map T . That is, the map T parametrizes
P ; thus via this map P becomes the parametrized plane Lp(s, t) = sv + tw + p.

On the other hand, via the map S, P is the preimage (inverse image) of a constant
value −D. Thus it is is seen to be a level surface of the map (of level −D). Thus it
is only one of a family of parallel planes, of different levels.

This also gives us insight as to the meaning of the diagram: it says something about
the object (in this case the plane P ) in the middle, from two different perspectives,
given by the two maps.

Again, this just reflects the difference between our two ways of understanding a
plane, as a parametrized plane, see Equation (29), or as the solution set of its general
equation. And this latter is, geometrically, a plane which passes through a point and
has a certain normal vector, n = (A,B,C).

This is the simplest case, of a line in the plane or a plane in space. The general
situation comes from these fundamental results of Linear Algebra:

Theorem 6.26. Given finite-dimensional vector spaces V,W let T : V → W be a
linear transformation. Then:
i) the null space N (T ) is a vector subspace of V ;
ii) the image Im(T ) is also; and
(iii) dim(N (T )) + dim( Im(T )) = dim(V ).

Exercise 6.15. Prove (i), (ii)! See Exercise 6.6.

Corollary 6.27. If T above is surjective, then dim(N (T )) = dim(V )− dim(W ).

Before we describe the proof, we write it as a diagram, of linear transformations
on vector spaces:

K
I−−−→ V

T−−−→ W
Here the first map I is an injection I(v) = v, which just means that it is a 1 − 1

function (just the identity map in this case). Its image is the subspace Im(I) = K
which is the kernel of T , and the image of T is W . That is, the map T is onto.

For the previous example, the map I represents the plane K as a parametrized
subspace, while the map T gives its general equation.

In Algebra, a diagram of maps where the image of one map is the kernel of the
following map is called an exact sequence. In fact, the above diagram of vector spaces
extends to

{0} I−−−→ K
T−−−→ V

S−−−→ W
π−−−→ {0}
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where I is the injection and π is the projection π(v) = 0. This extended diagram is
also exact: exactness of the first part

{0} I−−−→ K
T−−−→ V

says that I is injective (1 − 1 to its image) since the kernel of T is then {0}, while
exactness of the second part

V
S−−−→ W

π−−−→ {0}

tells us that the map S is onto (surjective) as the kernel of π is all of W , which by
exactness is the image of S.

Back to the proof of the theorem, part (iii) can be proved by writing the map as
a matrix and solving the system of linear equations.

For example when m = 3 and n = 2, we have the following.
Given a matrix

M =

[
A B C
D E F

]
we have the matrix equation

Mv = w

where q = w is fixed, and M is fixed, and by the solution set of this equation we
mean the collection of all v which satisfy this equation. Writing w = (s, t) we have

[
A B C
D E F

]xy
z

 =

[
s
t

]
. (33)

The multiplication v 7→ Mv defines a linear transformation T : R3 → R2. Note
that Im(T ) is equal to the column space of M , the subspace of R3 generated by the
columns of the matrix. This is simply because for a standard column basis vector ek,
Mek gives the kth column of M .

Note that the matrix equation (33) is equivalent to the “system of two linear
equations in three unknowns”:{

Ax+By + Cz = s

Dx+ Ey + Fz = t

This system has full rank iff the rows are linearly independent, iff the dimension of
the image Im(T ) is the maximum possible, in this case 2.

From Linear Algebra we can find the solution set explicitly by row reduction.

Example 14. For a concrete example, after row reduction we may have the matrix
equation [

1 1 0
0 0 2

]xy
z

 =

[
s
t

]
. (34)
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which gives the system {
x+ y = s

2z = t

and we are free to choose y (for this reason known as a “free variable”) but then no
longer free to choose x or z as these are determined, since x = −y + s and z = t/2.

Thus we have for a solution

(x, y, z) = (−y + s, y, t/2) = (s, 0, t/2) + y(−1, 1, 0) = p + yv = l(y)

which is a parametrized line passing through the point p in the direction of v.
If we change s, t we get lines parallel to this one. In particular, if p = (0, 0) then

the solution set is the parametric line l(y) = yv, and this is the kernel of the map T ,
of dimension 1.

In conclusion, the dimension of the solution set is the number of free variables, so
in this case of full rank this is, by Cor. 6.27, 3− 2 = 1, indeed a line.

Fixing the constants in the system to be s = 1, t = 4, the parametric line has the
matrix form xy

z

 = y

−1
1
0

+

1
0
2

 . (35)

The composition of the two maps is

[
y
]
7→
[
1 1 0
0 0 2

](
y

−1
1
0

+

1
0
2

)

= y

([
1 1 0
0 0 2

]−1
1
0

)+

([
1 1 0
0 0 2

]1
0
2

)

=

[
0
0

]
+

[
1
4

]
=

[
1
4

]
(36)

which is correct, since the every point on the parametric line is in the solution set of
the system.

The geometrical way to think of this is that each of the equations in the system
gives a plane, having as normal vector the corrsponding row of the matrix, so the
solutions for the pair of equations is the intersection of two planes which is a line,
which is perpendicular to both row vectors. The full rank condition means that these
planes are not parallel, since their normal vectors are the rows of M , which are linearly
independent.

6.19. The Inverse and Implicit Function Theorems. What we will see next
is how this same point of view applies for the much more general situation of a
differentiable, but nonlinear, map.

We know that given F : Rm → Rn continuously differentiable, the derivative ma-
trix DF |p well–approximates the function at the point p. That means that certain
properties of F near p should be reflected in the linear map DF |p and vice-versa.
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Important examples are given by these two theorems, which are closely related.
Indeed one can choose to prove either one first, then deducing the other from that.

The Inverse Function Theorem states that F : Rm → Rm is invertible near p iff
the matrix DF |p is invertible, which is true iff det(DF |p) 6= 0. First we need:

Definition 6.16. F : Rm → Rn is continuously differentiable (of class C1) iff the
derivative DF at each point p exists and the matrix DFp is a continuous function of
p).

Given an open set U ⊆ Rm, a function F : U → V = F (U) is invertible iff there

exists F̃ defined on V such that F̃ ◦ F is the identity on U and F ◦ F̃ is the identity
on V .

A parametrized submanifold M ⊆ Rm of dimension d < m is the following: there
exists U ⊆ Rd and Φ : U → Rd such that Φ is C1, M is the image Φ(U), and such
that at each point of U ,DΦ is injective to a linear subspace of Rm of dimension d.

Example 15. A C1 curve γ in Rm is a parametrized submanifold of Rm of dimension
one. A parametrized surface in Rm is a C1 function S from an open subset U ⊆ R2 to
its image S ⊆ Rm such that the derivative matrix DS|p is injective for every p ∈ U .

Examples are given by cylindrical and spherical coordinates, for a cylinder and
sphere respectively:

Cylindrical coordinates on R3 are given by the map α : R3 → R3 with α(r, θ, z) =
(x, y, z) where

x = r cos(θ)

y = r sin(θ)

z = z

(37)

The cylinder of radius a and height c is the image by α of the subset r = a, θ ∈
[0, 2π), z ∈ [0, c]. Defining the map S on [0, 2π)× [0, c] by S(θ, z) = (a cos θ, a sin θ, z)
gives the cylinder as a parametrized surface.

Exercise 6.16. Check that the derivative matrix is:

Dα =

xr xθ xz
yr yθ yz
zr zθ zz

 =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

 (38)

Calculate the determinate of this matrix.

Spherical coordinates on R3 are given by the map β : R3 → R3 with S̃(ρ, θ, ϕ) =
(x, y, z) where r = ρ sin(ϕ) and so

x = r cos(θ) = ρ sin(ϕ) cos(θ)

y = r sin(θ) = ρ sin(ϕ) sin(θ)

z = ρ sin(ϕ)

(39)

The sphere of radius a is the image by α of the subset ρ = a, θ ∈ [0, 2π), ϕ ∈ [0, π].

Defining the map S on [0, 2π) × [0, π] by S̃(θ, ϕ) = (a, θ, ϕ) gives the sphere as a
parametrized surface.

Exercise 6.17. Calculate the derivative matrix and its determinant.
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Theorem 6.28. (Inverse Function Theorem) Let F : Rm → Rm be C1. Suppose the
matrix DFp is invertible. Then there exists an open set U containing p such that F
is C1 and invertibl e on U .

Proof. See [Mar74], p. 206 and p. 230 or (for a stronger statement, with estimates)
[HH15] p. 264 ff. �

Remark 6.14. Note that by the Chain Rule, we then know that for all points x ∈ U ,

with y = F (x), F̃ ◦F (x) = x so I = D(F ◦ F̃ )(x) = (DF )F̃ (x)DFx whence the inverse

of the matrix DFx is (DFx)−1 = DF̃y.

The Implicit Function Theorem states that for a C2 function F : Rm → Rn with
m ≥ n, then if the derivative matrix at a point p is surjective (onto; of full rank)
then the inverse image set F−1(q) for F (p) = q behaves like the inverse image of a
point by the matrix: it is a submanifold of dimension m− n. For the linear (matrix)
case see Cor. 6.27.

A submanifold of dimension 1 is a parametrized curve; of dimension 2 is a parametrized
surface. Note that the case m = n says the following: the inverse image of a point
F−1(q) is a manifold of dimension m−n = 0, in other words a single point. Thus F is
an invertible function, which is just the statement of the Inverse Function Theorem!

In the case n = 1, the Implicit Function Theorem moreover gives conditions when
given an equation

F (x1, . . . , xn) = 0

we can solve for one of the variables, and use the rest as our parameters.

Example 16. For the simplest example, F : R2 → R with F (x, y) = x2 + y2, the curve
of level 1 is the unit circle, the solutions of the equation (i.e. all pairs (x, y) which
satisfy the equation)

x2 + y2 = 1.

Solving for y gives y = ±
√

1− x2. See Exercise 6.7.

Theorem 6.29. (Implicit Function Theorem for Rm) Let F : Rm → Rn be C1, with
m ≥ n. Suppose the matrix DFp is surjective. Then for q = F (p), the set F−1(q) is
a submanifold of Rm of dimension m − n. That is, for p ∈ F−1(q), there exists an
open subset U ⊆ Rm−n and H : U → Rm C1 such that F ◦G(p) = q for all p ∈ U .

Proof. See [War71] Theorem 1.38, p. 31. �

For example, if F : R3 → R, then the level surface F−1(q) is a parametrized surface:
its parametrization is given near the point p by the map H.

Remark 6.15. Similarly to the linear case as explained in Remark 6.13, in the smooth
case, the same set (an embedded manifold) is viewed in two different ways, by means
the two maps, one where it is the image, one the domain. The first parametrizes
the manifold, the second places it as a level curve, surface or manifold of a map on
the higher-dimensional space, and thus shows how it is but one of a family of such
“parallel” manifolds. This is a special mathematical object known as a foliation.
Thus the level surfaces of a function F : R3 → R foliate R3, and in the special case
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of F linear, F is given by the inner product with a normal vector, and the foliation
consists of all those parallel planes.

Thus a parametrized m-dimensional manifold in Rm is a map α : U → M ⊂ Rm

where U is a connected open subset of Rm, α is differentiable and invertible with
image M . (For the definition of connectedness see Def. ??).

The higher dimensional version of level curves and surfaces can be stated as follows.
Given f : Rm+1 → R then if f is differentiable and surjective and Df is everywhere
onto (one says Df is of maximal rank) then for any point q ∈ R the set M = f−1(q)
is locally a parametrized m-dimensional manifold. Moreover this holds when that
condition holds at some point (not necessarily all points): for any y = f(p) such that
Df |p is of maximal rank; q is then called a regular value.

Here is a statement of the

Proposition 6.30. (Implicit Function Theorem for differentiable manifolds) (Lem-
mas 1,2 of Chapter 2 of [MW97]) If f : M → N is a smooth map between manifolds
of dimension m ≥ n, and if q ∈ N is a regular value, such that it is a value of the
map (i.e. f−1(q) is nonempty) then the set f−1(q) is a smooth manifold of dimension
m−n. The null space of Dfp : TMp → TNq is the tangent space of this submanifold,
and its orthogonal complement is mapped onto TNq.

This says that we have a diagram

K
α−−−→ M

f−−−→ N

where the first map is injective and the second is surjective. When one considers the
derivative maps then one gets the exact diagram for the linear case of Example 14;
here α(x) = p. See Cor. 6.27:

{0} −−−→ K
Dα|x−−−→ M

Dfp−−−→ N −−−→ {0}
There are many versions of these theorems. For an introduction see Lemmas 1,2

of Chapter 2 of [MW97] and for surfaces Proposition 2 of Chapter 2, p. 59 of [DC16].
For a simple and beautiful general statement see Theorem 1.39 of [War71]. More on
the Implicit and related Inverse Function Theorems are given e.g. in §7.2-4 of [Mar74],
and in Chapter 2.10 and on p. 729 of [HH15].

Theorem 6.29 raises implicitly the question of, for a given F : Rm → Rn, which
of the variables x1, . . . ,xm can be used to parametrize the submanifold. The basic
principle is that the answer is the same as for the linear algebra; that is, we look at
the matrix DFp. For a modification of Example 14 above,[

1 2 0
0 0 3

]xy
z

 =

[
1
2

]
= q (40)

we have 3− 2 = 1 for the dimension of the solution set K = F−1(q), and could take
x or y as the free variable, but not z. The geometrical reason is that the solution set
is l(y) = p + yv where p = (1, 0, 1) and v = (−1, 1, 0). This is a line in the plane
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z = 0 so altough the solution set is one-dimensional, it can’t be parametrized by z,
but only (in terms of the standard coordinates) by x or y.

Proposition 6.31. If the (2× 3) matrix

A =

[
a b c
d e f

]
(41)

has rank 2, then the solution set has dimension 3−2 = 1; and moreover if the (2×2)
submatrix [

b c
e f

]
is invertible, then we can take x as the free variable (the parameter), and similarly
for the other (2× 2) submatrices.

A nice simpler version of the Implicit Function Theorem, with examples like this,
is given on pp. 239-240 of Vol. II of [Gui02]. See also my handwritten Notas de Aula.
For a general statement like this example, see Hubbard’s book Thm. 2.10.14.

6.20. Higher derivatives. So far, since §6.9, we have been studying the derivative
of a map F : Rm → Rn, using the matrix of partial derivatives. This gives the best
linear (or affine) approximation to the map, which is also called the best first-order
approximation. Thus we have the tangent line to the graph of f : R→ R, the tangent
line to a curve γ : R→ Rn, and the tangent plane to the graph of F : F2 → R.

For the best second-order approximation we add a term involving the second-order
partial derivatives and so on. This gets more and more complicated as we describe
next.

The map F is called C0 iff it is continuous, and Ck iff the kth derivative exists and
is continuous. For this we need to define higher derivatives.

Writing L(V,W ) for the collection of linear transformations from V to W , then
this is a Banach space with the operator norm. Now for F : V → W , the derivative
DF is, at each point x, a linear map from V to W , thus an element of the vector
space L(V,W ). In other words, given F : V → W , then DF is a map (nonlinear in
general) from V to L(V,W ). Since DF : V → L(V,W ), then the second derivative
at the point x must be a linear map D2Fx : V → L(V,W ). This means that D2Fx is
in the collection of linear maps from V to L(V,W ), in other words it is a nonlinear
map D2F : V → L(V, L(V,W )).

Since we can represent the derivative at a point by a matrix, we see that these are
increasing in size: If V = Rm and W = Rn, then DFx is (n×m), D2Fx is (n× (nm)),
D3Fx is (n× (n2m)); so DkFx is a matrix with nkm entries, getting more and more
complicated quickly.

The only exception is when n = 1, for a curve γ : [a, b] → Rm: in this case (as
noted above) then γ′ is also curve in Rm, thus so is γ′′ = (γ′)′ etcetera. By contrast
for a function F : Rn → R then the gradient ∇F : Rn → Rn is a vector field,
so DF : Rn → Rn2

, and then the second derivative is no longer a vector field as
D2F : Rn → Rn ×Rn2 ∼ Rn3

, and so on, with the matrices getting larger and larger.
A domain is an open subset of Rn. A vector field on a domain U is simply a such

a map defined only on the subset U . The vector field is termed Ck, for k ≥ 0, iff the
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map has those properties (again, C0 means continuous, and Ck that DkF exists and
is continuous, so D : Ck+1 → Ck).

6.21. Higher order partials. Given F : R2 → R then Fx = ∂F
∂x

is a function defined
on the plane. Then setting G(x, y) = Fx(x, y) we take its partial derivatives. We write
∂
∂y
G in these equivalent ways:

Gy =
∂

∂y
(G) =

∂

∂y
(Fx) =

∂Fx
∂y

= (Fx)y = Fyx.

(This notation can be confusing since Fyx = (Fx)y!)
Now for G = Fx then G : R2 → R. This has as its gradient

∇G = (Gx, Gy) = (Fxx, Fyx).

Similarly for G̃ = Fy then its gradient is

∇G̃ = (G̃x, G̃y) = (Fxy, Fyy).

When a function L : R2 → R2 then writing it in components L = (L1, L2) or in
matrix form

[L] =

[
L1

L2

]
we know its derivative matrix is

[DL] =

[
∇L1

∇L2

]
=

[
(L1)x (L1)y
( L2)x (L2)y

]
So for DF : R2 → R2 we have

D2F = D(DF ) =

[
(Fx)x (Fx)y
(Fy)x (Fy)y

]
=

[
Fxx Fyx
Fxy Fyy

]
.

Now in fact it is a bit simpler than this because of the following:

Proposition 6.32. For F : R2 → R then Fxy = Fyx.

This important fact is often called the equality of mixed partials. This can be
proved using just derivatives, but we prefer the “Fubini’s Theorem argument” given
below when we treat double integration. See Lemma 7.1.

Corollary 6.33. The above matrix D2F is symmetric: it has the form

[
a b
b c

]
.

In the case of F : Rn → R, all of this makes sense: D2F is a a symmetric (n× n)
matrix. For F : Rn → R the matrix D2F is sometimes called the Hessian matrix. Its
determinant is called the Hessian determinant or simply the Hessian. In Guidorizzi
Vol 2 §16.3 this is written H(x, y). See [Gui02], and §3.6 of [HH15].

The meaning of this symmetric matrix becomes clear when discussing Taylor poly-
nomials of order 2, and finding maximums and minimums.
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6.22. Finding maximums and minimums. We note that:
(1) Given F : R2 → R, if a minimum or maximum value occurs at p = (x0, y0) then
the tangent plane must be horizontal. Equivalently, if F is differentiable, then the
partial derivatives Fx, Fy at p are 0.

Definition 6.17. In this case, p is a critical point (ponto critico) of F . Equivalently,
∇F (p) = 0.

(2) If it is a maximum then it must be a maximum for the function restricted to the
line x = x0. We can then consider the second partials and use the second derivative
test from Calculus 1: If Fxx > 0 then Fx is increasing, so it is a minimum along that
line. This does not necessarily mean it is a minimum off the line.

However there is a fuller method: see Guidorizzi Vol 2 §16.3 [Gui02], and §3.6 of
[HH15].

Theorem 6.34. Let F : R2 → R be in C2. We have:
1. If F has a local max or min at p then the tangent plane there is horizontal.

Equivalently, Fx = Fy = 0 at p.
2. The second partials tell us the following:
(i) If Fxx > 0 at p and the Hessian H(p) > 0 then p is a local minimum.
(i) If Fxx < 0 at p and the Hessian H(p) > 0 then p is a local maximum.
(iii) if H(p) < 0 then p is a saddle point. Thus it is neither max nor min.
(iv) If H(p) = 0 then we cannot say from this test and have to look more closely.

Exercise 6.18. Compare the above tests for the functions we have encountered, see
Figs. 3, 2: F (x, y) = x2 + y2, F (x, y) = x2 − y2, F (x, y) = xy.

The best way to understand this theorem is via the Taylor polynomials of order
two, in two variables. First we examine the case of a single variable, and then return
to the above.

6.23. The Taylor polynomial and Taylor series. Taylor series in one dimen-
sion.

Let us recall that a polynomial of degree n is

p(x) = a0 + a1x+ · · ·+ akx
k + · · ·+ anx

n.

Here k is a nonnegtive integer and ak ∈ R. So since x0 = 1 for any x ∈ R, this is
equal to

p(x) = a0x
0 + a1x

1 + · · ·+ anx
n =

n∑
k=0

akx
k.

(Here we use the definition 0! = 1.) Thus a polynomial of degree 0 is a constant
function p0(x) = a0, of degree one is an affine function, p1(x) = a0 + a1x, of degree
two is quadratic and so on.

Polynomials are great to work with as it is easy to compute their derivatives,
integrals and to draw their graphs, and to compute their values at a point you only
need to add and multiply. Also, as we describe in this section, more complicated
functions (for example, the transcendental functions sin, cos, exp, log, tan ... and the
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rational functions (ratios of polynomials, such as 1/(1−x)) can often be approximated
quite well by polynomials.

Given a map f : R→ R, the terminology “kth-order approximation” to f at a point
x ∈ R comes from approximating the function with a certain polynomial of degree
k. The polynomial of degree k which best fits the map near that point is termed
“the best kth-order approximation at x ∈ R”. This is is called the Taylor polynomial
of order k, and is the polynomial which has all the same derivatives at that point,
up to order k, as f . The Taylor series is a kind of “polynomial of infinite order”
which can, in the nicest cases (for example, f = sin, cos, exp) reproduce it exactly as
a convergent infinite series.

Thus the best 0th-order approximation of f at p ∈ R is the constant map with
constant equal to the value of f at that point: the map p0(x) = f(p) for all x. The
ε − δ definition of continuity guarantees that this approximates the function fairly
well if it is continuous at that point. If f is differentiable, we can do much better:
adding on the linear map given by the derivative f ′(p) gives the best first-order
approximation. This is the affine map

p1(x) = f(p) + f ′(p)(x− p)

whose graph is the tangent line to the graph of f at that point.
For a function f : R→ R in C∞, meaning it has derivatives of all orders, we define

a sequence of polynomials pn(x), each of degree n, which approximate f better and
better as n→∞. For this we choose a point about which we make the approximation,
and call this the Taylor polynomial about x0. Here for simplicity we work with x0 =
0, and remark that the Taylor polynomials in this case are also called Maclaurin
polynomials.

We write pn for the nth Taylor polynomial (about 0). We also say this is the best
nth-order approximation to f .

In the nicest cases, pn actually converges to f as n→∞. This is true, for example,
for f(x) = sin(x), cos(x), ex.

The Taylor series is the infinite series which can be thought of as an infinite poly-
nomial. For example, the nth Taylor polynomial for ex is

1 + x+ x2 + x3/3! + · · ·+ xn/n!

and the Taylor series is

ex = 1 + x+ x2 + x3/3! + · · ·+ xn/n! + · · · =
∞∑
k=0

xk

k!
(42)

For f(x) = sin x we have

sin(x) = x− x3/3! + x5/5!− . . .
with only the odd powers and

cos(x) = 1− x2/2! + x4/4!− . . .

with only the even powers, and both with alternating signs.
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Figure 10. cos(x) and its Taylor polynomials pn for n = 0, 2, 4, 10.

That the graphs of the polynomials pn do approach the function can be seen in
Figs. 10, 11. The 0th -order approximation is a horizontal line with that value, the
1st-order approximation is the tangent line to the graph at that point. The 2nd-order
approximation is the parabola which best fits the curve, and so on. In Fig. 10, 11 we
show the functions f = cos and sin together with some of the Taylor polynomials pn.
Note how close the fit becomes as n increases!
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Figure 11. sin(x) and its Taylor polynomials pn for n = 1, 3, 5, 13.

Exercise 6.19. Check that for ex the derivative of pn+1 is pn, and that for sin(x)
the derivative of pn+1 is pn for cos(x). This agrees with (ex)′ = ex and (sin)′ =
cos, (cos)′ = − sin!!

The definition of the Taylor series for a differentiable function (about 0) is

∞∑
k=0

akx
k

where ak = f (k)(0)/k! (here f (k)(0) is the kth derivative of f at 0)). (Note that we
write f (0) for f itself).

Thus the Taylor polynomial of degree n is

pn(x) =
n∑
k=0

f (k)(0)

k!
xk.

Exercise 6.20. (1) Check that this general formula does give the above Taylor series
for ex, sin(x) and cos(x).
(2) Show that the polynomial pn has the same derivatives as f at x = 0, of order
0, 1, . . . , n. That is, pn(0) = f(0), p′n(0) = f ′(0), p′′n(0) = f ′′(0), and so on.

To define the Taylor polynomials about x0 we simply replace x by (x− x0) and the
derivatives at 0 by those at x0. Thus the Taylor polynomial of degree n about x0 is

pn(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k.

The Taylor polynomial in higher dimensions.
We can now understand the role of the Hessian matrix and Hessian determinant in

understanding maxes and mins much better, by understanding the Taylor polynomial
of a function of 2 variables.

Consider F : R2 → R. Then the best 0th -order approximation about 0 = (0, 0)
is the constant function with the value f(0). The the 1st-order approximation is the
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tangent plane to the graph at 0. The best 2nd-order approximation may for example
be a paraboloid but could instead be a parabolic hyperboloid, Fig. 2. This depends
on the partial derivatives of order 2 at the point.

The Taylor polynomials pn will be functions of two variables (x, y), thus pn : R2 →
R. Just as for one dimension, a polynomial of degree n is a linear combination of
basic terms of degree k for k = 0 (a constant) up to k = n. Each basic term of degree
k will be of the form xiyj such that (i+ j) = k. Thus for example the degree of x2y3

is 2 + 3 = 5, and the basic polynomials of degree 1 are p(x, y) = x, p(x, y) = y and of
order 2 are p(x, y) = x2, p(x, y) = y2 and p(x, y) = xy.

Taking a linear combination of terms of degree ≤ n gives a polynomial of degree
n, for example

p(x, y) = 1 + x+ 3y + x2 + y2 + 5xy

has degree 2.
The only polynomials in two variables of degree 0 are the constant functions,

p(x, y) = c. Those of degree one have the form

p(x, y) = c+ ax+ by.

Thus the graph is a plane. For the case of the Taylor polynomial, this will be the
tangent plane at that point.

Those with only terms of degrre two have a special name:

Definition 6.18. A quadratic form on R2 is a degree-two polynomial with no constant
or linear terms, hence of the form

Q(x, y) = ax2 + by2 + cxy.

That is, it is a linear combination of all the possible terms of degree 2.
Consider for example p(x) = x2 + y2. Its graph is a paraboloid, while the graph of

q(x) = xy is a hyperbolic paraboloid. See Figs. 3, 2.
Both of these polynomials have degree 2. Both have a horizontal tangent plane at

0. The first has a minimum there while the second is a saddle point hence neither max
nor min. For q(x, y) = xy, on the line x = y we have q(x, y) = xy = x2, an upward
parabola, so a minimum along the line x = y. When x = −y we have q(x, y) = −x2,
so a maximum. Thus (0, 0) can be neither max nor min. This is the essence of a
saddle point. Furthermore the level curves are hyperbolas; see Fig. 3.

In fact the terms of order 2 can be understood with the help of the Hessian, a key
point being that this is a symmetric matrix.

Proposition 6.35. Given a quadratic form Q, there is a symmetric (2 × 2) matrix

A such that for v =

[
x
y

]
, then

Q(v) = vtAv.

That is,

Q(v) =
[
x y

]
A

[
x
y

]
.
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Proof. In fact, for A =

[
a c/2
c/2 b

]
we have

[
x y

] [ a c/2
c/2 b

] [
x
y

]
=
[
ax2 + by2 + cxy

]
= Q(x, y).

�

Exercise 6.21. Check that when A =

[
0 1
1 0

]
then Q(x, y) = 2xy. What do we get

for A =

[
1 0
0 1

]
? For

[
1 0
0 −1

]
?

To graph a quadratic form we have the following:

Theorem 6.36. A quadratic form

Q(x, y) = ax2 + by2 + cxy =
[
x y

]
A

[
x
y

]
has either
(i) a local min or max at 0, if detA > 0;
(ii) a saddle point at 0, if detA < 0.

If detA = 0, we cannot tell from this test.

Proof. (Sketch) From Linear Algebra, a symmetric matrix A can be diagonalized:
there exists an orthogonal matrix U such that U−1AU = D where D is diagonal.
Now an orthogonal matrix is a rotation, a reflection, or a product of these. That does
not change whether 0 is a saddle point, max or min. Also, detD = detU−1AU = detA.
This proves that detA is the product of its eigenvalues, since the eigenvalues of A and
D are the same. The graph of the quadratic form defined by D has the two types
described, completing the proof. See the above examples. �

We use this to study the Taylor polynomial of order 2 of F : R2 → R. Write A for
the Hessian matrix. Then

A = D2F =

[
Fxx Fyx
Fxy Fyy

]
(43)

as explained above in (43); note that A is symmetric!
Then the Taylor polynomials about p = (x0, y0) are, for degree 0:

p0(x, y) = F (p)

For degree 1, writing h = (x− x0), k = (y − y0) then
p1(x, y) = F (p) + Fx(p)(x− x0) + Fy(p)(y − y0) = F (p) + Fx(p)h+ Fy(p)k

(this is the tangent plane);
For degree 2 we have

p2(x, y) = F (p) + Fx(p)h+ Fy(p)k +
1

2

[
h k

] [Fxx Fyx
Fxy Fyy

] [
h
k

]
= F (p) + Fx(p)h+ Fy(p)k +

1

2
(Fxxh

2 + 2Fxyhk + Fyyk
2)
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Thus

p2(x, y) = p1(x, y) +
[
h k

] D2F (p)

2

[
h
k

]
which reminds us of the formula for dimension 1. Note that the last term is a quadratic
form since the Hessian matrix D2F is symmetric.

Looking for maximum and minimum points, first we see if the tangent plane is
horizontal. Then the first-order term is 0 so the Taylor polynomial is simply

p2(x, y) = F (p) +
[
h k

] D2F (p)

2

[
h
k

]
= F (p) +Q(x, y)

where Q is a quadratic form.
As shown in Theorem 6.36, the sign of the determinant then tells us whether the

surface is a max or min, as for a paraboloid or elliptic paraboloid (like a paraboloid
but with an ellipse as crossection) or a saddle point, as for F (x, y) = xy, discussed
above.

For F : Rn → R with n ≥ 2 a similar formula can be given. The higher terms of
the Taylor series also have a nice expression when the derivatives DkF are viewed as
k-linear functions. For a clear treatment see [Mar74]. See also §3.6 of [HH15].

Remark 6.16. The Hessian (matrix) gives a local form for critical points, see the Morse
Lemma in §1.7 of [GP74], and §I.2 of [Mil16], with a proof in proof Lemma 2.2. See
also §7.6 of of [Mar74]. This is related to what we have seen about the Taylor series.

6.24. Lagrange Multipliers.

Theorem 6.37. Given an open set U ⊆ Rn and two C1 functions F,G : U → R, let
B be a level set for G, so B = {x ∈ U : G(x) = c}. Assume that for some point
p ∈ U , ∇Gp 6= 0. Then if F has a local maximum at p ∈ B, there exists some λ ∈ R
such that

∇Fp = λ∇Gp.

Proof. Since ∇Gp 6= 0, the linear transformation (the matrix with those entries) DGp

is surjective, which allows us to use the Implicit Function Theorem, Theorem 6.29.
So the level set B has a parametrization. Calling one of the coordinates t, we have
a curve γ(t) in B which passes through p at time 0, and such that given any chosen
vector v tangent to B, γ′(0) = v 6= 0.

Then G(γ(t)) = c so for all t, D(G ◦ γ)(t) = 0. By the Chain Rule this is

D(G ◦ γ)(t) = DGγ(t)Dγ(t) = ∇Gγ(t) · γ′(t).
In particular fo t = 0, ∇Gp · γ′(0) = 0.

On the other hand, F has a local maximum at p, so in particular, F ◦ γ(t) has a
local maximum at t = 0.

Therefore,
D(F ◦ γ)(0) = DFpDγ(0) = ∇Fp · γ′(0) = 0.

Since v = γ′(0) 6= 0 was any tangent vector to B, both ∇Fp and ∇Gp are orthog-
onal to any such v. Thus they must be multiples (think for example of a level curve,
or a level surface).

�
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Remark 6.17. Note that the derivatives are 0 for two completely different reasons:
that G ◦ γ is constant, and that F ◦ γ has a maximum.

Note that it is possible for λ to be 0, and also possible for ∇Fp to be 0. However for
the proof ∇Gp must be nonzero to be able to apply the Implicit Function Theorem.

7. Double and triple integrals (TO DO!)

7.1. Review of Riemann integration.

7.2. Double integrals and Fubini’s Theorem.

7.3. Equality of mixed partials. As a nice application of Fubini’s Theorem, we
now prove Proposition stated above. We like the following “Fubini’s Theorem argu-
ment”, partly because it leads in to Green’s Theorem of Calculus 3.

Lemma 7.1. If f : Rn → R is continuously differentable, then we can change the
order in taking two partial derivatives: e.g. for n = 2, then

∂

∂x

(
∂ϕ

∂y
f

)
=
∂ϕ

∂y

(
∂ϕ

∂x
f

)
.

Proof. Given two continuous functions ϕ, ϕ̃ : ⊗ → R on an open set Ω, then if for
every rectangle R ⊆ Ω we have∫ ∫

R

ϕ dx dy =

∫ ∫
R

ϕ̃ dx dy,

then we can conclude that ϕ = ϕ̃ on Ω. (Because, if they differ at a point, then one
is larger than the other on a small rectangle about that point, and the integrals there
are different, a contradiction).

We define ϕ(x, y) = ∂ϕ
∂x

(∂ϕ
∂y
f(x, y)) and ϕ̃ = ∂ϕ

∂y
(∂ϕ
∂x
f(x, y)). Our strategy of proof

will be to show that for any R = [a, b]× [c, d] we have the above equality of integrals,
and the result will then follow.

Fubini’s Theorem tells us that∫ ∫
R

ϕ(x, y) dx dy =

∫ d

c

(∫ b

a

ϕ(x, y) dx

)
dy =

∫ d

c

(∫ b

a

∂

∂x

(
∂

∂y
f(x, y)

)
dx

)
dy

Now for any differentiable function G(x, y) we have by the Fundamental Theorem

of Calculus that for any fixed y,
∫ b
a

∂
∂x
G(x, y)dx = G(a, y)−G(b, y), so∫ b

a

∂

∂x

(
∂f

∂y

)
(x, y)dx =

∂f

∂y
(b, y)− ∂f

∂y
(a, y)

so the iterated integral equals∫ d

c

∂

∂y
f(b, y)dy −

∫ d

c

∂

∂y
f(a, y)dy =(

f(b, d)− f(b, c)

)
−
(
f(a, d)− f(a, c)

)
.
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Again, by Fubini’s Theorem:∫ ∫
R

ϕ̃(x, y) dx dy =

∫ b

a

∫ d

c

ϕ̃(x, y) dy dx =

∫ b

a

(∫ d

c

∂

∂y

(
∂ϕ

∂x
f(x, y)

)
dy

)
dx

This time, ∫ d

c

∂

∂y

(
∂

∂x
f(x, y)

)
dy =

∂f

∂x
(x, d)− ∂f

∂x
(x, c)

so the iterated integral equals∫ b

a

∂

∂x
f(x, d)dx−

∫ b

a

∂

∂x
f(x, c)dx =(

f(b, d)− f(a, d)

)
−
(
f(b, c)− f(a, c)

)
which equals the previous expression, finishing the proof. �

7.4. Change of variables and the determinant of the derivative matrix.
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