NEW!

SHAPE ANALYSIS AND CLASSIFICATION: THEORY AND PRACTICE


by Luciano da Fontoura Costa

and Roberto M. Cesar Junior

CRC Press


Chapter 6

Shape Characterization

6.1 STATISTICS FOR SHAPE DESCRIPTORS

6.2 SOME GENERAL DESCRIPTORS

  • 6.2.1 Perimeter
  • 6.2.2 Area
  • 6.2.3 Centroid (center of mass)
  • 6.2.4 Maximum and Minimum Distance to Centroid
  • 6.2.5 Distance to the Boundary
  • 6.2.6 Diameter
  • 6.2.7 Maximum Chord
  • 6.2.8 Norm Sizes
  • 6.2.9 Maximum Arc Length
  • 6.2.10 Major and Minor Axis
  • 6.2.11 Thickness
  • 6.2.12 Holes-based Shape Features
  • 6.2.13 Topological Descriptors
  • 6.2.14 Polygonal Approximation-Based Shape Descriptors
  • 6.2.15 Shape Descriptors based on Regions and on Graphs
  • 6.2.16 Complexity Descriptors

6.3 FRACTAL GEOMETRY FOR COMPLEXITY DESCRIPTORS

  • 6.3.1 Preliminary Considerations and Definitions
  • 6.3.2 The Box-Counting Approach
  • 6.3.3 Case Example: The Classical Koch Curve
  • 6.3.4 Implementing the Box-Counting Method
  • 6.3.5 The Minkowski Sausage or Dilation Method

6.4 CURVATURE

  • 6.4.1 Biological Motivation
  • 6.4.2 Simple Approaches to Curvature
  • 6.4.3 Curvature-Based Shape Descriptors
  • 6.4.4 c-Curvature

6.5 SHAPE SIGNATURES

6.6 FOURIER DESCRIPTORS

  • 6.6.1 Alternative Fourier Descriptors


General Information about the Book

http://www.ime.usp.br/~cesar/shape_crc


This page is maintained by Roberto M. Cesar Junior, cesar@ime.usp.br and by

Luciano da Fontoura Costa, luciano@if.sc.usp.br