Gráficos de controle para variáveis

Denise A. Botter

12/08/2013

Após estabilizar o processo, inicia-se a construção dos gráficos de controle.

Variáveis: Gráfico da média \overline{X} e da amplitude R.

1. Gráficos de controle de \overline{X} e R.

Gráfico \overline{X} : monitorar a centralidade.

Gráfico R: monitorar a dispersão.

1.1. Gráfico \bar{X}

Linha média (LM): localizada na média (valor esperado) de \overline{X}

Limites de controle: estabelecidos a 3 desvios padrões da média

$$LSC_{\overline{X}} = \mu_{\overline{X}} + 3\sigma_{\overline{X}}$$

$$LM_{\overline{X}} = \mu_{\overline{X}}$$

$$LIC_{\overline{Y}} = \mu_{\overline{Y}} - 3\sigma_{\overline{Y}}$$

Limites de controle com 3 desvios padrões de afastamento em relação à linha média ("limites três-sigma"): propostos por Shewhart que se baseou no seguinte lema: " se o processo está controlado, evite ajustes desnecessários, que só tendem a aumentar sua variabilidade". Com os limites três-sigma, enquanto o processo estiver controlado, raramente um ponto cairá fora desses limites (indicação de intervenção no processo para ajustes).

Assim, raramente haverá interferência num processo controlado.

Intervenções desnecessárias:

- são perigosas, pois podem desajustar o processo
- geram custos com a interrupção e a investigação de causas especiais inexistentes.

$$\mu_{\overline{X}} = \mu_X = \mu$$

$$\sigma_{\overline{X}}^2 = \frac{\sigma_X^2}{n} = \frac{\sigma^2}{n}$$

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Quando o processo está estável, sob controle, isento de causas denotamos $\mu = \mu_0$ e $\sigma = \sigma_0$. Substituindo μ_0 e σ_0 por suas estimativas (na prática estes parâmetros são desconhecidos), obtemos para o gráfico de \overline{X}

3

$$LSC_{\overline{X}} = \hat{\mu}_0 + 3\frac{\hat{\sigma}_0}{\sqrt{n}}$$

$$LM_{\overline{X}} = \hat{\mu}_0$$

$$LIC_{\overline{X}} = \hat{\mu}_0 - 3\frac{\hat{\sigma}_0}{\sqrt{n}}$$

Para o processo ajustado e estável em μ_0 e $\sigma_{0,}$ o intervalo \pm 3 σ_0/\sqrt{n} engloba 99,73% dos valores de \overline{X} . Consequentemente, há pouca chance de uma média amostral \overline{X} cair "fora" desse intervalo. Assim, se um valor de \overline{X} cair fora desse intervalo, é provável que μ tenha se alterado, não sendo mais μ_0 por conta de alguma causa especial.

1.2. Gráfico R

Limites três-sigma:

$$LSC_R = \mu_R + 3\sigma_R$$

$$LM_R = \mu_R$$

$$LIC_R = \mu_R - 3\sigma_R$$

Se $X \sim N(\mu, \sigma^2)$, então temos os seguintes momentos para a amplitude amostral R:

$$\mu_R = d_2 \sigma e \sigma_R = d_3 \sigma$$
,

sendo d₂ e d₃ constantes tabeladas em função de n.

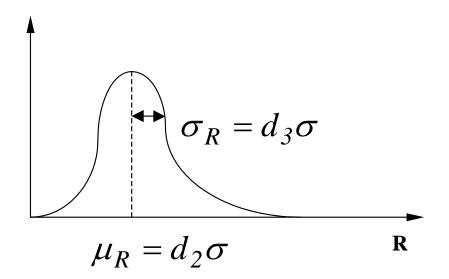


Figura 1: Distribuição da amplitude R

n	2	3	4	5	6	7
d_2	<i>1,128</i>	1,693	2,059	2,326	2,534	2,704
d_3	0,853	0,888	0,880	0,864	0,848	0,833

Para o processo estável temos $\sigma = \sigma_0$. Substituindo σ_0 por sua estimativa $\hat{\sigma}_0$ vem que

LSC_R =
$$d_2 \hat{\sigma}_0 + 3 d_3 \hat{\sigma}_0 = \hat{\sigma}_0 (d_2 + 3d_3)$$

LM_R = $d_2 \hat{\sigma}_0$
LIC_R = $\hat{\sigma}_0 (d_2 - 3d_3)$

Observação: Se, por acaso, $LIC_R < 0$, adotamos $LIC_R = 0$, ou seja, o LIC_R está ausente.

Para um processo estável, a probabilidade de uma amplitude R cair fora dos limites de controle é muito pequena; quando isto ocorre, questionamos se a variabilidade do processo alterou-se.

Exemplo. Se σ aumenta, E(R) e DP(R) aumentam. Isto implica em valores maiores de R. Se R for maior que o LSC_R, "soará um alarme" de que o desvio padrão σ do processo aumentou.

Observação: Os limites de controle para o gráfico \overline{X} dependem de μ_0 ($\hat{\mu}_0$) e de σ_0 ($\hat{\sigma}_0$). Já, os limites de controle do gráfico R só dependem de σ_0 ($\hat{\sigma}_0$). Assim, iniciamos a construção dos gráficos de controle pelo gráfico R.

1.3. Estimativas

Dado um conjunto de m amostras, cada uma de tamanho n, temos:

$$\hat{\mu}_0 = \overline{\overline{X}} = \frac{\sum_{i=1}^m \overline{X}_i}{m},$$

sendo \overline{X}_i a média amostral da amostra i e $\overline{\overline{X}}$ a média amostral de todas as observações.

8

Quando utilizamos o gráfico de \overline{X} em conjunto com o gráfico R, temos

$$\hat{\sigma}_0 = S_D = \overline{R}/d_2$$

sendo \bar{R} a média aritmética dos m valores R_i , ou seja,

$$\overline{R} = \frac{\sum_{i}^{m} R_{i}}{m}.$$

Quando usamos $\hat{\sigma}_0 = \overline{R}/d_2$, temos

$$LSC_{R} = d_{2} \frac{\overline{R}}{d_{2}} + 3d_{3} \frac{\overline{R}}{d_{2}} = \overline{R}(1 + \frac{3d_{3}}{d_{2}})$$

$$LM_{R} = d_{2} \frac{\overline{R}}{d_{2}} = \overline{R}$$

$$LIC_{R} = \overline{R}(1 - \frac{3d_{3}}{d_{2}})$$

Exemplo. A tabela que segue apresenta valores de X_{ij} , volume do jésimo saquinho de leite pertencente à i-ésima amostra, e de R_i , amplitude da i-ésima amostra, para 25 amostras (subgrupos racionais) de tamanho 5 (m = 25 e n = 5), bem como a amplitude média \overline{R} . Com base em \overline{R} temos

$$\hat{\sigma}_0 = S_D = \overline{R} / d_2 = 11,0/2,326 = 4,729$$

Observar que $\hat{\sigma}_0$ foi calculado supondo estabilidade do processo.

Tabela 1: Valores de X_{ij} e R_i

	X_{i1}	X_{i2}	$X_{i\beta}$	X_{i4}	X_{i5}	R_i
1	1004,6	997,3	1003,0	1005,9	995,8	10,1
2	1001,6	1008,6	997,9	1001,3	999,1	10,7
3	999,1	992,6	1001,1	1001,6	1002,9	10,3
4	1007,9	997,5	991,3	997,8	1000,8	16,5
5	999,5	995,6	1004,3	995,6	991,4	13,0
6	1003,3	996,8	997,2	993,6	1000,1	9,7
7	999,7	1012,1	995,2	1001,8	1002,2	16,9
8	1000,1	995,3	990,0	997,5	1003,2	13,2
9	1004,3	1001,4	1001,6	999,1	996,4	7,9
10	999,0	995,8	989,9	995,1	1002,8	12,9

Tabela 1 (continuação): Valores de X_{ij} e R_i

	X_{i1}	X_{i2}	X_{i3}	X_{i4}	X_{i5}	R_i
11	1003,2	1004,4	993,5	994,6	997,6	10,9
12	996,2	1017,3	993,6	996,5	1003,7	23,7
13	1014,0	1008,9	1004,1	1007,9	1000,7	13,3
14	1002,2	996,6	1002,7	1004,2	1001,8	7,6
<i>15</i>	998,3	997,5	1006,1	996,5	998,1	9,6
16	995,8	1000,8	999,1	1002,5	1001,0	6,7
17	1004,1	1003,0	1004,8	997,9	999,9	6,9
18	1000,1	994,9	1000,1	1004,9	997,3	10,0
19	1000,2	996,1	998,0	1006,1	999,4	10,0
20	1002,3	999,0	1000,8	1000,7	998,0	4,3

Tabela 1 (continuação): Valores de X_{ij} e R_i

	X_{i1}	X_{i2}	$X_{i\beta}$	X_{i4}	X_{i5}	R_i
21	998,3	998,1	1004,2	1002,1	991,3	12,9
22	997,1	1000,7	999,8	1000,6	1001,7	4,6
23	1003,6	996,1	1001,4	998,0	991,8	11,9
24	999,9	1006,4	1005,1	999,8	1003,0	6,6
<i>25</i>	1007,3	999,8	992,5	996,2	998,2	14,8
					Média	11,0
					R_i	

$$LSC_R = (d_2 + 3d_3)\hat{\sigma}_0 = 23,26$$

 $LM_R = \overline{R} = 11,0$
 $LIC_R = (d_2 - 3d_3)\hat{\sigma}_0 = -1,26 \Rightarrow LIC_R = 0,00$

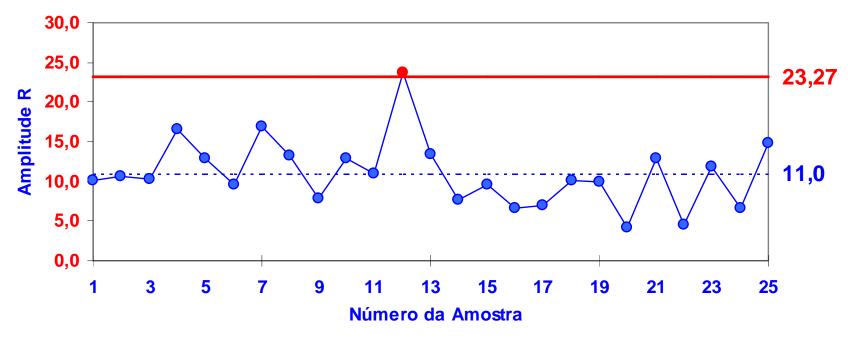


Figura 2: Gráfico da Amplitude R

A amplitude da 12^a amostra é muito grande (R₁₂ acima de LSC_R). É necessário encontrar um motivo para este fato.

- Causa especial diagnosticada. Só afetou a 12^a amostra: eliminar essa amostra da análise. Se mais amostras forem afetadas, eliminá-las também, mesmo que estejam dentro dos limites de controle. Se essas amostras eliminadas forem muitas e restarem poucas para estimar σ_0 , deve-se prolongar o período de coleta de amostras e coletar mais dados.
- Em geral, na prática, não é sempre possível diagnosticar a causa especial nem saber quais amostras foram afetadas. Assim, se em 25 ou 30 amostras, apenas um R_i estiver fora dos limites de controle e não conseguirmos detectar a causa especial que aumentou a variabilidade, podemos ou não eliminar esse R_i. Isso não afetará muito os limites de controle calculados. Se mais de um R_i cair fora dos limites de controle, volta-se à etapa inicial e tenta-se descobrir as causas especiais que estão afetando o processo (ver fluxograma).

Vamos supor que a causa especial foi diagnosticada e confirmou-se que a mesma afetou apenas o 12º subgrupo racional.

Eliminamos a 12^a amostra e recalculamos \overline{R} . Em seguida, refazemos o gráfico R sem a amostra 12. Notamos que a distribuição dos pontos em torno da LM é aleatória. Nenhum ponto excede o LSC_R.

Uma vez construído o gráfico R, vamos construir o gráfico da média.

$$LSC_R = (d_2 + 3d_3)\hat{\sigma}_0 = 22,20$$
 $\hat{\sigma}_0 = 4,514$ $LM_R = \overline{R} = 10,5$ $LIC_R = (d_2 - 3d_3)\hat{\sigma}_0 = -1,20 \Rightarrow LIC_R = 0,00$

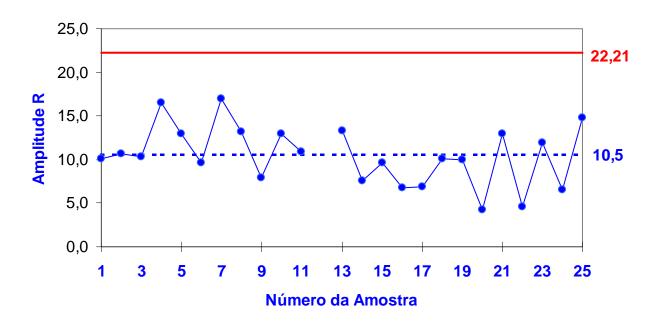


Figura 3: Gráfico da Amplitude R (sem a 12ª amostra)

Vamos considerar para a construção do gráfico da média, os valores de X_{ij} e de \overline{X}_i dos 24 subgrupos racionais de tamanho 5 (m = 24 e n = 5) e a média geral \overline{X} . Observar que a 12^a amostra foi eliminada.

$$LSC_{\overline{X}} = \mu_{\overline{X}} + 3\sigma_{\overline{X}} \tag{3.1}$$

$$LM_{\overline{X}} = \mu_{\overline{X}} \tag{3.2}$$

$$LIC_{\overline{X}} = \mu_{\overline{X}} - 3\sigma_{\overline{X}} \tag{3.3}$$

$$LSC_{\overline{X}} = \hat{\mu}_0 + 3\frac{\hat{\sigma}_0}{\sqrt{n}} \tag{3.6}$$

$$LM_{\overline{X}} = \hat{\mu}_0 \tag{3.7}$$

$$LIC_{\overline{X}} = \hat{\mu}_0 - 3\frac{\hat{\sigma}_0}{\sqrt{n}} \tag{3.8}$$

$$\sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}}$$

$$\overline{\overline{X}} = \frac{\sum_{i=1}^{m} \overline{X}_i}{m}$$

$$S_D = \overline{R} / d_2$$

$$LSC_{\overline{X}} = \hat{\mu}_0 + 3\frac{\hat{\sigma}_0}{\sqrt{n}} = 1000, 0 + 3\frac{4,514}{\sqrt{5}} = 1006, 1$$
 (3,28)

$$LM_{\overline{X}} = \hat{\mu}_0 = 1000,0 \tag{3.29}$$

$$LIC_{\overline{X}} = \hat{\mu}_0 - 3\frac{\hat{\sigma}_0}{\sqrt{n}} = 1000, 0 - 3\frac{4,514}{\sqrt{5}} = 993,9$$
 (3.30)

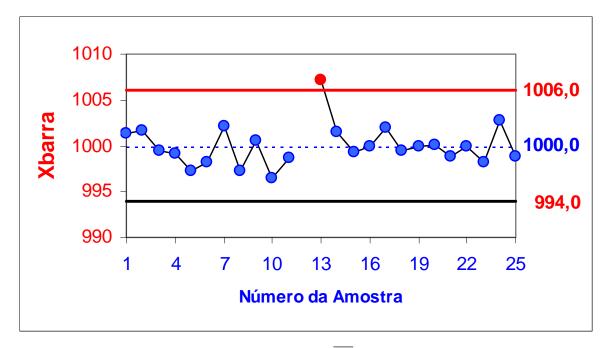


Figura 4: Gráfico da Média \overline{X} (sem a 12^a amostra)

No gráfico de \overline{X} vemos que a média da 13^a amostra excede o LSC. Repetir então o fluxograma. Vamos excluir a 13^a amostra. Observar que quando excluímos essa amostra, não recalculamos \overline{R} pois o processo estava estável quanto à dispersão com a 13^a amostra incluída. Refazemos o gráfico de \overline{X} . Percebe-se que os pontos distribuem-se aleatoriamente em torno da LM e nenhum deles excede o LSC ou é inferior ao LIC.

$$LSC_{\overline{X}} = \hat{\mu}_0 + 3\frac{\hat{\sigma}_0}{\sqrt{n}} = 1000, 0 + 3\frac{4,514}{\sqrt{5}} = 1005, 8$$
 (3,31)

$$LM_{\overline{X}} = \hat{\mu}_0 = 999,7 \tag{3.32}$$

$$LIC_{\overline{X}} = \hat{\mu}_0 - 3\frac{\hat{\sigma}_0}{\sqrt{n}} = 1000, 0 - 3\frac{4,514}{\sqrt{5}} = 993,6$$
 (3.33)

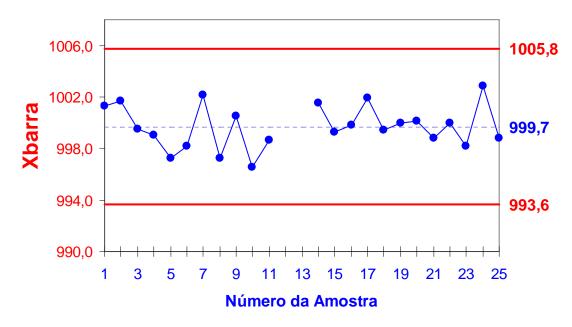


Figura 5: Gráfico da Média \overline{X} (sem a 12^a e 13^a amostras)

Com o processo estável e os gráficos construídos, passamos a monitorar o processo. A cada meia hora de produção, retiram-se 5 saquinhos de leite. Calculados \overline{X} e R, estes são plotados nos gráficos de controle. Os limites desses gráficos não são mais alterados, a não ser que haja mudanças no processo (mudanças físicas, por exemplo). Se novos valores de \overline{X} e de R saírem fora dos limites de controle, paramos o processo e procuramos a causa especial tentando eliminála.

Gráficos de Controle de \overline{X} e R

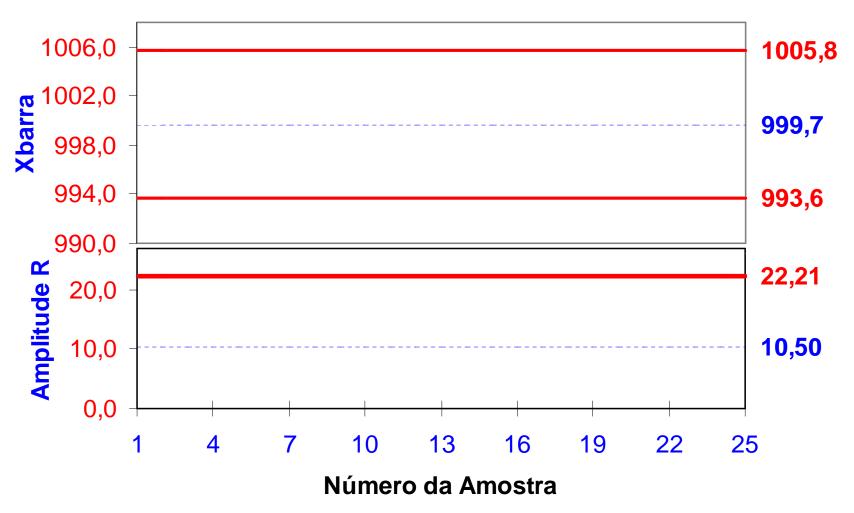


Figura 6: Gráficos da Média \overline{X} e da Amplitude R