MAT0317 & MAT5741 - TOPOLOGIA GERAL 1° SEMESTRE 2025

LISTA 3

- 1. Sejam X um conjunto e \mathcal{T} uma coleção não-vazia de topologias sobre X. Mostre que $\bigcap \mathcal{T}$ é uma topologia sobre X.
- 2. Se (X, τ) é um espaço topológico e $A \subseteq X$, considere ∂A o conjunto dos pontos de fronteira de A. Prove que:
 - (a) $\overline{A} = A \cup \partial A$ e $int(A) = A \setminus \partial A$;
 - (b) Se \mathcal{B}_x é uma base local para certo $x \in X$, então

$$\partial A = \{x \in X : \text{ para todo } U \in \mathcal{B}_x, \ U \cap A \neq \emptyset \text{ e } U \cap (X \setminus A) \neq \emptyset\}.$$

- 3. Se (X, τ) é um espaço topológico e $A \subseteq X$, considere A' o conjunto dos pontos de acumulação de A. Prove que:
 - (a) $\overline{A} = A \cup A'$;
 - (b) Se \mathcal{B}_x é uma base local para certo $x \in X$, então

$$A' = \{x \in X : \text{ para todo } U \in \mathcal{B}_x, \ U \cap (A \setminus \{x\}) \neq \emptyset\}.$$

- 4. Seja (X, τ) um espaço topológico. Dizemos que uma família $\mathcal{C} \subseteq \tau$ é uma subbase para τ se a família formada por todas as intersecções finitas de elementos de \mathcal{C} forma uma base para τ . Prove que $\mathcal{C} = \{(a, +\infty), (-\infty, b) : a, b \in \mathbb{R}\}$ é uma subbase para a topologia usual em \mathbb{R} .
- 5. Sejam X um conjunto, (Y,τ) um espaço topológico e $f:X\to Y$ uma função. Mostre que $\theta=\{f^{-1}[U]:U\in\tau\}$ define uma topologia sobre X. Mais ainda, mostre que se $\mathcal B$ é uma base de (Y,τ) , então $\mathcal C=\{f^{-1}[B]:B\in\mathcal B\}$ é uma base de (X,θ) .

6. Sejam X um conjunto e $\{Y_j:j\in J\}$ uma família de espaços topológicos. Para cada $j\in J,$ seja $f_j:X\to Y_j$ uma função. Mostre que a coleção

$$\mathcal{S} = \{ f_i^{-1}[U] : j \in J \in U \subset Y_j \text{ aberto} \}$$

define uma subbase para X.

- 7. Dizemos que um espaço topológico é zero-dimensional se possui uma base formada por abertos fechados. Prove que cada um dos espaços abaixo é zero-dimensional:
 - (a) A reta real \mathbb{R} munida da topologia de Sorgenfrey;
 - (b) \mathbb{Q} e $\mathbb{R} \setminus \mathbb{Q}$ munidos da topologia de subespaço de \mathbb{R} (com a topologia usual).