AN EXAMPLE DISTINGUISHING TWO CONVEX SEQUENTIAL PROPERTIES

CHRISTINA BRECH

Abstract. Corson and Efremov introduced convex notions of countable tightness and the Frchet-Urysohn property in the context of Banach spaces. We present an old unpublished example which consistently distinguishes these properties. Together with a recent result from [12], it yields that it is independent from ZFC whether these properties are equivalent or not.

1. INTRODUCTION

Recall the following sequential properties of a given topological space X :

- X has countable tightness if every point of a closed set $F \subseteq X$ is in the closure of a countable subset of F.
- X is Frchet-Urysohn if every point of a closed set $F \subseteq X$ is the limit of a sequence in F.

It is clear that every Frchet-Urysohn space has countable tightness and results by Balogh [2] and Fedorchuk [8] established the independence of the converse implication for compact spaces.

The main purpose of this note is to present a consistent example of a Banach space which distinguishes convex counterparts introduced by Corson and Efremov in [5] and [6] of the aforementioned topological properties. In fact, it distinguishes between the property of Corson and an intermediate property recently introduced by Martnez-Cervantes in [11].

Definition 1. Let X be a Banach space. Let us consider the following properties:

- X has the property (C) of Corson if every family of closed convex subsets of X whose intersection is empty has a countable subfamily with empty intersection.
- X has the property (E') if every weak^{*} sequentially closed convex set $C \subseteq$ X[∗] is weak[∗] closed.
- X has the property (E) of Efremov if every point in a bounded weak* closed convex set $C \subseteq X^*$ is the weak^{*} limit of a sequence in C.

Notice that (E) is an immediate convex analogue of Frchet-Urysohn in the context of dual spaces and Pol proved in $[16]$ the following characterization of (C) ,

Date: September 8, 2023.

¹⁹⁹¹ Mathematics Subject Classification. 03E35, 46A50.

Key words and phrases. tightness, Frchet-Urysohn, convexity, Corson property, Efremov property.

The author was supported by scholarships from CAPES (3804/05-4) and CNPq (140426/2004- 3 and 202532/2006-2). This work was part of the authors PhD thesis, under the supervision of Profs. Piotr Koszmider and Stevo Todorcevic.

2 CHRISTINA BRECH

turning it into a convex analogue of tightness: a Banach space has property (C) if and only if every point of a bounded weak^{*} closed convex set $C \subseteq X^*$ is in the weak^{*} closure of a countable subset of C . (E) clearly implies (E) , which in turn implies (C), see [12, Lemma 2]. Plichko and Yost ([15], pg. 352) asked whether (C) implies (E) and the main result of this note gives a consistent negative answer to this question:

Theorem 2. It is consistent with ZFC that there is a compact Hausdorff scattered space K such that:

- (i) every finite power K^n of K is hereditarily separable;
- (ii) $C(K)$ does not have property (E') .

Compact spaces are an important source of counterexamples for questions about the topology and the structure of Banach spaces. Given a compact Hausdorff space K, let $C(K)$ be the Banach space of continuous scalar-valued functions defined on K , with the supremum norm. It is well-known that K is scattered if and only if $C(K)$ is an Asplund space (i.e. every separable subspace of $C(K)$ has separable dual), see [13]. Moreover, if all finite powers of K are hereditarily separable, then $C(K)$ is weakly hereditarily Lindelf (see e.g. [9, Theorem 4.38]). Any weakly Lindelf Banach space has property (C), since closed convex sets are weakly closed (see [7, Theorem 3.19]). Hence, we get the following corollary:

Corollary 3. It is consistent with ZFC that there is a Asplund space with property (C) and which does not have property (E') .

Martnez-Cervantes and Poveda proved in [12] that, under the Proper Forcing Axiom, every Banach space which has property (C) also has property (E'), establishing the independence of this statement. Another unpublished example of a space that has (C) and does not have (E) has been constructed by Justin T. Moore as a modification of Ostaszewski's space from [14] assuming the principle \Diamond . An example of a Banach space with property (E') which fails property (E) has been given under the Continuum Hypothesis in [1], but the question whether the implication fails in ZFC remains open. We refer to [12] for a complete account on these and related problems.

Our construction appears originally in the author's PhD thesis [3] and was never published. It is a simplification of the construction made in [4], inspired by [10] and [17] of a locally compact Frchet-Urysohn space of weight ω_2 . The construction in [4] gives a consistent example of a compact space of weight ω_2 with hereditarily separable finite powers, which yields a consistent example of an Asplund space of density ω_2 with interesting structural properties. In the case of the present work, we run a similar construction replacing ω_2 by ω_1 as the underlying of the topological space K . This makes the arguments simpler and allows us to analyse the sequences in the space $C(K)^*$ and prove the main result.

In the next section we introduce the partial order used to force the existence of the space K . We recall some of its properties and how they provide some of the desired properties of the space K . In Section 3, we show Theorem 11, which contains the relevant information about weak^{*} convergence of sequences in $C(K)^*$ and implies that $C(K)$ fails to have property (E') . It is a modification of Rabus's Lemma 5.4 [17], where the convergence of points in the space K is analysed.

2. PRELIMINARY LEMMAS AND THE CONSTRUCTION OF K

Let us fix the following notation:

Definition 4 (Juhász, Soukup $[10]$). Given finite nonempty sets of ordinals x and y such that $\max x < \max y$, we define

$$
x * y = \begin{cases} x \setminus y & \text{if } \max x \in y, \\ x \cap y & \text{if } \max x \notin y. \end{cases}
$$

The following definition is a simplification of [10, Definition 2.1] replacing ω_2 by ω_1 :

Definition 5. Let \mathbb{P} be the forcing formed by conditions $p = (D_p, h_p, i_p)$ where: 1. $D_p \in [\omega_1]^{<\omega}$; 2. $h_p: D_p \to \wp(D_p)$ and for all $\xi \in D_p$, $\max h_p(\xi) = \xi$; 3. $i_p : [D_p]^2 \to [D_p]^{<\omega}$ and for all $\xi, \eta \in D_p$, $\xi < \eta$, we have that: (a) $h_p(\xi) * h_p(\eta) \subseteq \bigcup_{\gamma \in i_p(\{\xi,\eta\})} h_p(\gamma)$, (b) $i_p({\{\xi,\eta\}}) \subseteq \xi;$

ordered by $p \le q$ if $D_p \supseteq D_q$, for all $\xi \in D_q$, $h_p(\xi) \cap D_q = h_q(\xi)$ and $i_p|_{[D_q]^2} = i_q$.

The underlying set in [10, Definition 2.1] is ω_2 and the partial order depends on a function $f : [\omega_2]^2 \to [\omega_2]^{\leq \omega}$ with the so called strong property Δ . In our case, if we take $f: [\omega_1]^2 \to [\omega_1]^{\leq \omega}$ to be defined by $f(\{\xi, \eta\}) = \min{\{\xi, \eta\}}$, then we have an exact analogue of Definition 2.1 in [10], where ω_2 is replaced by ω_1 . The role of the function f is to put some control on the image of the functions i_p in order to prove, for instance, that $\mathbb P$ has the countable chain condition (ccc). Since in the case of the present work the underlying set is ω_1 , condition 3.(b) already limits the image of a pair $\{\xi, \eta\}$ to a countable set. In particular, the following lemma follows from similar arguments as in [17, 10]:

Lemma 6 (Rabus [17], Lemma 4.1; Juhász, Soukup [10], Lemma 2.8). \mathbb{P} satisfies ccc.

We will also need the following technical lemmas, whose versions in [10] consider the forcing with ω_2 as the underlying set, but still hold in our case:

Lemma 7 (Lemma 2.2, [10]). For each $\alpha < \omega_1$, the set $D = \{p \in \mathbb{P} : \alpha \in D_p\}$ is dense in P.

Lemma 8 (Lemma 2.16, [10]; see also [17]). Let $t = (D_t, h_t, i_t) \in \mathbb{P}$, $D_t = T \cup E \cup F$, where $T < E < F$, $E = {\alpha_1 < \cdots < \alpha_k}$, $F = {\alpha_i^1, \alpha_i^2 : 1 \le i \le k}$, $H \subseteq T$ and

$$
\forall 1 \leq i \leq k \quad h_t(\alpha_i^1) \cap h_t(\alpha_i^2) = \bigcup_{\xi \in H \cup E} h_t(\xi).
$$

Then there is $u = (D_u, h_u, i_u) \in \mathbb{P}$ such that $D_u = T \cup E$ and:

(a) $u \leq t|_T$;

(b) $u \leq t|_{H\cup E}$;

(c) $T \setminus \bigcup_{\xi \in H \cup E} h_t(\xi) \subseteq h_u(\alpha_1).$

Let us finally define the space K . Fix the ground model V and a generic filter G.

Definition 9 (Juhász, Soukup [10], Definition 2.3). For each $\xi < \eta < \omega_1$, working in $V[G]$, let

$$
h(\xi) = \bigcup_{p \in G} h_p(\xi) \quad \text{and} \quad i(\{\xi, \eta\}) = \bigcup_{p \in G} i_p(\{\xi, \eta\}),
$$

and let L be the topological space (ω_1, τ) , where τ is the topology on ω_1 which has the family of sets

$$
\{h(\xi): \xi < \omega_1\} \cup \{\omega_1 \setminus h(\xi): \xi < \omega_1\}
$$

as a topological subbasis.

It follows from [10, Theorem 1.5] that for all $\xi < \omega_1$, $h(\xi)$ is a compact subset of L and it easy to check that

$$
\{h(\xi) \setminus \bigcup_{\eta \in F} h(\eta) : F \in [\xi]^{<\omega}\}
$$

forms a local topological basis at ξ . Therefore L is a locally compact scattered zero-dimensional space. In $V^{\mathbb{P}}$, let K be the one-point compactification of L and let us denote the point of compactification by ω_1 , ie. $K \setminus L = {\omega_1}$. Then, we get the following result:

Theorem 10 (Theorem 3.2, [4]). In $V[G]$, K is a compact scattered zero-dimensional space such that K^n is hereditarily separable for every $n \in \mathbb{N}$.

The proof that K^n is hereditarily separable for every $n \in \mathbb{N}$ in the forcing extension is done similarly to [4, Theorem 3.2]. Again there is a use of the function f with strong property Δ , which guarantees that any uncountable family of conditions has a pair of conditions having three properties (i), (ii) and (iii) (see page 510 of [4]), which can therefore be amalgamated using [4, Lemma 2.7]. The existence of such a pair in our case follows with no use of the function f , since conditions (i), (ii) and (iii) get trivial when $f({\xi, \eta}) = min{\xi, \eta}$.

Theorem 10 guarantees the first part of Theorem 2. The next section is devoted to prove that the space K constructed in this section also satisfies assertion (ii) of Theorem 2, that is, $C(K)$ fails to have property (E') .

3. $C(K)$ does not have property (E')

Let us now prove the main result about the weak[∗] convergence of sequences in $C(K)^*$. Recall that by the Riesz Representation Theorem, $C(K)^*$ can be seen as the space of bounded regular Borel measures on K. Given $x \in K$, we denote by δ_x the point-evaluation functional, i.e. $\delta_x(f) = f(x)$.

It is well-known that bounded regular Borel measures on a compact scattered space K are atomic, see e.g. [18, Theorem 19.7.6]. This means that each $\mu \in$ $C(K)^*$ is of the form $\sum_{x\in S} a_x \delta_x$ for some countable $S \subseteq K$ and a sequence of nonzero scalars $(a_x)_{x \in S}$ such that the series $\sum_{x \in S} a_x$ converges absolutely. The variation of a measure $\mu = \sum_{x \in S} a_x \delta_x \in C(K)^*$ on some set $X \subseteq K$ is defined by $|\mu|(X) = \sum_{x \in S \cap X} |a_x|$. This characterization of the elements $C(K)^*$ will be helpful in our proof.

Theorem 11. In $V[G]$, if $(\mu_n)_{n \in \mathbb{N}} \subseteq B_{C(K)^*}$ is a sequence weak* convergent to δ_{ω_1} , then there is $n_0 \in \mathbb{N}$ such that, for all $n \geq n_0$, we have that $\mu_n(\{\omega_1\}) \neq 0$.

Proof. Suppose by contradiction that there is, in $V[G]$, a sequence $(\mu_n)_{n\in\mathbb{N}}\subseteq$ $B_{C(K)^*}$ that converges weakly^{*} to δ_{ω_1} and such that for all $n \in \mathbb{N}$, $\mu_n(\{\omega_1\}) = 0$.

In V, let $0 < \varepsilon < \frac{1}{5}$ and let $\dot{\delta}_{\omega_1}$ be a P-name for δ_{ω_1} and $(\dot{\mu}_n)_{n \in \mathbb{N}}$ a sequence of names for elements of $B_{C(K)^*}$ such that

$$
\mathbb{P} \Vdash \forall n \in \mathbb{N} \; \dot{\mu}_n(\{\omega_1\}) = 0 \text{ and } (\dot{\mu}_n)_{n \in \mathbb{N}} \text{ converges weakly* to } \dot{\delta}_{\omega_1}.
$$

Since K is scattered, it follows that each μ_n is atomic. Therefore:

 $\mathbb{P} \Vdash \forall n \in \mathbb{N} \ \exists F_n \subseteq L \text{ finite such that } |\mu_n|(K \setminus F_n) < \check{\varepsilon}.$

For each $n \in \mathbb{N}$, let A_n be a maximal antichain in \mathbb{P} such that for every $p \in A_n$ decides F_n , i.e. there exists a finite subset F_n^p of ω_1 such that p forces $|\mu_n|(K\setminus \check{F}_n^p)$ $\check{\varepsilon}$ and for every $\alpha \in F_n^p$, there is $a_\alpha \in \mathbb{R}$ such that p forces that $\mu_n(\{\check{\alpha}\}) = \check{a}_{\check{\alpha}}$. By Lemma 7, we can assume, without loss of generality, that for every $n \in \mathbb{N}$ and every $p \in A_n$, $F_n^p \subseteq D_p$.

From the fact that $\mathbb P$ is ccc, it follows that there exists $\gamma < \omega_1$ such that

$$
\bigcup \{D_p : p \in A_n, \ n \in \mathbb{N}\} \subseteq \gamma.
$$

Given $q \in \mathbb{P}$, since $h_q(\gamma) \subseteq \gamma \subseteq \omega_1$ and, therefore, $q \Vdash \omega_1 \notin h(\gamma)$, it follows that $q \Vdash \dot{\delta}_{\omega_1}(h(\gamma)) = 0$. Since $\mathbb P$ forces $(\dot{\mu}_n)_{n \in \mathbb N}$ to converge weakly^{*} to $\dot{\delta}_{\omega_1}$, there are $r \leq q$ and $m \in \mathbb{N}$ such that

$$
r \Vdash \forall n \ge m \ |\dot{\mu}_n(h(\gamma))| < \check{\varepsilon}.
$$

Once again by Lemma 7, we can assume, without loss of generality, that $\gamma \in D_r$. Let $H = D_r \cap \gamma$ and $E = D_r \setminus \gamma = {\gamma = \alpha_1 < \cdots < \alpha_k}$. Let $F \subseteq \omega_1$ be such that $E < F$ and $|F| = 2|E|$ and denote $F = \{\alpha_i^1, \alpha_i^2 : 1 \le i \le k\}.$

We will obtain, after 3 steps, $u \in \mathbb{P}$ and $n \in \mathbb{N}$ such that $u \leq r, n \geq m$ and $u \Vdash |\dot{\mu}_n(h(\gamma))| > \check{\varepsilon}$, contradicting the fact that $r \Vdash \forall n \geq m |\dot{\mu}_n(h(\gamma))| < \check{\varepsilon}$. In Step 1, we extend r to a condition s such that $D_s = D_r \cup F$ and for every $1 \leq i \leq k$, we have $h_s(\alpha_i^1) \cap h_s(\alpha_i^2) = \bigcup_{\xi \in D_r} h_s(\xi)$; in Step 2, we extend s to a condition t such that $D_t \subseteq \gamma \cup E \cup F$ and for which there exist $n \geq m$ and $p \in A_n$ such that $t \leq p$ and

$$
t \Vdash |\dot{\mu}_n(\bigcup_{\xi \in \check{D}_r} h(\xi))| < \check{\varepsilon};
$$

finally, in Step 3 we will obtain u such that $D_u = (D_t \cap \gamma) \cup E$, $u \leq r$ and

$$
u \Vdash |\dot{\mu}_n(h(\gamma))| > \check{\varepsilon},
$$

as desired.

Step 1. Define
$$
s = (D_s, h_s, i_s)
$$
 by $D_s = D_r \cup F$;

$$
h_s(\xi) = \begin{cases} h_r(\xi) & \text{if } \xi \in D_r, \\ D_r \cup \{\xi\} & \text{if } \xi \in F; \end{cases}
$$

and

$$
i_s(\{\xi,\eta\}) = \begin{cases} i_r(\{\xi,\eta\}) & \text{if } \xi,\eta \in D_r, \\ \min\{\xi,\eta\} \cap D_s & \text{otherwise.} \end{cases}
$$

Clearly s satisfies conditions 1 and 2 of Definition 5 and condition 3.(a) for $\xi, \eta \in D_r$ follow from the fact that $r \in \mathbb{P}$.

Let $\xi \in D_r$ and $\eta \in F$. Hence, $\xi \in h_s(\eta)$ and $h_s(\xi) \subseteq h_s(\eta)$ so that $h_s(\xi) * h_s(\eta) =$ $h_s(\xi)\backslash h_s(\eta) = \emptyset$. Therefore, s satisfies condition 3.(a) of Definition 5 for these pairs.

6 CHRISTINA BRECH

Let now be $\xi, \eta \in F$ and $\xi < \eta$. In this case, $\xi \notin h_s(\eta)$ and hence, $h_s(\xi) * h_s(\eta) =$ $h_s(\xi) \cap h_s(\eta) = D_r$. But $D_r = H \cup E \subseteq \xi \cap D_s$, so that s satisfies condition 3.(a) for these pairs.

We get that $s \in \mathbb{P}$ and it is easy to see that $s \leq r$.

Step 2. Note that \mathbb{P} forces that $\bigcup_{\xi \in \check{D}_r} h(\xi)$ is a clopen set and $\omega_1 \notin \bigcup_{\xi \in \check{D}_r} h(\xi)$. Hence, $\mathbb P$ forces that $\dot{\delta}_{\omega_1}(K \setminus \bigcup_{\xi \in \check{D}_r} h(\xi)) = 1$.

Since P forces that $(\mu_n)_{n \in \mathbb{N}}$ converges weakly^{*} to $\dot{\delta}_{\omega_1}$, there are $t \leq s$ and $n \geq m$ such that

$$
t \Vdash \dot{\mu}_n(K \setminus \bigcup_{\xi \in \check{D}_r} h(\xi)) > 1 - \check{\varepsilon}.
$$

But A_n is a maximal antichain and hence, we can assume, without loss of generality, that there exists $p \in A_n$ such that $t \leq p$. Since $t \leq p, r$, we have that

$$
t \Vdash \dot{\mu}_n(\check{F}_n^p \setminus \bigcup_{\xi \in \check{D}_r} h(\xi)) \ge \dot{\mu}_n(K \setminus \bigcup_{\xi \in \check{D}_r} h(\xi)) - |\dot{\mu}_n|(K \setminus \check{F}_n^p) > 1 - 2\check{\varepsilon},
$$

i.e,

$$
\sum \{a_{\alpha} : \alpha \in F_n^p \setminus \bigcup_{\xi \in D_r} h_t(\xi) \} > 1 - 2\varepsilon.
$$

Step 3. Let $T = D_t \cap \gamma$ and observe that t, T, E, F and H satisfy the assumptions of Lemma 8. Hence, there exists $u = (D_u, h_u, i_u) \in \mathbb{P}$ such that $D_u = T \cup E$, $u \leq t|_{T}$, $u \leq t|_{H \cup E}$ and $T \setminus \bigcup_{\xi \in H \cup E} h_t(\xi) \subseteq h_u(\alpha_1)$ and notice that $t|_{T} \leq p$, $H \cup E = D_r$ and $t|_{H \cup E} = r$.

It remains to show the statement below and we have a contradiction with the fact that $u \leq r$ and that $r \Vdash |\dot{\mu}_n(h(\gamma))| < \check{\varepsilon}$. Claim. $u \Vdash \dot{\mu}_n(h(\gamma)) > \check{\varepsilon}$.

Proof of the claim. Consider

$$
I = \{ \alpha \in F_n^p : t \Vdash \check{\alpha} \notin \bigcup_{\xi \in \check{D}_r} h(\xi) \} = F_n^p \setminus \bigcup_{\xi \in D_r} h_t(\xi)
$$

and note that, since $D_r = H \cup E$, $\alpha_1 = \gamma$ and $F_n^p \subseteq D_p \subseteq D_t \cap \gamma = T$, we have that

$$
I \subseteq T \setminus \bigcup_{\xi \in D_r} h_t(\xi) \subseteq h_u(\gamma).
$$

As $u \le t |_{T} \le p$ and p forces that $\mu_n(\{\check{\alpha}\}) = \check{a}_{\check{\alpha}}$ for every $\alpha \in F_n^p$, we have that

$$
u \Vdash \dot{\mu}_n(\check{I}) = \sum_{\alpha \in \check{I}} \check{a}_{\alpha} > 1 - 2\check{\varepsilon},
$$

and, since \mathbb{P} forces $\|\mu_n\| \leq 1$, we have that

$$
u \Vdash |\dot{\mu}_n|(h(\gamma) \setminus \check{I}) \le |\dot{\mu}_n|(K \setminus \check{I}) \le ||\dot{\mu}_n|| - |\dot{\mu}_n|(\check{I}) < 1 - (1 - 2\check{\varepsilon}) = 2\check{\varepsilon}.
$$

Therefore,

$$
u \Vdash \dot{\mu}_n(h(\gamma)) \ge \dot{\mu}_n(\check{I}) - |\dot{\mu}_n|(h(\gamma) \setminus \check{I}) > 1 - 4\check{\varepsilon} > \check{\varepsilon},
$$

completing the proof of the claim and the theorem. \Box

In particular, it follows from the previous result that there is no sequence of points from L converging to ω_1 in K.

Corollary 12. In $V[G], C = \{ \mu \in C(K)^* : \mu({\{\omega_1\}}) = 0 \}$ is a weak* sequentially closed convex subset of $C(K)^*$ which is not weak^{*} closed. Therefore, $C(K)$ does not have property (E') .

Proof. C is clearly convex and it follows from Theorem 11 that C is weak^{*} sequentially closed. Indeed, since K is scattered, given a sequence $(\mu_n)_{n\in\mathbb{N}}$ in C, it follows that each μ_n is atomic, that is $\mu_n = \sum_{k=1}^{\infty} a_k^n \delta_{\alpha_k^n}$ for some sequence $(a_k^n)_{k \in \mathbb{N}}$ of scalars and some sequence $(\alpha_k^n)_{k \in \mathbb{N}}$ of distinct elements of K. Since $\mu_n \in C$, we get moreover that $(\alpha_k^n)_{k \in \mathbb{N}}$ is indeed a sequence in $K \setminus {\{\omega_1\}} = L$.

Given $\mu \in C(K)^*$, we can write $\mu = \sum_{\alpha \in S} a_{\alpha} \delta_{\alpha}$ for some countable $S \subseteq K$ and a sequence of scalars $(a_{\alpha})_{\alpha \in S}$. If $\mu \notin C$, then $\omega_1 \in S$ and $a_{\omega_1} \neq 0$. Now, if $(\mu_n)_{n \in \mathbb{N}}$ converges to μ , let $\nu_n = \mu_n - \sum_{\alpha \in S \setminus {\{\omega_1\}}} a_{\alpha} \delta_{\alpha}$ and notice that $(\nu_n)_{n \in \mathbb{N}}$ is a bounded sequence in $C(K)^*$ weak^{*} convergent to $a_{\omega_1} \delta_{\omega_1}$, contradicting Theorem 11. This concludes the proof that C is weak^{*} sequentially closed.

Finally, let us show that $\delta_{\omega_1} \in \overline{C}^{w^*}$. Given $\varepsilon > 0$, $f_1, \ldots, f_n \in C(K)$, we have to

$$
U = \bigcap_{i=1}^{n} f_i^{-1} [(f_i(\omega_1) - \varepsilon, f_i(\omega_1) + \varepsilon)]
$$

is an open neighborhood of ω_1 . Since ω_1 is an accumulation point of K, there is $x \in K \setminus {\omega_1} \cap U$ and it follows that

$$
\delta_x \in \{\mu \in C(K)^* : \forall 1 \leq i \leq n, \ |\mu(f_i) - \delta_{\omega_1}(f_i)| < \varepsilon\} \cap C.
$$

Therefore $\delta_{\omega_1} \in \overline{C}^{w^*}$

.

REFERENCES

- [1] Antonio Avilés, Gonzalo Martínez-Cervantes, and José Rodríguez, Weak*-sequential properties of Johnson-Lindenstrauss spaces, J. Funct. Anal. 276 (2019), no. 10, 3051–3066.
- [2] Zoltán T. Balogh, On compact Hausdorff spaces of countable tightness, Proc. Amer. Math. Soc. 105 (1989), no. 3, 755–764.
- [3] Christina Brech, Construes genricas de espaos de Asplund $C(K)$, Ph.D. thesis, Universidade de So Paulo/Universit de Paris 7 - Denis Diderot, 2008.
- [4] Christina Brech and Piotr Koszmider, Thin-very tall compact scattered spaces which are hered*itarily separable*, Trans. Amer. Math. Soc. 363 (2011), no. 1, 521-543.
- [5] Harry H. Corson, *The weak topology of a Banach space*, Trans. Amer. Math. Soc. **101** (1961), 1–15.
- [6] Nikolay M. Efremov, A condition for a Banach space to be a dual, Izv. Vyssh. Uchebn. Zaved. Mat. (1984), no. 4, 11–13.
- [7] Marian Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, Jan Pelant and Václav Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer-Verlag, New York, 2001.
- [8] Vitaly V. Fedorčuk, Completely closed mappings, and the compatibility of certain general topology theorems with the axioms of set theory, Mat. Sb. $(N.S.)$ 99(141) (1976), no. 1, 3–33, 135.
- [9] Petr Hájek, Vicente Montesinos Santalucía, Jon Vanderwerff, and Václav Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 26, Springer, New York, 2008.
- [10] István Juhász and Lajos Soukup, How to force a countably tight, initially ω_1 -compact and noncompact space?, Topology Appl. 69 (1996), no. 3, 227–250.
- [11] Gonzalo Martínez-Cervantes, Banach spaces with weak*-sequential dual ball, Proc. Amer. Math. Soc. 146 (2018), no. 4, 1825–1832.
- [12] Gonzalo Martínez-Cervantes and Alejandro Poveda, On the property (C) of Corson and other sequential properties of Banach spaces, J. Math. Anal. Appl. 527 (2023), no. 2, Paper No. 127441, 9.
- [13] Isaac Namioka and Robert R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), no. 4, 735–750.

8 CHRISTINA BRECH

- [14] Adam J. Ostaszewski, A countably compact, first-countable, hereditarily separable regular space which is not completely regular, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), no. 4, 431–435.
- [15] Anatolij Plichko and David Yost, Complemented and uncomplemented subspaces of Banach spaces, Extracta Math. 15 (2000), no. 2, 335–371, III Congress on Banach Spaces (Jarandilla de la Vera, 1998).
- [16] Roman Pol, On a question of H. H. Corson and some related problems, Fund. Math. 109 (1980), no. 2, 143–154.
- [17] Mariusz Rabus, An ω_2 -minimal Boolean algebra, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3235–3244.
- [18] Zbigniew Semadeni, Banach spaces of continuous functions. Vol. I, PWN—Polish Scientific Publishers, Warsaw, 1971, Monografie Matematyczne, Tom 55.

Departamento de Matemtica, Instituto de Matemtica e Estatstica, Universidade de So Paulo, Rua do Mato, 1010, 05508-090, So Paulo, Brazil Email address: brech@ime.usp.br