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Abstract

The  design  of  graphics  processing  unit  (GPU)  audio 
signals  processing extensions  to  Pure  Data  (Pd)  is 
discussed  with  attention  to  future  growth  in  GPU 
computing and the complexity of programming a general 
solution.  An  implementation  named  PdCUDA  is 
presented  for  use  of  GPU  general  programming 
capability for audio signals processing with  Pd and the 
CUDA runtime application programmers interface (API). 

Keywords

Pd CUDA GPU audio computing

1 Introduction 

Pd users designing applications for high throughput 
or large numbers of channels may use general purpose 
computing  on  graphics  processing  unit  (GPGPU) 
programming  to  offload  some  functions  to  a  GPU. 
Indeed, there is significant data parallelism present in 
Pd's digital signals processing (DSP) functions that is 
appropriate  to  be  directly  translated  to  usage  on 
GPU's.   The  potential  exists  for  creating  high-
performance  computing  platforms  for  audio  signals 
processing with Pd.

However, GPGPU platforms may not be appropriate 
or  even  useful  for  all  applications.   For  example, 
digital  filters  may  be  programmed  efficiently  with 
serial  programming  of  a  recursion  equation,  while 
equivalent functions  on GPU's may have  no benefit. 
The  purpose  of  designing  a  GPGPU  platform  for 
audio  signals  processing  is  not  to  accelerate  every 
application  possible,  but  to  selectively  apply  the 
technology where it may have the greatest benefit.  It 
is hoped that the development of Pd GPU extensions 
will spur development of useful applications that are 
otherwise prohibitively expensive.

An intelligent algorithm which offloads functions to 
additional  processors  of  different  types  is  highly 
desirable.   However,  the  difficulty  in  handling  the 
multitude of  possible  applications  to  support  makes 
such  a  solution  infeasible.   Further  problems 
stemming  from  multiprocessor  concurrency  are 

discussed  in  Puckett  [1].  Synchronization 
between  concurrent  processes  takes  place  in 
GPU programs  where  functions  are  launched 
asynchronously.  Since asynchronous execution 
may be necessary to take full advantage of GPU 
computation,  this  issue  is  unavoidable  in  the 
context of Pd GPU extensions.

The  approach  taken  with  PdCUDA  is  to 
create a set of tools which exposes the costs of 
GPU programming and makes it possible for Pd 
programmers to write patches that are tuned for 
performance of  the  given application.   At  the 
same time,  it is desired that PdCUDA manage 
systematic  performance  considerations  where 
possible.

1.1 GPU Computing

At the time of this paper, three of the top five 
and 19  of  the  top 500  supercomputers  in  the 
world  make  use  of  GPU's  [2].   The  rise  in 
widespread usage is accompanied by increases 
in the performance of individual devices.  This 
brings high-performance computing out of the 
cold  room  into  situations  where  desktop 
computers,  laptops,  or  even  smaller  mobile 
devices can take benefit.

GPU's  make  use  of  highly  vectorized 
arithmetic and logical functions organized into 
blocks  of  threads.   Hardware  developed  for 
implementing  pixel  and  vertex  shaders   for 
graphics rendering is used with a given GPGPU 
API to perform floating point calculations.  

Only  NVIDIA  and  AMD/ATI  currently 
compete  for  the  GPU  market  with  freely 
available  GPGPU  API's.   However,  it  is 
conceivable that other companies such as Intel 
or IBM might later develop devices with similar 
general  computing  capability.   NVIDIA  has 
developed its CUDA1 API for the hardware it 
designs,  while  AMD/ATI  has  adopted  the 
OpenCL computing standard.  
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The choice to develop CUDA , rather than OpenCL, 
extensions  to  Pd  comes  down to  the  differences  in 
development  platform.   CUDA  is  narrowly 
constructed to apply to GPGPU programming while 
OpenCL can  be  applied  to  run  programs  on  other 
platforms  as  well.   With  added flexibility,  OpenCL 
also  becomes  more  complex.   Secondly,  hardware 
from NVIDIA is  compatible  with  both  CUDA and 
OpenCL.   This  presents  the  opportunity  for  each 
corresponding  set  of  GPU  extensions  to  be 
programmed  and  run  on  the  same  hardware. 
Therefore, CUDA presents the best choice for creating 
a  reference  design  upon  which  OpenCL extensions 
may be based, with one-to-one comparisons.

The  biggest  concern  with  performance  of  CUDA 
programs is the costs of transferring data between host 
and  device  [3].   Although  bandwidth  between  host 
and device is  typically high,  on  the order  of  GB/s, 
there  is  always  an  associated  latency  per  memory 
transfer on the order of microseconds.  Time not spent 
performing computations is  an overhead cost  to the 
program execution.  Where possible, data transfer is to 
be  avoided  or  run  concurrently  with  threads 
performing computations.

There  are  further  issues  with  memory  access  on 
GPU's  having  to  do  with  hierarchies  of  memory 
residing all on the same device.  There are important 
considerations in using the right type of memory for 
each  type  of  function  to  perform,  and  reducing 
transfer  of  memory  between  memory  types.   For 
example, constant and texture caches may be used to 
great effect in running large number of oscillators or 
table reads.

1.2 Pure Data 

Pd makes use of a  type of shared memory model for 
run-time  DSP execution.   Shared  memory  models  in 
general apply to access control, memory allocation, and 
addressing in applications having multiple threads.

Specifically  with  Pd,  memory  spaces  are  shared 
among  DSP routines for  objects in a canvas  and across 
non-reblocking canvas boundaries.    In Pd, signals  are 
allocated  for  each graphical  objects'  inlets  and outlets. 
Signals  are  “borrowed”  from one  another,  sharing  the 
same memory space, according to the DSP graph sorting 
algorithm.

Data transfer between arrays allocated in host memory 
occurs only in situations where a subcanvas reblocks or 
resamples signals  from its  parent  canvas.   Buffers  are 
created to store signals in the intermediate state, and the 
resulting  arrays  from  resampling  or  reblocking  are 
copied into newly allocated signals.

The conditions for handling signal allocation, sharing, 
and  data  transfer is  determined  by  a  collection  of 
variables, which for the purposes of this article will be 

called the  DSP state.   A dspcontext  structure is 
created for  each canvas when the DSP graph is 
being built.   It  is  important  to  differentiate  that 
canvas/subcanvas  relations with  block~  and 
switch~  objects  make  up  the  user  interface  to 
control DSP state while the dspcontext directs the 
behavior of signals' memory addressing during the 
DSP graph generation.

The DSP state is composed of the dspcontext 
data  structure  elements  dc_toplevel, 
dc_reblock,  and  sc_switched.   There  are  6 
possible  states,  since  a  toplevel  dspcontext 
cannot  also  be  reblocked.   The  code  which 
parses  the  logic  on DSP state  is  contained in 
d_ugen.c,  most  notably  the  routines 
ugen_done_graph and ugen_doit.

2 Design of GPU Extensions

2.1 Design Goals

Produce  clean  easily  maintained  code.   A 
forward  look  at  the  practical  aspects  of  GPU 
computing  is  appropriate.   An  implementation 
must  track  changes  in  both  the  Pure  Data  and 
GPU computing  API's.   With  a  growing  list  of 
architectures  and  devices  to  support,  the  code 
itself  must  be  laid  out  in  the  most  logical  and 
consistent  manner  for  developers.   A  stable 
implementation  is  one  that  abstracts  the  GPU 
computing functions so that externals developers 
will not have to re-write their code with respect to 
changes to the GPU computing API or the Pd API.

Provide an unambiguous user interface.  There 
are clear pitfalls to users for a mixture of host and 
GPU  computing  externals,  namely  performance 
issues  involving non-uniform  memory  access. 
While a given implementation expects to handle 
much of the memory considerations “behind the 
scenes,” users will need to create efficient patches 
by knowing at which stages their programs incur 
latency or other computing costs.

Make improvements to the Pd  DSP scheduler 
specific to  the GPU computing platform in use, 
for  example,  differentiating  between  GPU's 
operating in pinned host memory found on many 
low-power  laptops  and  those  with  external 
memory found in most desktop graphics cards.  

Make GPU routines profile-able.  Measurement 
of  the  device  performance  is  important  for 
specifying  an  appropriate  platform  for  a  given 
application.  This is also a benefit to users when 
designing  an  algorithm  by  comparing  actual 
throughput  against  theoretical  and  practical 
performance maximums.

Make  DSP  run-time  performance  efficient. 
GPU computing  functions  can  be  written  to  be 



optimized  for  the  types  of  data  used  by  Pd,  such  as 
specific functions for operating on arrays with lengths in 
powers of two.  The implementation should be written to 
prefer  specialization  over  generalization  and  present 
developers  with  sets  of  functions  commonly  used in 
programming Pd externals.

2.2 Usage Cases

Some considerations in designing GPU extensions for 
Pd become evident by examining usage cases.  Presented 
are usage cases for single GPU functions scaling to serial 
graph  portions  and  to  multiple  data-independent 
branches.

Fig. 1.  Usage cases increasing in complexity.  Dark 
rectangles represent GPU based perform functions.

In the simplest case,  the GPU perform routine must 
transfer  data  into the GPU memory space, perform an 
operation, and transfer data back.  The overhead incurred 
in  performing  multiple  functions  is  two data  transfer 
operations per function.  Pd externals can be written to 
require  no  modifications  to  Pd  itself  as  long  as  the 
perform  routine  expects  an  argument  with  signals 
allocated in the host memory space.  

Supposing there were multiple GPU perform functions 
to  be  performed  serially,  it  is  possible  to  maintain 
common memory allocation, consistent with the way that 
Pd handles signals.  Then, the overhead with performing 
the DSP routines in series is 2 data transfer operations, 
independent of the number of operations performed  in 
series.

With  multiple  data-independent  branches,  the 
ordering of the DSP chain becomes important.  It is 
possible  to  overlap  data  transfer  and  computation 
which hides the additional latency posed by multiple 
branches. The data transfer routines need to be added 
to the  DSP chain in  a  breadth-first  fashion and run 
asynchronously.   Next,  the  GPU  routines  would  be 
added  to  the  DSP  chain  depth-first  per  branch,in  the 
order  of  the  branches'  dependence  on  data  transfer. 
Additional  synchronization  between  data  transfer  and 
computation  may  be  needed  to  reduce the  cost  of  data 
transfer.   Great  care  has  to  be  taken  with  optimizing 
concurrency  because  such  synchronizations  pose  a  risk 
to real-time behavior.

3 Implementation

The description of PdCUDA focuses on details 
relevant  to  create  a  basic  platform for  externals 
development.   Altogether,  there  are  84  different 
DSP  perform  routines  to  write  in  order  to 
duplicate the functionality of Pd Vanilla.  Many of 
these are  further  dependent on other Pd  objects 
such  as  arrays,  which  are  not  implemented  in 
PdCUDA at this time.

The signal data structure contains a pointer to 
array  s_vec  and  its  length  s_n.   This  same 
information is what is necessary to allocate arrays 
in GPU memory and perform operations on those 
arrays.   Signals  are  used  interchangeably 
regardless of which memory space they use.

Most importantly, PdCUDA does not modify or 
duplicate the dspchain structure.  CUDA specific 
perform  routines  are  scheduled  in  a  way  that 
preserves  the  same  data  dependency  relations 
present in Pd.  

3.1 Extending the DSP State

Additional information is needed to determine 
signal handling when multiple memory spaces are 
involved.   Data  transfer  between  the  host  and 
device  occurs  whenever  a  dspcontext  and  its 
parent  dspcontext  have  different  values  of 
dc_hascuda.   New signals  are  allocated in  GPU 
memory  when  dc_hascuda  is  set,  and  where  a 
non-reblocked dspcontext  and  its  parent 
dspcontext  have  the  same  value  of  dc_hascuda, 
signals  are  allowed  to  be  borrowed  from  the 
parent dspcontext.

The  DSP state  now must  include  dc_hascuda 
and  whether  a  dspcontext  and  its  parent 
dspcontext  have  the  same  value  of  dc_hascuda. 
The  total  number  of  states  becomes  20.   This 
maintains compatibility with Pd, with the original 
6 possible values of DSP state being a subset of 
the new DSP state values.

3.2 Separation Between Memory Spaces

The  symbol  “cuda_dsp”  is  introduced  in 
order  to  keep  CUDA based  routines  separate 
from  their  host  counterparts.   When 
canvas_dodsp  runs  for  a  given  cucanvas,  it 
finds  all  instances  of  objects  from its  gl_list 
with  the  symbol  “cuda_dsp”  and  adds  their 
ugens to the dspcontext.

An existing  class  may then  be  extended to 
work  with  PdCUDA by adding  an  additional 
method, instead of adding an entirely new class 
for the same purpose.  In this scheme, there is no 
risk of mixture between memory spaces.



Fig. 2 Relevant portions of the Pd DSP sorting routines.  Functions in dark rectangles are to be modified to 
add logic for handling conditions dependent on  DSP state.  Functions in light ovals are specialized.  It is 
required to write a new instance of each specialized function for GPU computing with distinct names.  

3.3 User Interface

User control over the application of CUDA routines 
needs to be handled at the canvas level.  This works 
within expected user interfaces presented by Pd  and 
provides the user capability to control the coarseness 
of  organizing  CUDA based  patches.   The  symbol 
“cucanvas”  is  introduced  for  creating  root  level 
canvases.  The canvas (glist) data structure is extended 
by adding a gl_hascuda element.  The user interface 
also adds a subcanvas creation symbol “cu”.  

It  is  possible  to  create  subcanvases  of  any  type 
within canvases of another type.  This is important for 
creating abstractions that are handled in the same way 
that Pd abstractions are commonly used.

3.4 Modifications to Pd Code

The data structures glist and dspcontext are added to 
store the additional hascuda variable required for the 
extension to DSP state.   Next,  the portions of code 
dealing  with  DSP  graph  sorting  and  memory 
allocation are affected in two different  ways.   Note 
that vinlet and voutlet data structures each contain a 
pointer to the canvas in which they reside.  As long as 
the  functions  in  the  canvas_dodsp  call  graph  have 
access  to  the  canvas  gl_hascuda  or  the  dspcontext 
dc_hascuda variables (and their parents), they can be 
directed to handle signals correctly for the GPU.  

There are also many functions that are do not have 
access  to  any canvas,  dspcontext,  vinlet,  or  voutlet. 
These functions are specialized, in that they perform 
operations  on  signals,  specifically  allocated  in  host 
memory.   These  functions  are  “cloned”  to  create 
CUDA versions of the same function.   Fig 2 above 
shows the relevant portions of the canvas_dodsp call 
graph.  In total, 7 functions must be modified and 11 
functions must be cloned in order to create the basic 
system for handling signals correctly in host and GPU 
memory.

Then,  the  first  version  of  PdCUDA to  be 
programmed includes  files  replacing 
g_canvas.c, d_ugen.c, d_resample.c, and d_io.c. 
Also included are files which separate out the 
code added and the code to be compiled with 
the CUDA compiler.

3.5 The PdCUDA API

The goal is to allow Pd externals developers 
to create CUDA based perform routines using 
only  C  code,  not  requiring  advanced 
understanding of CUDA or the GPU hardware 
in use.  The challenges discussed in this article 
require a unified approach to achieve any kind 
of meaningful gains in performance.  Functions 
in  the  PdCUDA  API  will  be  added  as  the 
project gets closer to duplicating much of the 
functionality of Pd Vanilla.

4 Conclusion

Late in this process, I realized that the choice 
of modifying the canvas class could be replaced 
by other means of controlling the DSP state.  It 
should  be  possible  to  add  a  cuda~  object 
modeled after block~/switch~ which is capable 
of handling the extended DSP state.  

PdCUDA is under development.  Milestones 
in  the  project  will  be  added  to  the  project's 
sourceforge page as work progresses.
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