MAE0532 CONTROLE ESTATÍSTICO DE QUALIDADE

19/08/13

Análise de desempenho dos gráficos \bar{X} e R

Vamos estudar a capacidade desses gráficos detectarem perturbações no processo.

Abordaremos o plano de amostragem (determinação de n, do intervalo h entre amostras) e o estabelecimento dos limites de controle (3 desvios padrões ou outra distância?).

Desenvolvimento

- ullet Eficiência isolada do gráfico de $ar{X}$
- ullet Eficiência isolada do gráfico R

- \bullet Eficiência conjunta dos gráficos de \bar{X} e R
- ullet Eficiência do gráfico de \bar{X} quando regras suplementares de decisão são consideradas.

Gráfico *R*: análise do desempenho

Gráfico R: detecta alterações na variabilidade do processo.

$$H_0$$
: $\sigma = \sigma_0$ versus H_1 : $\sigma \neq \sigma_0$,

sendo σ_0 o desvio padrão do processo quando isento de causas especiais que afetam a variabilidade da variável X de interesse.

Se H_0 é verdadeira, α é o risco de uma amplitude amostral R cair fora dos limites de contole (alarme falso).

Se H_1 é verdadeira, β é o risco de uma amplitude amostral R cair dentro dos limites de contole (não sinalização da falta de controle).

Temos

$$\alpha = P[R < LIC_R \text{ ou } R > LSC_R | \sigma = \sigma_0]$$

е

$$\beta = P[LIC_R \le R \le LSC_R | \sigma \ne \sigma_0].$$

Vamos considerar limites 3-sigma para o gráfico R. Temos

$$LIC_R = \mu_r - 3\sigma_R$$

$$LSC_R = \mu_r + 3\sigma_R$$

Vamos calcular α

$$\alpha = 1 - P[LIC_R \le R \le LSC_R | n = n_0 \text{ e } \sigma = \sigma_0]$$

$$= 1 - P[\max\{0, (d_2 - 3d_3)\sigma_0\} \le R \le (d_2 + 3d_3)\sigma_0 | n = n_0 \text{ e } \sigma = \sigma_0]$$

$$= 1 - P[\max\{0, (d_2 - 3d_3)\} \le R/\sigma_0 \le d_2 + 3d_3 | n = n_0,]$$

ou seja,

$$1 - \alpha = P[\max\{0, (d_2 - 3d_3)\} \le W \le d_2 + 3d_3|n = n_0].$$

A distribuição de W é conhecida e tabelada. Lembrando que

$$NMAF = \frac{1}{\alpha}$$

temos, para n = 2,4 e 5,

Tabela 1. Valores de α

\overline{n}	d_2	d_3	$\max\{0,(d_2-3d_3)\}$	$d_2 + 3d_3$	α	NMAF
2	1,128	0,833	0	3,69	0,0090	111
4	2,059	0,880	0	4,70	0,0050	200
5	2,326	0,864	0	4,92	0,0047	213

O cálculo do poder do gráfico R baseia-se na tabela da distribuição acumulada de W (ver Costa et al., 2008), Vamos supor $\sigma_1=2\sigma_0$. Para limites 3-sigma, temos, em geral, que $LIC_R=0$. Logo, para esses limites, o cálculo do poder considera apenas o LSC_R . Assim,

$$Pd = P[R > LSC_R = (d_2 + 3d_3)\sigma_0|n = n_0 e \sigma = 2\sigma_0]$$

$$= P\left[\frac{R}{\sigma} > \frac{(d_2 + 3d_3)\sigma_0}{\sigma}|n = n_0 e \sigma = 2\sigma_0\right]$$

$$= P\left[W > \frac{d_2 + 3d_3}{2}|n = n_0\right]$$

Para n=5

$$Pd = P\left[W > \frac{d_2 + 3d_3}{2} = \frac{4,92}{2} = 2,46|n = 5\right]$$
$$= 1 - 0,59 = 0,41$$

Generalizando, se σ aumenta de λ , $\lambda = \sigma_1/\sigma_0$,

$$Pd = P\left[W > \frac{d_2 + 3d_3}{\lambda} | n = n_0\right],$$

para limites $3-\sigma$.

A tabela da distribuição acumulada de W foi construída sob a suposição de que a distribuição da variável de interesse X seja normal. Se a distribuição de X não é normal, essa tabela deve ser usada com cautela.

As Figuras mostram curvas de Pd versus λ (obtenção direta de Pd) e de NMA (1/Pd) versus λ . Nota-se que em média são necessárias 5 amostras de tamanho 2 ou 3 de tamanho 4 para se detectar um aumento de 100% (λ = 2) em σ .

Uma alternativa na construção do gráfico R consiste em utilizar limites de controle que levem a um valor de α pré-estabelecido.

Exemplo. Fixar $\alpha = 0,002$. Temos

$$1 - \alpha = 1 - 0,002$$

$$= P[LIC_R \le R \le LSC_R | n = n_0 \text{ e } \sigma = \sigma_0]$$

$$= P\left[\frac{LIC_R}{\sigma_0} \le W \le \frac{LSC_R}{\sigma_0} | n = n_0\right]$$

$$= P[W_{0,0001} \le W \le W_{0,999} | n = n_0,],$$

sendo $W_{0,001}$, o valor de W tal

$$P[W < W_{0,001}] = 0,001$$

e $W_{0,999}$, o valor de W tal que

$$P[W < W_{0,999}] = 0,999$$
 ou $P[W > W_{0,999}] = 0,001$.

Se H_0 é verdadeira e a distribuição de X é normal,

$$P[R < LIC_R] = 0,001 = P[R > LSC_R].$$

Assim,

$$LIC_R = W_{0,001}\sigma_0$$

(nunca é menor do que zero) e

$$LSC_R = W_{0,999}\sigma_0.$$

Para n=4, $W_{0,001}=0.20$ e $W_{0,999}=5.31$. Logo, $LSC_R=5.31\sigma_0$, $LIC_R=0.20\sigma_0$ e $LM=d_2\sigma_0$ (não se altera).

A vantagem dessa abordagem é podermos detectar melhorias no processo (redução na variabilidade) quando $R < LIC_R$. Além disso, como o LSC fica mais largo, α diminui.

Exemplo. Fixar n = 4, Temos, para limites de controle 3-sigma

$$LSC_R = (d_2 + 3d_3)\hat{\sigma}_0 = 4,7\hat{\sigma}_0$$

 $(\alpha=0,005)$ e para limites de controle com probabilidade $\alpha=0,002$, temos

$$LSC_R = W_{0,999}\hat{\sigma}_0 = 5,31\hat{\sigma}_0$$