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Abstract. Corson and Efremov introduced convex notions of countable tight-

ness and the Frchet-Urysohn property in the context of Banach spaces. We

present an old unpublished example which consistently distinguishes these
properties. Together with a recent result from [12], it yields that it is in-

dependent from ZFC whether these properties are equivalent or not.

1. Introduction

Recall the following sequential properties of a given topological space X:

• X has countable tightness if every point of a closed set F ⊆ X is in the
closure of a countable subset of F .
• X is Frchet-Urysohn if every point of a closed set F ⊆ X is the limit of a

sequence in F .

It is clear that every Frchet-Urysohn space has countable tightness and results by
Balogh [2] and Fedorchuk [8] established the independence of the converse implica-
tion for compact spaces.

The main purpose of this note is to present a consistent example of a Banach
space which distinguishes convex counterparts introduced by Corson and Efremov
in [5] and [6] of the aforementioned topological properties. In fact, it distinguishes
between the property of Corson and an intermediate property recently introduced
by Martnez-Cervantes in [11].

Definition 1. Let X be a Banach space. Let us consider the following properties:

• X has the property (C) of Corson if every family of closed convex subsets
of X whose intersection is empty has a countable subfamily with empty
intersection.
• X has the property (E’) if every weak∗ sequentially closed convex set C ⊆
X∗ is weak∗ closed.
• X has the property (E) of Efremov if every point in a bounded weak∗ closed

convex set C ⊆ X∗ is the weak∗ limit of a sequence in C.

Notice that (E) is an immediate convex analogue of Frchet-Urysohn in the con-
text of dual spaces and Pol proved in [16] the following characterization of (C),
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turning it into a convex analogue of tightness: a Banach space has property (C)
if and only if every point of a bounded weak∗ closed convex set C ⊆ X∗ is in the
weak∗ closure of a countable subset of C. (E) clearly implies (E’), which in turn
implies (C), see [12, Lemma 2]. Plichko and Yost ([15], pg. 352) asked whether (C)
implies (E) and the main result of this note gives a consistent negative answer to
this question:

Theorem 2. It is consistent with ZFC that there is a compact Hausdorff scattered
space K such that:

(i) every finite power Kn of K is hereditarily separable;
(ii) C(K) does not have property (E’).

Compact spaces are an important source of counterexamples for questions about
the topology and the structure of Banach spaces. Given a compact Hausdorff space
K, let C(K) be the Banach space of continuous scalar-valued functions defined on
K, with the supremum norm. It is well-known that K is scattered if and only if
C(K) is an Asplund space (i.e. every separable subspace of C(K) has separable
dual), see [13]. Moreover, if all finite powers of K are hereditarily separable, then
C(K) is weakly hereditarily Lindelf (see e.g. [9, Theorem 4.38]). Any weakly
Lindelf Banach space has property (C), since closed convex sets are weakly closed
(see [7, Theorem 3.19]). Hence, we get the following corollary:

Corollary 3. It is consistent with ZFC that there is a Asplund space with property
(C) and which does not have property (E’).

Martnez-Cervantes and Poveda proved in [12] that, under the Proper Forcing
Axiom, every Banach space which has property (C) also has property (E’), es-
tablishing the independence of this statement. Another unpublished example of
a space that has (C) and does not have (E) has been constructed by Justin T.
Moore as a modification of Ostaszewski’s space from [14] assuming the principle
♦. An example of a Banach space with property (E’) which fails property (E) has
been given under the Continuum Hypothesis in [1], but the question whether the
implication fails in ZFC remains open. We refer to [12] for a complete account on
these and related problems.

Our construction appears originally in the author’s PhD thesis [3] and was never
published. It is a simplification of the construction made in [4], inspired by [10]
and [17] of a locally compact Frchet-Urysohn space of weight ω2. The construction
in [4] gives a consistent example of a compact space of weight ω2 with hereditarily
separable finite powers, which yields a consistent example of an Asplund space of
density ω2 with interesting structural properties. In the case of the present work,
we run a similar construction replacing ω2 by ω1 as the underlying of the topological
space K. This makes the arguments simpler and allows us to analyse the sequences
in the space C(K)∗ and prove the main result.

In the next section we introduce the partial order used to force the existence
of the space K. We recall some of its properties and how they provide some of
the desired properties of the space K. In Section 3, we show Theorem 11, which
contains the relevant information about weak∗ convergence of sequences in C(K)∗

and implies that C(K) fails to have property (E’). It is a modification of Rabus’s
Lemma 5.4 [17], where the convergence of points in the space K is analysed.
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2. Preliminary lemmas and the construction of K

Let us fix the following notation:

Definition 4 (Juhász, Soukup [10]). Given finite nonempty sets of ordinals x and
y such that maxx < max y, we define

x ∗ y =

{
x \ y if maxx ∈ y,
x ∩ y if maxx /∈ y.

The following definition is a simplification of [10, Definition 2.1] replacing ω2 by
ω1:

Definition 5. Let P be the forcing formed by conditions p = (Dp, hp, ip) where:

1. Dp ∈ [ω1]<ω;
2. hp : Dp → ℘(Dp) and for all ξ ∈ Dp, maxhp(ξ) = ξ;
3. ip : [Dp]

2 → [Dp]
<ω and for all ξ, η ∈ Dp, ξ < η, we have that:

(a) hp(ξ) ∗ hp(η) ⊆
⋃
γ∈ip({ξ,η}) hp(γ),

(b) ip({ξ, η}) ⊆ ξ;

ordered by p ≤ q if Dp ⊇ Dq, for all ξ ∈ Dq, hp(ξ) ∩Dq = hq(ξ) and ip|[Dq ]2 = iq.

The underlying set in [10, Definition 2.1] is ω2 and the partial order depends on
a function f : [ω2]2 → [ω2]≤ω with the so called strong property ∆. In our case, if
we take f : [ω1]2 → [ω1]≤ω to be defined by f({ξ, η}) = min{ξ, η}, then we have an
exact analogue of Definition 2.1 in [10], where ω2 is replaced by ω1. The role of the
function f is to put some control on the image of the functions ip in order to prove,
for instance, that P has the countable chain condition (ccc). Since in the case of
the present work the underlying set is ω1, condition 3.(b) already limits the image
of a pair {ξ, η} to a countable set. In particular, the following lemma follows from
similar arguments as in [17, 10]:

Lemma 6 (Rabus [17], Lemma 4.1; Juhász, Soukup [10], Lemma 2.8). P satisfies
ccc.

We will also need the following technical lemmas, whose versions in [10] consider
the forcing with ω2 as the underlying set, but still hold in our case:

Lemma 7 (Lemma 2.2, [10]). For each α < ω1, the set D = {p ∈ P : α ∈ Dp} is
dense in P.

Lemma 8 (Lemma 2.16, [10]; see also [17]). Let t = (Dt, ht, it) ∈ P, Dt = T∪E∪F ,
where T < E < F , E = {α1 < · · · < αk}, F = {α1

i , α
2
i : 1 ≤ i ≤ k}, H ⊆ T and

∀1 ≤ i ≤ k ht(α
1
i ) ∩ ht(α2

i ) =
⋃

ξ∈H∪E

ht(ξ).

Then there is u = (Du, hu, iu) ∈ P such that Du = T ∪ E and:

(a) u ≤ t|T ;
(b) u ≤ t|H∪E;
(c) T \

⋃
ξ∈H∪E ht(ξ) ⊆ hu(α1).

Let us finally define the space K. Fix the ground model V and a generic filter
G.
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Definition 9 (Juhász, Soukup [10], Definition 2.3). For each ξ < η < ω1, working
in V [G], let

h(ξ) =
⋃
p∈G

hp(ξ) and i({ξ, η}) =
⋃
p∈G

ip({ξ, η}),

and let L be the topological space (ω1, τ), where τ is the topology on ω1 which has
the family of sets

{h(ξ) : ξ < ω1} ∪ {ω1 \ h(ξ) : ξ < ω1}
as a topological subbasis.

It follows from [10, Theorem 1.5] that for all ξ < ω1, h(ξ) is a compact subset of
L and it easy to check that

{h(ξ) \
⋃
η∈F

h(η) : F ∈ [ξ]<ω}

forms a local topological basis at ξ. Therefore L is a locally compact scattered
zero-dimensional space. In V P, let K be the one-point compactification of L and
let us denote the point of compactification by ω1, ie. K \ L = {ω1}. Then, we get
the following result:

Theorem 10 (Theorem 3.2, [4]). In V [G], K is a compact scattered zero-dimensional
space such that Kn is hereditarily separable for every n ∈ N.

The proof that Kn is hereditarily separable for every n ∈ N in the forcing
extension is done similarly to [4, Theorem 3.2]. Again there is a use of the function f
with strong property ∆, which guarantees that any uncountable family of conditions
has a pair of conditions having three properties (i), (ii) and (iii) (see page 510 of
[4]), which can therefore be amalgamated using [4, Lemma 2.7]. The existence of
such a pair in our case follows with no use of the function f , since conditions (i),
(ii) and (iii) get trivial when f({ξ, η}) = min{ξ, η}.

Theorem 10 guarantees the first part of Theorem 2. The next section is devoted
to prove that the space K constructed in this section also satisfies assertion (ii) of
Theorem 2, that is, C(K) fails to have property (E’).

3. C(K) does not have property (E’)

Let us now prove the main result about the weak∗ convergence of sequences in
C(K)∗. Recall that by the Riesz Representation Theorem, C(K)∗ can be seen as
the space of bounded regular Borel measures on K. Given x ∈ K, we denote by δx
the point-evaluation functional, i.e. δx(f) = f(x).

It is well-known that bounded regular Borel measures on a compact scattered
space K are atomic, see e.g. [18, Theorem 19.7.6]. This means that each µ ∈
C(K)∗ is of the form

∑
x∈S axδx for some countable S ⊆ K and a sequence of

nonzero scalars (ax)x∈S such that the series
∑
x∈S ax converges absolutely. The

variation of a measure µ =
∑
x∈S axδx ∈ C(K)∗ on some set X ⊆ K is defined by

|µ|(X) =
∑
x∈S∩X |ax|. This characterization of the elements C(K)∗ will be helpful

in our proof.

Theorem 11. In V [G], if (µn)n∈N ⊆ BC(K)∗ is a sequence weak∗ convergent to
δω1 , then there is n0 ∈ N such that, for all n ≥ n0, we have that µn({ω1}) 6= 0.
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Proof. Suppose by contradiction that there is, in V [G], a sequence (µn)n∈N ⊆
BC(K)∗ that converges weakly∗ to δω1

and such that for all n ∈ N, µn({ω1}) = 0.

In V , let 0 < ε < 1
5 and let δ̇ω1

be a P-name for δω1
and (µ̇n)n∈N a sequence of

names for elements of BC(K)∗ such that

P 
 ∀n ∈ N µ̇n({ω1}) = 0 and (µ̇n)n∈N converges weakly∗ to δ̇ω1 .

Since K is scattered, it follows that each µn is atomic. Therefore:

P 
 ∀n ∈ N ∃Fn ⊆ L finite such that |µ̇n|(K \ Fn) < ε̌.

For each n ∈ N, let An be a maximal antichain in P such that for every p ∈ An
decides Fn, i.e. there exists a finite subset F pn of ω1 such that p forces |µ̇n|(K\F̌ pn) <
ε̌ and for every α ∈ F pn , there is aα ∈ R such that p forces that µ̇n({α̌}) = ǎα̌.
By Lemma 7, we can assume, without loss of generality, that for every n ∈ N and
every p ∈ An, F pn ⊆ Dp.

From the fact that P is ccc, it follows that there exists γ < ω1 such that⋃
{Dp : p ∈ An, n ∈ N} ⊆ γ.

Given q ∈ P, since hq(γ) ⊆ γ ⊆ ω1 and, therefore, q 
 ω1 /∈ h(γ), it follows that

q 
 δ̇ω1(h(γ)) = 0. Since P forces (µ̇n)n∈N to converge weakly∗ to δ̇ω1 , there are
r ≤ q and m ∈ N such that

r 
 ∀n ≥ m |µ̇n(h(γ))| < ε̌.

Once again by Lemma 7, we can assume, without loss of generality, that γ ∈ Dr.
Let H = Dr ∩ γ and E = Dr \ γ = {γ = α1 < · · · < αk}. Let F ⊆ ω1 be such that
E < F and |F | = 2|E| and denote F = {α1

i , α
2
i : 1 ≤ i ≤ k}.

We will obtain, after 3 steps, u ∈ P and n ∈ N such that u ≤ r, n ≥ m and
u 
 |µ̇n(h(γ))| > ε̌, contradicting the fact that r 
 ∀n ≥ m |µ̇n(h(γ))| < ε̌. In Step
1, we extend r to a condition s such that Ds = Dr ∪F and for every 1 ≤ i ≤ k, we
have hs(α

1
i ) ∩ hs(α2

i ) =
⋃
ξ∈Dr

hs(ξ); in Step 2, we extend s to a condition t such
that Dt ⊆ γ ∪ E ∪ F and for which there exist n ≥ m and p ∈ An such that t ≤ p
and

t 
 |µ̇n(
⋃
ξ∈Ďr

h(ξ))| < ε̌;

finally, in Step 3 we will obtain u such that Du = (Dt ∩ γ) ∪ E, u ≤ r and

u 
 |µ̇n(h(γ))| > ε̌,

as desired.
Step 1. Define s = (Ds, hs, is) by Ds = Dr ∪ F ;

hs(ξ) =

{
hr(ξ) if ξ ∈ Dr,
Dr ∪ {ξ} if ξ ∈ F ;

and

is({ξ, η}) =

{
ir({ξ, η}) if ξ, η ∈ Dr,
min{ξ, η} ∩Ds otherwise.

Clearly s satisfies conditions 1 and 2 of Definition 5 and condition 3.(a) for ξ, η ∈ Dr

follow from the fact that r ∈ P.
Let ξ ∈ Dr and η ∈ F . Hence, ξ ∈ hs(η) and hs(ξ) ⊆ hs(η) so that hs(ξ)∗hs(η) =

hs(ξ)\hs(η) = ∅. Therefore, s satisfies condition 3.(a) of Definition 5 for these pairs.
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Let now be ξ, η ∈ F and ξ < η. In this case, ξ /∈ hs(η) and hence, hs(ξ)∗hs(η) =
hs(ξ) ∩ hs(η) = Dr. But Dr = H ∪ E ⊆ ξ ∩Ds, so that s satisfies condition 3.(a)
for these pairs.

We get that s ∈ P and it is easy to see that s ≤ r.
Step 2. Note that P forces that

⋃
ξ∈Ďr

h(ξ) is a clopen set and ω1 /∈
⋃
ξ∈Ďr

h(ξ).

Hence, P forces that δ̇ω1
(K \

⋃
ξ∈Ďr

h(ξ)) = 1.

Since P forces that (µ̇n)n∈N converges weakly∗ to δ̇ω1
, there are t ≤ s and n ≥ m

such that
t 
 µ̇n(K \

⋃
ξ∈Ďr

h(ξ)) > 1− ε̌.

But An is a maximal antichain and hence, we can assume, without loss of gen-
erality, that there exists p ∈ An such that t ≤ p. Since t ≤ p, r, we have that

t 
 µ̇n(F̌ pn \
⋃
ξ∈Ďr

h(ξ)) ≥ µ̇n(K \
⋃
ξ∈Ďr

h(ξ))− |µ̇n|(K \ F̌ pn) > 1− 2ε̌,

i.e, ∑
{aα : α ∈ F pn \

⋃
ξ∈Dr

ht(ξ)} > 1− 2ε.

Step 3. Let T = Dt ∩ γ and observe that t, T, E, F and H satisfy the assumptions
of Lemma 8. Hence, there exists u = (Du, hu, iu) ∈ P such that Du = T ∪ E,
u ≤ t|T , u ≤ t|H∪E and T \

⋃
ξ∈H∪E ht(ξ) ⊆ hu(α1) and notice that t|T ≤ p,

H ∪ E = Dr and t|H∪E = r.
It remains to show the statement below and we have a contradiction with the

fact that u ≤ r and that r 
 |µ̇n(h(γ))| < ε̌:
Claim. u 
 µ̇n(h(γ)) > ε̌.
Proof of the claim. Consider

I = {α ∈ F pn : t 
 α̌ /∈
⋃
ξ∈Ďr

h(ξ)} = F pn \
⋃
ξ∈Dr

ht(ξ)

and note that, since Dr = H ∪E, α1 = γ and F pn ⊆ Dp ⊆ Dt∩γ = T , we have that

I ⊆ T \
⋃
ξ∈Dr

ht(ξ) ⊆ hu(γ).

As u ≤ t|T ≤ p and p forces that µ̇n({α̌}) = ǎα̌ for every α ∈ F pn , we have that

u 
 µ̇n(Ǐ) =
∑
α∈Ǐ

ǎα > 1− 2ε̌,

and, since P forces ‖µ̇n‖ ≤ 1, we have that

u 
 |µ̇n|(h(γ) \ Ǐ) ≤ |µ̇n|(K \ Ǐ) ≤ ‖µ̇n‖ − |µ̇n|(Ǐ) < 1− (1− 2ε̌) = 2ε̌.

Therefore,
u 
 µ̇n(h(γ)) ≥ µ̇n(Ǐ)− |µ̇n|(h(γ) \ Ǐ) > 1− 4ε̌ > ε̌,

completing the proof of the claim and the theorem. �

In particular, it follows from the previous result that there is no sequence of
points from L converging to ω1 in K.

Corollary 12. In V [G], C = {µ ∈ C(K)∗ : µ({ω1}) = 0} is a weak∗ sequentially
closed convex subset of C(K)∗ which is not weak∗ closed. Therefore, C(K) does
not have property (E’).
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Proof. C is clearly convex and it follows from Theorem 11 that C is weak∗ sequen-
tially closed. Indeed, since K is scattered, given a sequence (µn)n∈N in C, it follows
that each µn is atomic, that is µn =

∑∞
k=1 a

n
kδαn

k
for some sequence (ank )k∈N of

scalars and some sequence (αnk )k∈N of distinct elements of K. Since µn ∈ C, we get
moreover that (αnk )k∈N is indeed a sequence in K \ {ω1} = L.

Given µ ∈ C(K)∗, we can write µ =
∑
α∈S aαδα for some countable S ⊆ K and

a sequence of scalars (aα)α∈S . If µ /∈ C, then ω1 ∈ S and aω1 6= 0. Now, if (µn)n∈N
converges to µ, let νn = µn−

∑
α∈S\{ω1} aαδα and notice that (νn)n∈N is a bounded

sequence in C(K)∗ weak∗ convergent to aω1δω1 , contradicting Theorem 11. This
concludes the proof that C is weak∗ sequentially closed.

Finally, let us show that δω1 ∈ C
w∗

. Given ε > 0, f1, . . . , fn ∈ C(K), we have to

U =

n⋂
i=1

f−1
i [(fi(ω1)− ε, fi(ω1) + ε)]

is an open neighborhood of ω1. Since ω1 is an accumulation point of K, there is
x ∈ K \ {ω1} ∩ U and it follows that

δx ∈ {µ ∈ C(K)∗ : ∀1 ≤ i ≤ n, |µ(fi)− δω1(fi)| < ε} ∩ C.

Therefore δω1 ∈ C
w∗

. �
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