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Abstract.
The separable quotient problem asks whether every infinite di-

mensional Banach space has a nontrivial separable quotient. In this
survey, we review results connecting this problem to the existence
of uncountable biorthogonal systems in nonseparable Banach spaces.
Our discussion highlights recent advancements which apply combi-
natorial techniques in their proofs. Additionally, we present an old
construction by Todorčević, which proves the existence of a nonsepa-
rable Banach space with no uncountable biorthogonal systems under
the assumption that the bounding number is equal to ℵ1.
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1. Introduction

The following problem, commonly referred to as the “separable quotient prob-
lem”, is one of the most significant open questions in Banach space theory.

Problem 1.1. Given an infinite dimensional Banach space X, is there a closed
infinite dimensional linear subspace Y of X such that X/Y is an infinite dimensional
separable Banach space?

It has likely been considered since the 1930s, alongside other important problems
stemming from Banach’s seminal work. It is attributed to Stanis law Mazur and
Stefan Banach. However, there is no explicit mention of it in Banach’s book [3],
and I couldn’t find any formal record of it. The earliest reference I am aware of,
where the problem is explicitly stated, is Rosenthal’s paper [29].

Several other important problems from Banach’s book have been solved. E.g.
the basis problem, which asks whether every Banach space admits a Schauder basis,
was answered in the negative by Enflo in [12]; the basic sequence problem, which
asks whether every Banach space admits a basic sequence, was answered in the
positive by Mazur (it is stated in [3] with no proof, see also [4]).

Quotients of Banach spaces are useful for gaining insight into the structure of
the space itself and vice versa. This is exemplified by the so called three space
problems, which ask the following: knowing two out of the three spaces X, Y ⊆ X
and X/Y have a certain property, can we conclude that the third space also shares
this property? There are several examples of three-space properties in the literature,
see [9].

The author was partially supported by FAPESP grants (2016/25574-8 and 2023/12916-1).
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During the 1960s and the 1970s, several positive results for the separable quotient
problem have been obtained. Let us mention that the following classes of Banach
spaces do admit separable quotients:

• Banach spaces containing c0 (Bessaga, Pe lczyński, [5]);
• Reflexive spaces (Pe lczyński, [24]);
• Weakly compactly generated spaces (Amir, Lindenstrauss, [1]);
• Separable spaces (Johnson, Rosenthal, [16]);
• Spaces whose dual contains an unconditional basic sequence (Hagler, John-

son, [14]).

These are classical results and most of their original proofs have a structural flavour.
In this paper, we review additional results that provide partial answers to Problem
1.1 or solve related problems. These results mostly relate the density of the Ba-
nach space to the cardinality of structures therein, and their proofs often combine
classical analytic methods with combinatorial approaches. The results discussed
here are only a small sample of the diverse combinatorial constructions related to
separable quotients in nonseparable Banach spaces.

Section 2 contains results relating the existence of separable quotients, quotients
with Schauder basis and biorthogonal systems. Section 3 focuses on the existence
of biorthogonal systems in C(K) spaces. The only complete proof is presented in
Section 4. We prove an old result by Todorčević which is crucial to the discussion
of recent results in Section 5. The reader is assumed to be familiar with classical
set theory definitions, which we have not introduced unless necessary for the proofs
presented. We also aimed to minimize the introduction of too many definitions from
Banach space theory; however, readers can find these definitions in the references
if needed. We follow the notation of [18] for set theory and [15] for Banach spaces.

2. Quotients with Schauder bases

The following result about spaces with small density, originally stated in [16,
Theorem IV.1(i)] for separable spaces, was proved by Johnson and Rosenthal in
the 1970s:

Theorem 2.1 (Johnson, Rosenthal, [16]). If X is a Banach space of density strictly
smaller than b, then X has a separable quotient.

Basic sequences play a crucial role in its proof. Schauder bases generalize
Hamel bases (for finite-dimensional vector spaces) and orthogonal bases (for Hilbert
spaces) to the realm of infinite-dimensional Banach spaces. Recall that a sequence
(en)n in a Banach space X is a Schauder basis if every vector x ∈ X has a unique
representation as a series

∑
n λnen. As noted in the introduction, it has been

known since the 1970s that separable Banach spaces may not have Schauder bases,
see [12]. However, it is also known that every infinite-dimensional Banach space
X contains a basic sequence, meaning a sequence of vectors that forms a Schauder
basis for some infinite-dimensional closed subspace of X, see [4]. In fact, Banach
spaces are abundant in basic sequences.
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Given a normalized weakly∗ null sequence (φn)n in X∗ (ie. (φn(x))n converges
to 0 for every x ∈ X) and Γ ⊆ ω, let

Q : X → span{φk : k ∈ Γ}

Q(x) =
∑
k∈Γ

φk(x)φk.

Notice that if Q is a well-defined continuous mapping and some nontriviality ar-
gument guarantees that it is surjective, this yields the desired separable quotient,
isomorphic to span{φk : k ∈ Γ}.

Let D ⊆ SX be such that |D| < b and the linear span of D is norm-dense in
X. b is called the bounding number and it states for the smallest cardinality of
a subset of ωω which is unbounded with respect to ⩽∗, where f ⩽∗ g means that
f(n) ⩽ g(n) fails for finitely many n’s. For each x ∈ D, since (φn)n is weakly∗ null,
let fx ∈ ωω be such that

k ⩾ fx(n) ⇒ |φk(x)| < 1

2n
.

From |D| < b, we get that there is a ⩽∗-dominating f ∈ ωω for {fx : x ∈ D}.
Without loss of generality, f can be assumed to be strictly increasing. Let

Γ = {f(n) : n ∈ ω}. For each x ∈ D, there is n0 ∈ ω such that n ⩾ n0 implies
fx(n) ⩽ f(n). Hence,∑

k∈Γ

|φk(x)| =
∑
n∈ω

|φf(n)(x)| =
∑
n<n0

φf(n)(x)| +
∑
n⩾n0

|φf(n)(x)|

⩽
∑
n<n0

|φf(n)(x)| +
∑
n⩾n0

1

2n
,

so that the series
∑

k∈Γ |φ∗
k(x)| converges.

Hence, if (φf(n))n forms a basic sequence in X∗, then we get Q well-defined.
The job in [16] is to refine the sequence (φn)n in order to get this and ensure the
surjectivity.

In this argument, the basic sequence plays a crucial role in identifying a natural
candidate for a quotient space, and it allows us to obtain a quotient with a Schauder
basis at no additional cost. The following consistency result gets separable quotients
with Schauder basis in spaces of large density:

Theorem 2.2 (Dodos, Lopez-Abad, Todorčević, [11])). It is consistent with the
usual axioms of ZFC that every Banach space with density at least ℵω has a sepa-
rable quotient with an unconditional basis.

The proof extracts a partition property of some cardinal κ which ensures the
existence of an unconditional basic sequence in the dual of every Banach space of
density at least κ. A result from [14] and the fact that ℵω consistently satisfies
this partition property imply the previous result. Another result combining com-
binatorial methods and Hagler and Johnson’s result to guarantee the existene of a
separable quotient is the following:
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Theorem 2.3 (Argyros, Dodos, Kanellopoulos, [2]). Every dual Banach space has
a separable quotient.

Pelczyński asked in [24] whether the following problem is equivalent to the orig-
inal separable quotient problem:

Problem 2.1. Does every Banach space have a nontrivial quotient with Schauder
basis?

Theorem 2.1 implies that this is equivalent to the original separable quotient
problem, since a separable quotient would itself have a separable quotient with
Schauder basis. A natural stronger version of Problem 2.1 was originally posed by
Plichko in [26]:

Problem 2.2. Does every Banach space have a quotient with Schauder basis of
the length of its density?

A negative answer was given by Plichko himself. First, he gave a negative answer
to the following question, posed by Davis and Johnson in [10].

Problem 2.3. Does every Banach space have a bounded fundamental biorthogonal
system?

Recall that a family of pairs (xα, φα)α∈κ in X ×X∗ is a biorthogonal system if
φα(xα) = 1 and φα(xβ) = 0 if α ̸= β. It is a fundamental biorthogonal system if
moreover span{xα : α ∈ κ} is norm dense in X. If we could start with a biorthog-
onal system in the argument presented after Theorem 2.1, it would guarantee that
the map is surjective, if well-defined. In [25], Plichko showed the following result.

Theorem 2.4. If Γ is an index set of cardinality greater than c, then ℓc∞(Γ) admits
no bounded fundamental biorthogonal system.

A few years later Plichko proved in [26] that Problems 2.2 and 2.3 are equivalent.
Finally, Godefroy and Louveau posed in [13] the following more general question:

Problem 2.4. Does every nonseparable Banach space have an uncountable bior-
thogonal system?

The next section discusses consistent negative solutions to this problem in the
context of spaces of continuous functions.

3. C(K) spaces without biorthogonal systems

Given a compact Hausdorff space K, let C(K) be the space of continuous real-
valued functions on K with the supremum norm. The class of C(K) spaces has
been of great importance in Banach space theory, particularly in the context of
nonseparable spaces, see [28]. It is a great source of interesting examples and their
structure can be analysed from the properties of the topological space K. Moreover,
every Banach space X is isometrically isomorphic to a subspace of C(BX∗), where
the dual ball is equipped with the weak∗ topology.
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The classical Stone-Weierstrass Theorem guarantees that the density of C(K)
equals the weight of K and Riesz Representation Theorem identifies each linear
continuous functional on C(K) with a regular Borel measure on K.

There is a natural way to get biorthogonal systems in C(K) from discrete subsets
of K: if {xα : α ∈ Γ} is a discrete subset of K, Urysohn’s Lemma guarantees the
existence, for each α < κ, of φα ∈ C(K) such that φα(xα) = 1 and φα(xβ) = 0
for β ̸= α. Taking the point-evaluating functional δα ∈ C(K)∗ defined by δα(φ) =
φ(xα), we get that (φα, δα)α∈Γ is a biorthogonal system in C(K).

This argument can be improved to show the following result:

Theorem 3.1 (Todorčević, [32]). If a compact Hausdorff space K has a nonsepa-
rable subspace, then C(K) contains an uncountable biorthogonal system.

On the other hand, the following result is some sort of contrapositive for scattered
spaces:

Theorem 3.2 (folklore). Let K be a compact Hausdorff scattered space. If Kn is
hereditarily separable for every n ∈ ω, then C(K) has no uncountable biortogonal
systems.

Proof. Suppose (fα, φα)α∈ω1 is an uncountable biorthogonal system in C(K) and
we may assume without loss of generality that ∥fα∥ ⩽ 1 for every α ∈ ω1. From
Riesz Representation Theorem, each φα is a regular Borel measure on K and,
in case of a scattered space, these measures are atomic, i.e. for each α ∈ ω1,
φα =

∑
n∈ω λα

nδxα
n

for some sequence of scalars (λα
n)n with

∑
n∈ω |λn| < ∞ and

some sequence of points (xα
n)n in K.

Given a sufficiently small ε > 0 and using the fact that

{
∑
i<n

λiδxi : λi ∈ Q and xi ∈ K}

is norm-dense in C(K)∗, counting and approximation arguments give us an un-
countable Γ ⊆ ω1, n ∈ ω and (λi)i<n in Q such that for every α ∈ Γ,

∥φα −
∑
i<n

λiδxα
i
∥ < ε.

Let S = {(xα
1 , . . . , x

α
n) : α ∈ Γ} ⊆ Kn. From the hypothesis, there is I ∈ [Γ]ω

such that S ⊆ {(xα
1 , . . . , x

α
n) : α ∈ I}. Given any γ ∈ Γ∖I and δ = ε

n·max{|λi|:1⩽i⩽n} ,

let
U = Πn

i=1f
−1[(fγ(xγ

i ) − δ, fγ(xγ
i ) + δ)]

and notice that U ∩ S is an open set in S such that (xγ
1 , . . . , x

γ
n) ∈ U ∩ S. Hence,

there is α ∈ I such that (xα
1 , . . . , x

α
n) ∈ U . This implies that

|φγ(fγ)−φα(fγ)| ⩽ ∥φγ−
n∑

i=1

λiδxγ
i
∥+ |

n∑
i=1

λi(fγ(xγ
i )−fγ(xα

i ))|+∥
n∑

i=1

λiδxα
i
−φα∥

< ε +

n∑
i=1

|λi|δ + ε < 3ε,

contradicting the fact that φγ(fγ) = 1 and φα(fγ) = 0. □
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The previous result derives from arguments from the 1980s related to pointwise
convergence and the weak topology in C(K), which can be found in [22, 34, 35].
It identifies a class of Banach spaces where one might seek counterexamples to
Question 2.4. Notably, there are several consistent constructions of nonmetriz-
able compact scattered spaces with hereditarily separable finite powers. The most
known is likely Kunen’s construction, presented in [22, Theorem 7.1] and achieved
under the continuum hypothesis. Additionally, Shelah built such a space under
♢ (see [30]), and a variation of Ostaszewski’s construction under ♣ (see [23]) was
described in [15, Theorem 4.36].

We have chosen to present here the following construction by Todorčević, as it
will be crucial in the subsequent discussion:

Theorem 3.3 (Todorčević, Theorem 2.4, [31]). Assuming that b = ℵ1, there exists
a nonmetrizable compact scattered Hausdorff space K such that Kn is hereditarily
separable for every n ∈ ω. In particular, C(K) is a nonseparable Asplund space
with no uncountable biorthogonal systems.

A complete proof of this result is provided in the next section. Several other
consistent examples of nonseparable Banach spaces without uncountable biorthog-
onal systems have been obtained by forcing. The versatility of the forcing method
has enabled the construction of examples with a wide range of properties. We
will highlight two constructions that illustrate this diversity by pursuing different
directions.

The first construction proves the consistency of a gap between the density of a
Banach space and the maximal cardinality of a biorthogonal system.

Theorem 3.4 (Brech, Koszmider, [7]). It is consistent with the usual axioms of
set theory ZFC that there exists a compact scattered Hausdorff space K of weight
ℵ2 such that Kn is hereditarily separable for every n ∈ ω. In particular, C(K) is a
Banach space of density ℵ2 with no uncountable biorthogonal systems.

All C(K) constructions discussed so far have the property of being Asplund
spaces: a Banach space X is Asplund if every separable subspace has a separable
dual. Namioka and Phelps proved in [21] that C(K) is Asplund if and only if
K is scattered. This was important in the proof of Theorem 3.2, as it ensured
that the functionals on C(K) are atomic measures. Indeed, Asplund spaces can
be considered “small”, which might explain why the nonseparable examples which
do not admit uncountable biorthogonal systems were found in this class, even with
density ℵ2. This will be relevant in Section 5. For now, let us turn to the second
construction, which demonstrates that being Asplund is consistently not a necessary
condition for the nonexistence of uncountable biorthogonal systems in C(K) spaces:

Theorem 3.5 (Koszmider, [17]). It is consistent with the usual axioms of set theory
ZFC that there exists a compact Hausdorff space K of weight ℵ1 such that C(K)
is a space with no uncountable semi-biorthogonal systems, i.e. there is no sequence
of pairs (xα, φα)α∈κ in X × X∗ such that φα(xα) = 1, φα(xβ) = 0 if α > β and
φα(xβ) ⩾ 0 if α < β.



8 CHRISTINA BRECH

On one hand, it follows from a result of [19] that K is not scattered, hence C(K)
is not Asplund. On the other hand, by results from [6] and [32], the example from
Theorem 3.5 has an uncountable semi-biorthogonal system.

4. A construction by Todorčević

In this section we provide a proof of Theorem 3.3, obtained by Todorčević, see
[31]. Recall that the theorem says that assuming that b = ℵ1, there exists a
nonmetrizable compact scattered Hausdorff space K such that Kn is hereditarily
separable for every n ∈ ω. In particular, C(K) is a nonseparable Asplund space
with no uncountable biorthogonal systems.

Let (fα)α<ω1 be an unbounded family in (ωω,⩽∗) and without loss of generality
we may assume that fα <∗ fβ for every α < β < ω1.

Fix e : [ω1]2 → ω a function with the following properties:

• For every β ∈ ω1, eβ := e({·, β}) : β → ω is injective.
• For every α ∈ ω1, {eβ ↾α: β < ω1} is a countable set.

The existence of such e is a consequence of the existence of an Aronszajn tree, see
e.g. [18].

Let ∆(α, β) = min{n ∈ ω : fα(n) ̸= fβ(n)} if α ̸= β, ∆(α, α) = ∞,

H(β) = {α < β : e(α, β) ⩽ fβ(∆(α, β))}

and recursively define

V (β) = {β} ∪
⋃

η∈H(β)

{α ∈ V (η) : ∀ξ ∈ H(β) ∪ {β} (ξ ̸= η ⇒ ∆(α, ξ) < ∆(α, η))}.

Let us denote by φ(α, η, β) the sentence

∀ξ ∈ H(β) ∪ {β} (ξ ̸= η ⇒ ∆(α, ξ) < ∆(α, η)),

so that

V (β) = {β} ∪
⋃

η∈H(β)

{α ∈ V (η) : φ(α, η, β) holds}.

Finally, let Vn(β) = {α ∈ V (β) : ∆(α, β) ⩾ n} and we claim that there is a
topology τ in ω1 such that {Vn(β) : n ∈ ω} forms a local topological basis at β.
The desired space K will be the one-point compactification of L := (ω1, τ).

Claim 1. If α ∈ Vn(β), then there is k ∈ ω such that Vk(α) ⊆ Vn(β).

Proof. We prove this by induction on β. Given α ∈ Vn(β), α ̸= β, let η ∈ H(β)
be such that α ∈ V (η) and φ(α, η, β) holds. In particular, n ⩽ ∆(α, β) < ∆(α, η),
so that α ∈ Vn(η). By the inductive hypothesis, there is k ∈ ω such that Vk(α) ⊆
Vn(η). We may assume without loss of generality k ⩾ max{n,∆(α, η)} and let us
check that Vk(α) ⊆ Vn(β). Fix α′ ∈ Vk(α). First, since ∆(α′, α) ⩾ k ⩾ n and
∆(α, β) ⩾ n, we get that ∆(α′, β) ⩾ n. Second, ∆(α′, α) ⩾ ∆(α, η) implies that
φ(α′, η, β) holds, so that α′ ∈ V (β). Hence, Vk(α) ⊆ Vn(β). □
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Let L = (ω1, τ) and notice that L is Hausdorff since V∆(α,β)(α)∩ V∆(α,β)(β) are
disjoint for α ̸= β. Let us prove that it is locally compact. For each β ∈ ω1 and
n ∈ ω, let

Fβ,n = {η ∈ H(β) : e(η, β) ⩽ fβ(n)}
and notice that the first property of e guarantees that Fβ,n is finite.

Claim 2. For every β ∈ ω1 and every n ∈ ω, if α ∈ Vn(β) ∖ Vn+1(β), then there
is η ∈ Fβ,n such that α ∈ V∆(η,β)(η) and φ(α, η, β) holds.

Proof. If α ∈ Vn(β) ∖ Vn+1(β), then ∆(α, β) = n and there is η ∈ H(β) such that
φ(α, η, β) holds. In particular, ∆(α, β) < ∆(α, η). Hence, ∆(η, β) = ∆(α, β) = n,
and since η ∈ H(β), we get that e(η, β) ⩽ fβ(n), which ensures that η ∈ Fβ,n and
concludes the proof of the claim. □

Claim 3. For every β ∈ ω1 and every m ∈ ω, Vm(β) is compact.

Proof. We prove it by induction on β. Let X ⊆ Vm(β) be an infinite set and notice
that one of the following alternatives holds:

(1) For every n ⩾ m, X ∩ Vn(β) is infinite.
(2) There exists n ⩾ m such that X ∩ (Vn(β) ∖ Vn+1(β)) is infinite.

If (1) holds, then β is an accumulation point of X in Vm(β) and we are done. If
(2) holds, it follows from Claim 2 that there is η ∈ Fβ,n such that V∆(η,β)(η) ∩X
is infinite and φ(α, η, β) holds for every α ∈ V∆(η,β)(η) ∩ X. By the inductive
hypothesis, there is γ ∈ V∆(η,β)(η) an accumulation point of V∆(η,β)(η) ∩ X. Let
us show that γ ∈ Vm(β).

Given k ⩾ max{n,∆(γ, η)}, there is α ∈ Vk(γ) ∩ V∆(η,β)(η) ∩X. In particular,
α ∈ Vn(β) ∖ Vn+1(β). Hence, ∆(γ, α) ⩾ k ⩾ n and ∆(α, β) = n, so that ∆(γ, β) =
n. Moreover, ∆(γ, α) ⩾ k ⩾ ∆(γ, η), so that

∀ξ ∈ H(β) ∪ {β}, ξ ̸= η ⇒ ∆(γ, ξ) = ∆(α, ξ) < ∆(α, η) = ∆(γ, η).

This proves that φ(γ, η, β) holds and, therefore, γ ∈ Vn(β) ⊆ Vm(β). □

L is clearly a scattered space, since for any nonempty X ⊆ ω1, minX is isolated
in X. Let K be the one point compactification of L.

The proof that Kn is hereditarily separable requires some extra work. Given

Γ ⊆ ω1, we say that a family (βξ
1 , . . . , β

ξ
n)ξ∈Γ ⊆ ωn

1 is cofinal if for every α ∈ ω1,

there is η ∈ Γ such that α < βξ
i for every ξ ⩾ η in Γ and every 1 ⩽ i ⩽ n.

Claim 4. ([31, Lemma 2.0]) If (βξ
1 , . . . , β

ξ
n)ξ∈ω1

⊆ ωn
1 is cofinal, then there are

δ < ξ < ω1 such that βδ
i ∈ H(βξ

i ) for every 1 ⩽ i ⩽ n.

Before proving the claim, let us finish the proof of the theorem. We want to
prove that if K is the one-point compactification of L, then Kn is hereditarily
separable for every n ∈ ω. From [27, Theorem 3.1], Kn is hereditarily separable if
and only if no uncountable sequence is left-separated, that is, for every uncountable
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(β̄ξ)ξ<ω1 ⊆ Kn, there is η < ω1 such that β̄η ∈ {β̄ξ : ξ < η}. For each ξ < ω1, let

β̄ξ = (βξ
1 , . . . , β

ξ
n) ∈ Kn.

We prove this by induction on n (take K0 = {ω1}). Suppose that there is

1 ⩽ j ⩽ n and Γ ∈ [ω1]ω1 such that (βξ
j )ξ∈Γ is constant. Then, we can omit

the jth coordinate to get an uncountable sequence in Kn−1 which cannot be left-
separated by the inductive hypothesis. This immediately yields that (β̄ξ)ξ<ω1 is
not left-separated either.

Otherwise, we may assume withuot loss of generality that each (βξ
i )ξ∈ω1 is strictly

increasing (and does not include ω1). By contradiction, suppose that, for each

ξ < ω1, there is (mξ
1, . . . ,m

ξ
n) ∈ ωn such that

∀ξ < ω1 ∀1 ⩽ i ⩽ n βξ
i ∈ Vmξ

i
(βξ

i )

and
∀ξ < η < ω1 ∃1 ⩽ i ⩽ n βξ

i /∈ Vmη
i
(βη

i ).

Passing to an uncountable subset Γ ⊆ ω1, we may assume that, for each 1 ⩽ i ⩽ n,

there is mi ∈ ω such that mξ
i = mi for every ξ ∈ Γ. Also, refining Γ to a further

uncountable subset, we may assume without loss of generality that ∆(βξ
i , β

η
i ) ⩾ mi

for every ξ < η in Γ.

Since (βξ
1 , . . . , β

ξ
n)ξ∈Γ ⊆ ωn

1 is cofinal, it follows from Claim 4 that there are

ξ < η in Γ such that βξ
i ∈ H(βη

i ) for every 1 ⩽ i ⩽ n. Since H(β) ⊆ V (β)

and ∆(βξ
i , β

η
i ) ⩾ mi for every ξ < η in Γ, we conclude that βξ

i ∈ Vmi(β
η
i ) for

every 1 ⩽ i ⩽ n, which contradicts our assumption and concludes the proof of the
theorem.

Let us finally prove Claim 4.

Proof of Claim 4. Since ωω with the usual Baire topology is a second countable
space, there is I ∈ [ω1]ω such that for every k ∈ ω and every ξ ∈ ω1, there is δ ∈ I

such that ∆(βδ
i , β

ξ
i ) ⩾ k for every 1 ⩽ i ⩽ n. Fix γ ∈ ω1 such that βδ

i < γ for

every δ ∈ I and every 1 ⩽ i ⩽ n. Let Γ ∈ [ω1]ω1 be such that (βξ
1 , . . . , β

ξ
n)ξ∈Γ is

still cofinal and if ξ < η in Γ, then βξ
i < βη

j for all 1 ⩽ i, j ⩽ n. We may assume,

without loss of generality, that γ < βξ
i for every ξ ∈ Γ and every 1 ⩽ i ⩽ n.

We will proceed by refining the cofinal family several times to some cofinal
subfamily with better properties. To simplify the notation, we will keep calling Γ
the uncountable subset obtained after each further refinement.

We use the second property of the function e to refine Γ to an uncountable subset
such that for each 1 ⩽ i ⩽ n, there is ei : γ → ω such that

∀ξ ∈ Γ eβξ
i
↾γ= ei.

We claim that we can refine Γ to some uncountable subset to ensure that for
each 1 ⩽ i ⩽ n, there is mi ∈ ω such that

∀ξ, η ∈ Γ fβξ
i
↾mi

= fβη
i
↾mi

and
∀k ∈ ω ∃ξ ∈ Γ ∀1 ⩽ i ⩽ n fβξ

i
(mi) > k.
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We prove it for n = 1. Suppose by contradiction that for each m ∈ ω and s ∈ ωm

such that

Γs = {ξ ∈ Γ : fβξ
1
↾m= s}

is uncountable, there is ks ∈ ω such that

∀ξ ∈ Γs fβξ
1
(m) ⩽ ks.

Let f ∈ ωω be defined by

f(m) = max{ks : s ∈ ωm+1 and ∀j ∈ m + 1, s(j) ⩽ ks↾j}.

For each m ∈ ω, let

Γm =
⋃

{Γs : s ∈ ωm and Γs is uncountable}.

Clearly Γm+1 ⊆ Γm and by induction one proves that each Γm is cocountable in Γ,
so that

⋂
m∈ω Γm is an uncountable set. It remains to notice that

∀ξ ∈
⋂
m∈ω

Γm fβξ
1
⩽∗ f,

which contradicts the fact that (fβξ
1
)ξ∈Γ is unbounded since (βξ

1)ξ∈Γ is cofinal in

ω1. This holds because if ξ ∈
⋂

m∈ω Γm, then for all m ∈ ω, sm = fβξ
1
↾m is such

that Γs is uncountable. Therefore, fβξ
1
(m) ⩽ ks ⩽ f(m). The general case requires

a multi-dimensional version of the preceding argument.
Now, we use an auxiliary and arbitrary ξ0 ∈ Γ to choose δ ∈ I such that

∆(βδ
i , β

ξ0
i ) ⩾ mi, so that fβδ

i
↾mi

= f
β
ξ0
i

↾mi
. Since fβδ

i
<∗ fγ , let m0 ∈ ω be such

that fβδ
i
(k) < fγ(k) for all k ⩾ m0.

Finally, choose ξ ∈ Γ such that fβξ
i
(mi) ⩾ max{ei(βδ

i ), fβδ
i
(mi) + 1} for all 1 ⩽

i ⩽ n. We have that δ < ξ are such that e(βδ
i , β

ξ
i ) = eβξ

i
(βδ

i ) = ei(βδ
i ) ⩽ fβξ

i
(mi).

To conclude that δ ∈ H(ξ), it remains to see that mi = ∆(βδ
i , β

ξ
i ). From the choice

of δ and the fact that ∆(βξ
i , β

ξ0
i ) ⩾ mi, we know that mi ⩽ ∆(βδ

i , β
ξ0
i ) = ∆(βδ

i , β
ξ
i ).

On the other hand, fβξ
i
(mi) > fβδ

i
(mi), so that ∆(βδ

i , β
ξ
i ) ⩽ mi, which concludes

the proof. □

5. Biorthogonal systems in nonseparable spaces

In the previous sections we focused our attention in C(K) spaces. But there
are also forcing constructions of other sorts of nonseparable Banach spaces without
uncountable biorthogonal systems, see e.g. [20]. In this section we would like to
present results ensuring the consistency of the existence of uncountable biorthogonal
systems in every nonseparable Banach space. We start with the following important
result:

Theorem 5.1 (Todorčević, 2006, [32]). Martin’s maximum implies that every non-
separable Banach space has a quotient with a monotone Schauder basis of length
ℵ1.
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The proof of this result involves an improvement to the uncountable context of
the argument presented after Theorem 2.1. We discuss below a variation of that
argument, which proves the following equivalence result:

Theorem 5.2 (Brech, Todorčević, 2023, [8]). Under the P-ideal dichotomy, the
following are equivalent:

(1) b > ℵ1

(2) Asplund spaces of density ℵ1 have a quotient with a monotone Schauder
basis of length ℵ1.

(3) Nonseparable Asplund spaces have a biorthogonal system of length ℵ1.

The contrapositive implication from ¬(1)⇒ ¬(3) follows immediately from [31,
Theorem 2.4] (Theorem 3.3 above), with no use of the P-ideal dichotomy. (2)⇒(3)
holds in ZFC because if X is a nonseparable Asplund space and Y is a subspace of
X o density ℵ1, (2) implies that Y has a quotient with a monotone Schauder basis
of length ℵ1. The associated biorthogonal system in this quotient can be lifted to a
biorthogonal system in Y using the quotient mapping. And the functionals of this
biorthogonal system can be lifted to the whole space using Hahn-Banach Theorem.

The real work is to prove (1)⇒(2). Here, instead of getting the quotient mapping
from a sequence in X as in the proof of Theorem 2.1, the idea is to construct
an uncountable transfinite basic sequence (φα)α∈Γ in X∗ such that the quotient
mapping is defined as follows:

Q : X → span{φ∗
α : α ∈ Γ}

Q(x) =
∑
α∈Γ

φα(x)φ∗
α.

To get such a basic sequence (φα)α∈Γ in X∗, we start from a suitable normalized
sequence (φα)α∈ω1

in X∗ such that for every x ∈ X, (φα(x))α∈ω1
has countable

support.
In the original countable setting, we had a weakly∗-null convergent sequence for

free. Here, the P-ideal dichotomy is used to select the uncountable version of such
a sequence: an uncountable Γ ⊆ ω1 such that

∀x ∈ X ∀ε > 0 {α ∈ Γ : |φα(x)| ⩾ ε} is finite.

The argument is indeed a bit more involving as the job is not only to refine, but
also to modify it. The ideals used in this argument contain countable pieces of the
desired uncountable Γ. They are ensured to be P-ideals using the fact that X has
density ℵ1 < b.

The sequence is again refined using PID to obtain an uncountable Γ0 ⊆ Γ

∀x ∈ D
∑
α∈Γ

|φα(x)| < ∞.

for a suitable dense subspace D of X. The proof that the ideal containing countable
sets where this happens is indeed a P-ideal is similar to the proof presented in
Section 2.
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Theorem 5.1 had already been reformulated in [33], where Martin’s maximum
was replaced by the P-ideal dichotomy and the cardinal assumption p > ℵ1. It
is worth recalling that the conclusion of Theorem 5.2 holds for Asplund spaces,
while both in Theorem 5.1 (and in its modification in) [33], the conclusion holds for
Banach spaces. The point is that the cardinal assumption p > ℵ1 allows stronger
diagonalisation arguments than the weaker b > ℵ1. Asplund spaces have weak∗

sequentially compact dual balls and this helps in finding convergent sequences and
replaces the diagonalisation arguments at some point. In both cases, convergent
sequences are used to kill one of the alternatives of the PID.
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