NEW!

SHAPE ANALYSIS AND RECOGNITION: THEORY AND PRACTICE


by Luciano da Fontoura Costa

and Roberto M. Cesar Junior

CRC Press


Chapter 7

Multiscale Shape Characterization

7.1 MULTISCALE TRANSFORMS

  • 7.1.1 The Scale-Space
  • 7.1.2 Time-Frequency Transforms
  • 7.1.3 Gabor Filters
  • 7.1.4 Time-Scale Transforms or Wavelets
  • 7.1.5 A Unified Approach to Linear Multiscale Transforms
  • 7.1.6 Case Study: Interpreting the Transforms
  • 7.1.7 Analyzing the Multiscale Transforms

7.2 A FOURIER APPROACH TO MULTISCALE CURVATURE

  • 7.2.1 Curvature Estimation using a Fourier Property
  • 7.2.2 Numerical Differentiation using the Fourier Property
  • 7.2.3 Gaussian Filtering and the Multiscale Approach
  • 7.2.4 Some Simple Solutions for the Shrinking Problem
  • 7.2.5 The Curvegram
  • 7.2.6 Some Experimental Results
  • 7.2.7 Curvature-Scale Space

7.3 MULTISCALE CONTOUR ANALYSIS USING WAVELETS

  • 7.3.1 Preliminary Considerations
  • 7.3.2 The W-Representation
  • 7.3.3 Choosing the Analyzing Wavelet
  • 7.3.4 Shape Analysis From the W-Representation
  • 7.3.5 Dominant Point Detection using the W-Representation
  • 7.3.6 Local Frequencies and Natural Scales
  • 7.3.7 Contour Analysis using the Gabor Transform
  • 7.3.8 Comparing and Integrating the Multiscale Representations

7.4 MULTISCALE ENERGIES

  • 7.4.1 The Multiscale Bending Energy
  • 7.4.2 The Multiscale Bending Energy
  • 7.4.3 Neuromorphometry with Bending Energy
  • 7.4.4 The Multiscale Wavelet Energy
  • 7.4.5 Case of Study: Classification of Ganglion Cells
  • 7.4.6 The Feature Space
  • 7.4.7 Feature Selection and Dimensionality Reduction


General Information about the Book

http://www.ime.usp.br/~cesar/shape_crc


This page is maintained by Roberto M. Cesar Junior, cesar@ime.usp.br and by

Luciano da Fontoura Costa, luciano@if.sc.usp.br