NEW!
SHAPE ANALYSIS AND CLASSIFICATION: THEORY AND
PRACTICE
|
|
by
Luciano
da Fontoura Costa
and Roberto M.
Cesar Junior
CRC Press
|
Chapter 6
Shape Characterization
6.1 STATISTICS FOR SHAPE DESCRIPTORS
6.2 SOME GENERAL DESCRIPTORS
-
6.2.1 Perimeter
-
6.2.2 Area
-
6.2.3 Centroid (center of mass)
-
6.2.4 Maximum and Minimum Distance to Centroid
-
6.2.5 Distance to the Boundary
-
6.2.6 Diameter
-
6.2.7 Maximum Chord
-
6.2.8 Norm Sizes
-
6.2.9 Maximum Arc Length
-
6.2.10 Major and Minor Axis
-
6.2.11 Thickness
-
6.2.12 Holes-based Shape Features
-
6.2.13 Topological Descriptors
-
6.2.14 Polygonal Approximation-Based Shape Descriptors
-
6.2.15 Shape Descriptors based on Regions and on Graphs
-
6.2.16 Complexity Descriptors
6.3 FRACTAL GEOMETRY FOR COMPLEXITY DESCRIPTORS
-
6.3.1 Preliminary Considerations and Definitions
-
6.3.2 The Box-Counting Approach
-
6.3.3 Case Example: The Classical Koch Curve
-
6.3.4 Implementing the Box-Counting Method
-
6.3.5 The Minkowski Sausage or Dilation Method
6.4 CURVATURE
-
6.4.1 Biological Motivation
-
6.4.2 Simple Approaches to Curvature
-
6.4.3 Curvature-Based Shape Descriptors
-
6.4.4 c-Curvature
6.5 SHAPE SIGNATURES
6.6 FOURIER DESCRIPTORS
-
6.6.1 Alternative Fourier Descriptors
|
|
|
General Information about the Book
http://www.ime.usp.br/~cesar/shape_crc
This page is maintained by Roberto
M. Cesar Junior,
cesar@ime.usp.br and by
Luciano
da Fontoura Costa,
luciano@if.sc.usp.br