
Graphics Processing Unit Audio Signals Processing in Pure Data and

PdCUDA an Implementation with the CUDA Runtime API

Charles Z. Henry
Information and Telecommunications Technology Center (ITTC), University of Kansas

2335 Irving Hill Rd
Lawrence, KS USA 66045

chenry@ittc.ku.edu

Abstract

The design of graphics processing unit (GPU) audio
signals processing extensions to Pure Data (Pd) is
discussed with attention to future growth in GPU
computing and the complexity of programming a general
solution. An implementation named PdCUDA is
presented for use of GPU general programming
capability for audio signals processing with Pd and the
CUDA runtime application programmers interface (API).

Keywords

Pd CUDA GPU audio computing

1 Introduction

Pd users designing applications for high throughput
or large numbers of channels may use general purpose
computing on graphics processing unit (GPGPU)
programming to offload some functions to a GPU.
Indeed, there is significant data parallelism present in
Pd's digital signals processing (DSP) functions that is
appropriate to be directly translated to usage on
GPU's. The potential exists for creating high-
performance computing platforms for audio signals
processing with Pd.

However, GPGPU platforms may not be appropriate
or even useful for all applications. For example,
digital filters may be programmed efficiently with
serial programming of a recursion equation, while
equivalent functions on GPU's may have no benefit.
The purpose of designing a GPGPU platform for
audio signals processing is not to accelerate every
application possible, but to selectively apply the
technology where it may have the greatest benefit. It
is hoped that the development of Pd GPU extensions
will spur development of useful applications that are
otherwise prohibitively expensive.

An intelligent algorithm which offloads functions to
additional processors of different types is highly
desirable. However, the difficulty in handling the
multitude of possible applications to support makes
such a solution infeasible. Further problems
stemming from multiprocessor concurrency are

discussed in Puckett [1]. Synchronization
between concurrent processes takes place in
GPU programs where functions are launched
asynchronously. Since asynchronous execution
may be necessary to take full advantage of GPU
computation, this issue is unavoidable in the
context of Pd GPU extensions.

The approach taken with PdCUDA is to
create a set of tools which exposes the costs of
GPU programming and makes it possible for Pd
programmers to write patches that are tuned for
performance of the given application. At the
same time, it is desired that PdCUDA manage
systematic performance considerations where
possible.

1.1 GPU Computing

At the time of this paper, three of the top five
and 19 of the top 500 supercomputers in the
world make use of GPU's [2]. The rise in
widespread usage is accompanied by increases
in the performance of individual devices. This
brings high-performance computing out of the
cold room into situations where desktop
computers, laptops, or even smaller mobile
devices can take benefit.

GPU's make use of highly vectorized
arithmetic and logical functions organized into
blocks of threads. Hardware developed for
implementing pixel and vertex shaders for
graphics rendering is used with a given GPGPU
API to perform floating point calculations.

Only NVIDIA and AMD/ATI currently
compete for the GPU market with freely
available GPGPU API's. However, it is
conceivable that other companies such as Intel
or IBM might later develop devices with similar
general computing capability. NVIDIA has
developed its CUDA1 API for the hardware it
designs, while AMD/ATI has adopted the
OpenCL computing standard.

1 Compute Unified Device Architecture

The choice to develop CUDA , rather than OpenCL,
extensions to Pd comes down to the differences in
development platform. CUDA is narrowly
constructed to apply to GPGPU programming while
OpenCL can be applied to run programs on other
platforms as well. With added flexibility, OpenCL
also becomes more complex. Secondly, hardware
from NVIDIA is compatible with both CUDA and
OpenCL. This presents the opportunity for each
corresponding set of GPU extensions to be
programmed and run on the same hardware.
Therefore, CUDA presents the best choice for creating
a reference design upon which OpenCL extensions
may be based, with one-to-one comparisons.

The biggest concern with performance of CUDA
programs is the costs of transferring data between host
and device [3]. Although bandwidth between host
and device is typically high, on the order of GB/s,
there is always an associated latency per memory
transfer on the order of microseconds. Time not spent
performing computations is an overhead cost to the
program execution. Where possible, data transfer is to
be avoided or run concurrently with threads
performing computations.

There are further issues with memory access on
GPU's having to do with hierarchies of memory
residing all on the same device. There are important
considerations in using the right type of memory for
each type of function to perform, and reducing
transfer of memory between memory types. For
example, constant and texture caches may be used to
great effect in running large number of oscillators or
table reads.

1.2 Pure Data

Pd makes use of a type of shared memory model for
run-time DSP execution. Shared memory models in
general apply to access control, memory allocation, and
addressing in applications having multiple threads.

Specifically with Pd, memory spaces are shared
among DSP routines for objects in a canvas and across
non-reblocking canvas boundaries. In Pd, signals are
allocated for each graphical objects' inlets and outlets.
Signals are “borrowed” from one another, sharing the
same memory space, according to the DSP graph sorting
algorithm.

Data transfer between arrays allocated in host memory
occurs only in situations where a subcanvas reblocks or
resamples signals from its parent canvas. Buffers are
created to store signals in the intermediate state, and the
resulting arrays from resampling or reblocking are
copied into newly allocated signals.

The conditions for handling signal allocation, sharing,
and data transfer is determined by a collection of
variables, which for the purposes of this article will be

called the DSP state. A dspcontext structure is
created for each canvas when the DSP graph is
being built. It is important to differentiate that
canvas/subcanvas relations with block~ and
switch~ objects make up the user interface to
control DSP state while the dspcontext directs the
behavior of signals' memory addressing during the
DSP graph generation.

The DSP state is composed of the dspcontext
data structure elements dc_toplevel,
dc_reblock, and sc_switched. There are 6
possible states, since a toplevel dspcontext
cannot also be reblocked. The code which
parses the logic on DSP state is contained in
d_ugen.c, most notably the routines
ugen_done_graph and ugen_doit.

2 Design of GPU Extensions

2.1 Design Goals

Produce clean easily maintained code. A
forward look at the practical aspects of GPU
computing is appropriate. An implementation
must track changes in both the Pure Data and
GPU computing API's. With a growing list of
architectures and devices to support, the code
itself must be laid out in the most logical and
consistent manner for developers. A stable
implementation is one that abstracts the GPU
computing functions so that externals developers
will not have to re-write their code with respect to
changes to the GPU computing API or the Pd API.

Provide an unambiguous user interface. There
are clear pitfalls to users for a mixture of host and
GPU computing externals, namely performance
issues involving non-uniform memory access.
While a given implementation expects to handle
much of the memory considerations “behind the
scenes,” users will need to create efficient patches
by knowing at which stages their programs incur
latency or other computing costs.

Make improvements to the Pd DSP scheduler
specific to the GPU computing platform in use,
for example, differentiating between GPU's
operating in pinned host memory found on many
low-power laptops and those with external
memory found in most desktop graphics cards.

Make GPU routines profile-able. Measurement
of the device performance is important for
specifying an appropriate platform for a given
application. This is also a benefit to users when
designing an algorithm by comparing actual
throughput against theoretical and practical
performance maximums.

Make DSP run-time performance efficient.
GPU computing functions can be written to be

optimized for the types of data used by Pd, such as
specific functions for operating on arrays with lengths in
powers of two. The implementation should be written to
prefer specialization over generalization and present
developers with sets of functions commonly used in
programming Pd externals.

2.2 Usage Cases

Some considerations in designing GPU extensions for
Pd become evident by examining usage cases. Presented
are usage cases for single GPU functions scaling to serial
graph portions and to multiple data-independent
branches.

Fig. 1. Usage cases increasing in complexity. Dark
rectangles represent GPU based perform functions.

In the simplest case, the GPU perform routine must
transfer data into the GPU memory space, perform an
operation, and transfer data back. The overhead incurred
in performing multiple functions is two data transfer
operations per function. Pd externals can be written to
require no modifications to Pd itself as long as the
perform routine expects an argument with signals
allocated in the host memory space.

Supposing there were multiple GPU perform functions
to be performed serially, it is possible to maintain
common memory allocation, consistent with the way that
Pd handles signals. Then, the overhead with performing
the DSP routines in series is 2 data transfer operations,
independent of the number of operations performed in
series.

With multiple data-independent branches, the
ordering of the DSP chain becomes important. It is
possible to overlap data transfer and computation
which hides the additional latency posed by multiple
branches. The data transfer routines need to be added
to the DSP chain in a breadth-first fashion and run
asynchronously. Next, the GPU routines would be
added to the DSP chain depth-first per branch,in the
order of the branches' dependence on data transfer.
Additional synchronization between data transfer and
computation may be needed to reduce the cost of data
transfer. Great care has to be taken with optimizing
concurrency because such synchronizations pose a risk
to real-time behavior.

3 Implementation

The description of PdCUDA focuses on details
relevant to create a basic platform for externals
development. Altogether, there are 84 different
DSP perform routines to write in order to
duplicate the functionality of Pd Vanilla. Many of
these are further dependent on other Pd objects
such as arrays, which are not implemented in
PdCUDA at this time.

The signal data structure contains a pointer to
array s_vec and its length s_n. This same
information is what is necessary to allocate arrays
in GPU memory and perform operations on those
arrays. Signals are used interchangeably
regardless of which memory space they use.

Most importantly, PdCUDA does not modify or
duplicate the dspchain structure. CUDA specific
perform routines are scheduled in a way that
preserves the same data dependency relations
present in Pd.

3.1 Extending the DSP State

Additional information is needed to determine
signal handling when multiple memory spaces are
involved. Data transfer between the host and
device occurs whenever a dspcontext and its
parent dspcontext have different values of
dc_hascuda. New signals are allocated in GPU
memory when dc_hascuda is set, and where a
non-reblocked dspcontext and its parent
dspcontext have the same value of dc_hascuda,
signals are allowed to be borrowed from the
parent dspcontext.

The DSP state now must include dc_hascuda
and whether a dspcontext and its parent
dspcontext have the same value of dc_hascuda.
The total number of states becomes 20. This
maintains compatibility with Pd, with the original
6 possible values of DSP state being a subset of
the new DSP state values.

3.2 Separation Between Memory Spaces

The symbol “cuda_dsp” is introduced in
order to keep CUDA based routines separate
from their host counterparts. When
canvas_dodsp runs for a given cucanvas, it
finds all instances of objects from its gl_list
with the symbol “cuda_dsp” and adds their
ugens to the dspcontext.

An existing class may then be extended to
work with PdCUDA by adding an additional
method, instead of adding an entirely new class
for the same purpose. In this scheme, there is no
risk of mixture between memory spaces.

Fig. 2 Relevant portions of the Pd DSP sorting routines. Functions in dark rectangles are to be modified to
add logic for handling conditions dependent on DSP state. Functions in light ovals are specialized. It is
required to write a new instance of each specialized function for GPU computing with distinct names.

3.3 User Interface

User control over the application of CUDA routines
needs to be handled at the canvas level. This works
within expected user interfaces presented by Pd and
provides the user capability to control the coarseness
of organizing CUDA based patches. The symbol
“cucanvas” is introduced for creating root level
canvases. The canvas (glist) data structure is extended
by adding a gl_hascuda element. The user interface
also adds a subcanvas creation symbol “cu”.

It is possible to create subcanvases of any type
within canvases of another type. This is important for
creating abstractions that are handled in the same way
that Pd abstractions are commonly used.

3.4 Modifications to Pd Code

The data structures glist and dspcontext are added to
store the additional hascuda variable required for the
extension to DSP state. Next, the portions of code
dealing with DSP graph sorting and memory
allocation are affected in two different ways. Note
that vinlet and voutlet data structures each contain a
pointer to the canvas in which they reside. As long as
the functions in the canvas_dodsp call graph have
access to the canvas gl_hascuda or the dspcontext
dc_hascuda variables (and their parents), they can be
directed to handle signals correctly for the GPU.

There are also many functions that are do not have
access to any canvas, dspcontext, vinlet, or voutlet.
These functions are specialized, in that they perform
operations on signals, specifically allocated in host
memory. These functions are “cloned” to create
CUDA versions of the same function. Fig 2 above
shows the relevant portions of the canvas_dodsp call
graph. In total, 7 functions must be modified and 11
functions must be cloned in order to create the basic
system for handling signals correctly in host and GPU
memory.

Then, the first version of PdCUDA to be
programmed includes files replacing
g_canvas.c, d_ugen.c, d_resample.c, and d_io.c.
Also included are files which separate out the
code added and the code to be compiled with
the CUDA compiler.

3.5 The PdCUDA API

The goal is to allow Pd externals developers
to create CUDA based perform routines using
only C code, not requiring advanced
understanding of CUDA or the GPU hardware
in use. The challenges discussed in this article
require a unified approach to achieve any kind
of meaningful gains in performance. Functions
in the PdCUDA API will be added as the
project gets closer to duplicating much of the
functionality of Pd Vanilla.

4 Conclusion

Late in this process, I realized that the choice
of modifying the canvas class could be replaced
by other means of controlling the DSP state. It
should be possible to add a cuda~ object
modeled after block~/switch~ which is capable
of handling the extended DSP state.

PdCUDA is under development. Milestones
in the project will be added to the project's
sourceforge page as work progresses.

Refrences

[1] M. Puckette: “Multiprocessing for Pd,” Pure
Data Convention, Sao Paolo, Brazil, 2009.

[2] H. Meuer, E. Strohmaier, J. Dongarra, and H.
Simon “Highlights - June 2011,”
www.top500.org, June 2011.

[3] “CUDA C Best Practices Guide Version 3.2,”
August 2010.

	1	Introduction
	1.1	GPU Computing
	1.2	Pure Data
	2	Design of GPU Extensions
	2.1	Design Goals
	2.2	Usage Cases
	3	Implementation
	3.1	Extending the DSP State
	3.2	Separation Between Memory Spaces
	The symbol “cuda_dsp” is introduced in order to keep CUDA based routines separate from their host counterparts. When canvas_dodsp runs for a given cucanvas, it finds all instances of objects from its gl_list with the symbol “cuda_dsp” and adds their ugens to the dspcontext.
	An existing class may then be extended to work with PdCUDA by adding an additional method, instead of adding an entirely new class for the same purpose. In this scheme, there is no risk of mixture between memory spaces.
	3.3	User Interface
	User control over the application of CUDA routines needs to be handled at the canvas level. This works within expected user interfaces presented by Pd and provides the user capability to control the coarseness of organizing CUDA based patches. The symbol “cucanvas” is introduced for creating root level canvases. The canvas (glist) data structure is extended by adding a gl_hascuda element. The user interface also adds a subcanvas creation symbol “cu”.
	It is possible to create subcanvases of any type within canvases of another type. This is important for creating abstractions that are handled in the same way that Pd abstractions are commonly used.
	3.4	Modifications to Pd Code
	3.5	The PdCUDA API
	4	Conclusion
	Refrences

