Somas de Riemann

Somas de Riemann, cont.

Veremos a seguir como definir a integral tripla de uma função. Para isso usaremos basicamente os mesmos passos que usamos na definição da integral dupla: definição das somas de Riemann, com uma possível interpretação física de seu significado; definição dos domínios de integração; qual é a classe de funções integráveis com a qual trabalharemos, e finalmente o Teorema de Fubini.

Vamos tentar resolver o problema: calcular a massa de um sólido D, cuja densidade de massa em cada ponto (x, y, z) é dada pela função $\rho(x, y, z)$, que supomos contínua e positiva.

1

29/02/2016

Somas de Riemann, cont.

Para cada paralelepípedo P_i , $i=1,2,\ldots,q$, consideramos um ponto $(\alpha_i,\beta_i,\gamma_i)\in P_i$; denotamos por $V(P_i)$ o volume do paralelepípedo P_i .

A massa do paralelepípedo P_i é dada por $\rho(\alpha_i, \beta_i, \gamma_i)V(P_i)$.

A soma $\sum_{i=1}^{q} \rho(\alpha_i, \beta_i, \gamma_i) V(P_i)$ é uma aproximação da massa de D.

Em geral, se diminuirmos $|\Delta|$ a aproximação melhora. É "natural" definirmos a massa de D como sendo um limite dessas somas, quando $|\Delta| \to 0$.

Começamos com um paralelepípedo, $P = [a,b] \times [c,d] \times [e,f]$, que contém D. Consideramos os paralelepípedos P_i , formados por planos paralelos aos planos coordenados, que passam por pontos das partições de [a,b], [c,d] e [e,f]. Assim obtemos uma partição $\Delta = \{P_1,P_2,\ldots,P_q\}$ de P.

A norma da partição, denotada por $|\Delta|$, é o comprimento da maior das diagonais principais dos paralelepípedos P_i , i = 1, 2, ..., q.

2

29/02/2016

Somas de Riemann, cont.

Em geral, para f(x,y,z) definida em D, positiva ou não, contínua ou não, as somas $\sum_{i=1}^q f(x_i,y_i,z_i)V(P_i)$ estão definidas e são chamadas somas de Riemann de f, relativas a partição Δ .

Dizemos que o número real L é o limite dessas somas para $|\Delta| \to 0$, se dado $\varepsilon > 0$ arbitrário, existe $\delta > 0$ tal que

$$\left|L - \sum_{i=1}^{q} f(x_i, y_i, z_i) V(P_i)\right| < \varepsilon \text{ para qualquer } \Delta \text{ com } |\Delta| < \delta$$
e qualquer escolha de pontos $(x_i, y_i, z_i) \in P_i$.

Prova-se que, quando existe L, ele é único e não depende da escolha do paralelepípedo P que contém D, uma vez que convencionamos $f(x_i, y_i, z_i) = 0$, se $(x_i, y_i, z_i) \notin D$.

Funções Integráveis

Definição 1

Quando existe o limite L dizemos que f é integrável em D e denotamos

$$L = \iiint_D f(x, y, z) dxdydz.$$

É possível provar que, se $D \subset \mathbb{R}^3$ é limitado e f é integrável em D, então existe um número real M > 0 tal que |f(x, y, z)| < M, $\forall (x, y, z) \in D$.

5

29/02/2016

Funções Integráveis, cont.

Além disso, se $f(x, y, z) \le g(x, y, z), \ \forall (x, y, z) \in D$ então

$$\iiint_D f(x,y,z) \, dxdydz \leq \iiint_D g(x,y,z) \, dxdydz \, .$$

Funções Integráveis, cont.

Para efetuar os cálculos de integrais triplas as seguintes propriedades são muito úteis:

Teorema 2

Se $D \subset \mathbb{R}^3$ é um subconjunto limitado, e f e g são funções integráveis em D, então f+g e cf, $c \in \mathbb{R}$ são integráveis em D e vale

$$\iiint_{D} (f+g)(x,y,z) dxdydz = \iiint_{D} f(x,y,z) dxdydz +$$

$$+ \iiint_{D} g(x,y,z) dxdydz$$

$$\iiint_{D} (cf)(x,y,z) dxdydz = c \iiint_{D} f(x,y,z) dxdydz.$$

(continua...)

6

29/02/2016

Domínios de Integração

Seja D um subconjunto limitado do \mathbb{R}^3 , e $\rho(x,y,z)=1$ para $(x,y,z)\in D$. Pela definição da soma de Riemann associada à ρ sabemos que ela é uma aproximação para a massa de D, mas como $\rho\equiv 1$, ela pode ser interpretada como uma aproximação para o volume de D. Isto sugere que o volume de D deveria ser definido como $\iiint_D 1 \, dx dy dz$, desde que essa integral exista. Como para as integrais duplas, não nos interessam domínios de

Como para as integrais duplas, não nos interessam domínios de integração para os quais a integral de uma função constante (ou mesmo de uma função contínua) não exista. Queremos trabalhar com domínios para os quais seja possível definir volume.

Domínios de Integração, cont.

Vejamos um exemplo de um conjunto onde a função constante não é integrável:

Exemplo 3

Seja $D = \{(x, y, z) \in [0, 1] \times [0, 1] \times [0, 1] \mid x, y, z \in \mathbb{Q}\}$. Seja f definida em D, dada por

$$f(x,y) = \begin{cases} 1, & \text{se } (x,y,z) \in D \\ 0, & \text{se } (x,y,z) \notin D \end{cases}$$

Para qualquer partição P_1, P_2, \ldots, P_q de D podemos escolher pontos $(\alpha_i, \beta_i, \gamma_i) \in P_i$ de maneira a obter $\sum_{i=1}^q f(\alpha_i, \beta_i, \gamma_i) \ V(P_i) = 0, \ \sum_{i=1}^q f(\alpha_i, \beta_i, \gamma_i) \ V(P_i) = 1$ ou $0 \le \sum_{i=1}^q f(\alpha_i, \beta_i, \gamma_i) \ V(P_i) \le 1$.

Como não é possível encontrar um número real L para o qual exista o limite da soma de Riemann, temos, pela definição, que f não é integrável em D.

9

29/02/2016

Domínios de Integração, cont.

Definição 6

Um subconjunto $S\subset\mathbb{R}^3$ diz-se de *conteúdo nulo* se, dado $\varepsilon>0$ arbitário, existem paralelepípedos P_1,P_2,\ldots,P_q de lados paralelos aos planos coordenados tais que

$$S\subset \cup_{i=1}^q P_i$$
 e $\sum_{i=1}^q V(P_i) .$

Teorema 7

Seja $D \subset \mathbb{R}^3$ limitado.

Então existe $\iiint_D 1 \, dx dy dz$ se, e somente se, ∂D tem conteúdo nulo em \mathbb{R}^3 .

Domínios de Integração, cont.

Definição 4

Dado um subconjunto D de \mathbb{R}^3 , dizemos que um ponto $(x,y,z)\in\mathbb{R}^3$ é um *ponto de fronteira* de D se qualquer paralelepípedo centrado em (x,y,z) contém pontos de D e de seu complementar.

O conjunto de todos os pontos de fronteira de D é chamado fronteira de D, denotado ∂D .

Definição 5

Um ponto (x, y, z) diz-se *ponto interior* de D se $(x, y) \in (D - \partial D)$.

O conjunto de todos os pontos interiores de D chama-se interior de D e denota-se \mathring{D} . O conjunto D é fechado se $D = \mathring{D} \cup \partial D$.

10

29/02/2016

Domínios de Integração, cont.

Observação

- 1. Conjuntos limitados e contidos em um plano tem conteúdo nulo em \mathbb{R}^3 .
- 2. Subconjuntos finitos do \mathbb{R}^3 tem conteúdo nulo.
- 3. União finita de conjuntos de conteúdo nulo, tem conteúdo nulo.
- 4. Um paralelepípedo, ou uma "bola", não tem conteúdo nulo.

Domínios de Integração, cont.

Definição 8

Se $D \subset \mathbb{R}^3$ é um subconjunto limitado, dizemos que D tem *volume* se existe $\iiint_{\Omega} 1 \, dx dy dz$. Neste caso, definimos

$$V(D) = \iiint_D 1 \, dx dy dz$$
.

Teorema 9

Seja $D \subset \mathbb{R}^3$ limitado e com volume. Se D tem volume zero, então tem conteúdo nulo em \mathbb{R}^3 .

13

15

29/02/2016

Exemplos de domínios de integração

- 1) Paralelepípedo $P = [a, b] \times [c, d] \times [e, f]$:
- 2) $W = \{(x, y, z) | x^2 + y^2 \le 1 \text{ e } 0 \le z \le x^2 + y^2 \};$
- 3) S, a região do espaço no interior da esfera de centro (0,0,1) e raio 1, que está acima do cone $z = \sqrt{x^2 + y^2}$;
- 4) Sejam $D = \{(x, z) \mid -1 \le x \le 1 \text{ e } 0 \le z \le 1 x^2\}$ e o plano y = 3 - x no \mathbb{R}^3 . Tomemos $S = \{(x, y, z) \in \mathbb{R}^3 \mid (x, z) \in D \text{ e } 0 < y < 3 - x\}.$

Domínios de Integração, cont.

O resultado a seguir será muito útil para decidirmos se um conjunto tem fronteira com conteúdo nulo.

Teorema 10

Seja $D \subset \mathbb{R}^2$ um subconjunto limitado e com volume. Se $f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ é uma função contínua e limitada, então seu gráfico é um subconjunto do \mathbb{R}^3 que tem conteúdo nulo.

29/02/2016

Integrais Triplas

Teorema 11

Seja $D \in \mathbb{R}^3$ um subconjunto limitado e com volume, e seja f = f(x, y, z) uma função limitada em D. Se f é contínua, exceto num conjunto de volume zero, então f é integrável em D.

Teorema 12

Sejam f e g funções integráveis em um conjunto D, onde $D \subset \mathbb{R}^3$ é limitado e com volume. Se o conjunto

$$\{(x, y, z) \in D \mid f(x, y, z) \neq g(x, y, z)\}$$

tem volume zero, então

$$\iiint_D f(x,y,z) dxdydz = \iiint_D g(x,y,z) dxdydz.$$

Integrais Triplas, cont.

Para facilitar o cálculo das integrais triplas podemos recorrer ao teorema que se segue

Teorema 13

Seja $D \in \mathbb{R}^3$ um subconjunto limitado e com volume, e sejam D_1 e D_2 subconjuntos do \mathbb{R}^3 , com volume, tais que $D = D_1 \cup D_2$ e $D_1 \cap D_2$ tem volume zero. Então, se $f: D \longrightarrow \mathbb{R}$ é integrável em D, também será integrável em D_1 e D_2 , e vale

$$\iiint_{D} f(x, y, z) dxdydz = \iiint_{D_{1}} f(x, y, z) dxdydz +$$

$$+ \iiint_{D_{2}} f(x, y, z) dxdydz.$$

17

29/02/2016

Teorema do Valor Médio para a integral tripla

Teorema 15 (TVM)

Seja $D \subset \mathbb{R}^3$ limitado, com volume V(D) e tal que \mathring{D} é conexo, não-vazio. Se f = f(x,y,z) é uma função contínua em D, então existe $(\overline{x},\overline{y},\overline{z}) \in \mathring{D}$ tal que

$$\iiint_D f(x,y,z) dxdydz = f(\overline{x},\overline{y},\overline{z}) V(D) .$$

Estimativa do valor da integral tripla

Teorema 14

Seja $D \in \mathbb{R}^3$ um subconjunto limitado e com volume V(D). Se f = f(x, y, z) é uma função integrável em D, e se m e M são números reais satisfazendo

$$m \le f(x, y, z) \le M, \ \forall (x, y, z) \in D$$
,

então

$$m V(D) \le \iiint_D f(x, y, z) dxdydz \le M V(D)$$
.

18

29/02/2016

Teorema de Fubini

Teorema 16

Seja D_{xy} um subconjunto com área, fechado e limitado do plano 0xy. Sejam $z_1, z_2 \colon D_{xy} \longrightarrow \mathbb{R}$ funções contínuas com $z_1(x,y) \le z_2(x,y)$, para todo $(x,y) \in D_{xy}$.

Seja $W \subset \mathbb{R}^3$,

 $W = \{(x, y, z) \mid (x, y) \in D_{xy} \ e \ z_1(x, y) \le z \le z_2(x, y)\}.$

Se f = f(x, y, z) é uma função integrável em D_{xy} e existe a integral

 $\int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \, dz = F(x,y)$

para todo $(x, y) \in D_{xy}$,

(continua...)

21

Teorema de Fubini, cont.

então existe a integral
$$\iint_{D_{xy}} F(x,y) \, dxdy$$
 e vale

$$\iiint_{W} f(x, y, z) dxdydz = \iint_{D_{xy}} \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) dz dxdy$$
$$= \iint_{D_{xy}} F(x, y) dxdy.$$

Observação

Analogamente ao caso das integrais duplas, se pudermos descrever W em termos dos conjuntos

$$W_2 = \{(x, y, z) \mid (x, z) \in D_{xz} \text{ e } y_1(x, z) \leq y \leq y_2(x, z)\}$$
 ou $W_3 = \{(x, y, z) \mid (y, z) \in D_{yz} \text{ e } x_1(y, z) \leq x \leq x_2(y, z)\}$ teremos diferentes enunciados para o teorema de Fubini.

Teorema de Fubini, cont.

Observação

Satisfeitas as condições para o teorema de Fubini para integrais duplas, temos que

$$\iint_{D_{xy}} F(x, y) dxdy = \int_a^b \int_{p(x)}^{q(x)} F(x, y) dy dx$$

ou

$$\iint_{D_{xy}} F(x,y) dxdy = \int_c^d \int_{r(y)}^{s(y)} F(x,y) dx dy.$$

Assim, teremos no total 6 possíveis formas para a integral iterada de f em W.