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Definicoes

* Uma série temporal é qualquer conjunto de
observacoes ordenadas no tempo.

Por exemplo:

» Valores diarios de poluicao na cidade de Séo
Paulo;

* Valores mansais de temperatura na cidade de
Séao Paulo;

* Precipitacao atmosférica anual na cidade de
Fortaleza.



Objetivo da analise de séries
temporais

Investigar o mecanismo gerador da série
temporal;

Fazer previsoes de valores futuros da série;

Descrever apenas o comportamento da série:
existéncia de tendéncia, ciclos e variagoes
sazonais;

Procurar periodicidades relevantes nos
dados.



Tipos de Séries Temporais

Uma série temporal pode ser
. Discreta: X(t),t=1,2, ..., n
- valores semanais do numero de casos de
Aids em Sao Paulo;
- taxa de mortalidade(mensais, anuais);
- gastos com a saude (mensais, anuais)
. Continua: X(t),
- valores do eletrocardiograma,;
- medicdes de temperatura e umidade.



Ferramentas

Descrever o comportamento da série:
graficos e testes para avaliar tendéncias,
ciclos, variagdes sazonais;

Inferéncias estatisticas;
Modelagem do fendmeno estudado;
Previsoes.
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-1 to
19801V,

Example 1.1 Johnson & Johnson Quarterly Earnings

Figure 1.1 shows quarterly earnings per share for the U.5. company Johnson
& Johnson, furnished by Professor Paul Griffin (personal communication) of
the Graduate School of Management, University of California, Davis. There
are 84 guarters (21 years) measured from the first quarter of 1960 to the
last quarter of 1980. Modeling such series begins by observing the primary
patterns in the time history. In this case, note the gradually increasing un-
derlying trend and the rather regular variation superimposed on the trend
that seems to repeat over quarters. Methods for analyzing data such as these
are explored in Chapter 2 (see Problem 2.1) using regression techniques and
in Chapter 6, §6.5, using structural equation modeling.
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Fig. 1.2, Yearly average global temperature deviations {1880-2009) in degrees centi-

grade.

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.2, The data
are the global mean land-—ocean temperature index from 1880 to 2009, with

the base period 1951-1980. In particular, the data are deviations, measured
in degrees centigrade, from the 1951-1980 average, and are an update of
Hansen et al. (2006). We note an apparent upward trend in the series during
the latter part of the twentieth century that has been used as an argument
for the global warming hypothesis. Note also the leveling off at about 1935
and then another rather sharp upward trend at about 1970. The question of
interest for global warming proponents and opponents is whether the overall
trend is natural or whether it is caused by some human-induced interface.
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Fig. 1.3. Speech recording of the syllable aaa - -- hhh sampled at 10,000 points per
second with n = 1020 points.

Example 1.3 Speech Data
More involved questions develop in applications to the physical sciences.
Figure 1.3 shows a small .1 second (1000 point) sample of recorded speech
for the phrase aaa---hhh, and we note the repetitive nature of the signal
and the rather regular periodicities. One current problem of great inter-
est 18 computer recognition of speech, which would require converting this
particular signal into the recorded phrase aaa - - - hhh. Spectral analysis can
be used in this context to produce a signature of this phrase that can he
compared with signatures of various library syllables to look for a match.
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Fig. 1.4. Returns of the NYSE. The data are daily value weighted market returns

from February 2, 1984 to December 31, 1991 (2000 trading days). The crash of
October 19, 19587 occurs at ¢ = 938,

Example 1.4 New York Stock Exchange
As an example of financial time series data, Figure 1.4 shows the daly
returns (or percent change) of the New York Stock Exchange (NYSE) from
February 2, 1984 to December 31, 1991. It is easy to spot the crash of
October 19, 1987 in the figure. The data shown in Figure 1.4 are typical of
return data. The mean of the series appears to be stable with an average
return of approximately zero, however, the volatility {or variability) of data
changes over time. In fact, the data show volatility clustering; that is, highly
volatile periods tend to be clustered together. A problem in the analysis of
these tyvpe of financial data is to forecast the volatility of future returns.
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Southern Oscillation Index

= _]

ur ]

E=]

= _]

[=]

e

=

q —

i T T T T
19s0 1960 1970 1880

Recruitment

'8_ -]

2 -

2 -

3 —

g -

= T T T T
19s0 1960 1970 1980

Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

Example 1.5 El Nino and Fish Population

We may also be interested in analyzing several time series at once. Fig-
ure 1.5 shows monthly values of an environmental series called the Southern
Oscillation Index (SOI) and associated Recruitment {number of new fish)
furnished by Dr. Roy Mendelssohn of the Pacific Environmental Fisheries
Group (personal communication). Both series are for a period of 453 months
ranging over the vears 1950-1987. The SOI measures changes in air pressure,
related to sea surface temperatures in the central Pacific Ocean. The central
Pacific warms every three to seven years due to the El Nino effect, which has
been blamed, in particular, for the 1997 floods in the midwestern portions
of the United States. Both series in Figure 1.5 tend to exhibit repetitive
behavior, with regularly repeating cycles that are easily visible. This peri-
odic behavior is of interest because underlying processes of interest may be
regular and the rate or frequency of oscillation characterizing the behavior
of the underlying series would help to identify them. One can also remark
that the cycles of the SOI are repeating at a faster rate than those of the
Hecruitment series. The Hecruitment series also shows several kinds of oscil-
lations, a faster frequency that seems to repeat about every 12 months and a
slower frequency that seems to repeat about every 50 months. The study of
the kinds of cycles and their strengths is the subject of Chapter 4. The two
series also tend to be somewhat related; it is easy to imagine that somehow
the fish population is dependent on the SOI. Perhaps even a lagged relation
exists, with the SOI signaling changes in the fish population. This possibility
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Fig. 1.6. f{MRI data from various locations in the cortex, thalamus, and cerebellum;
n = 128 points, one observation taken every 2 seconds.

Example 1.6 fMRI Imaging
A fundamental problem in classical statistics occurs when we are given a
collection of independent series or vectors of series, generated under varying
experimental conditions or treatment configurations. Such a set of series is
shown in Figure 1.6, where we ohserve data collected from various locations
in the brain via functional magnetic resonance imaging (fMRI). In this ex-
ample, five subjects were given periodic brushing on the hand. The stimulus
was applied for 32 seconds and then stopped for 32 seconds; thus, the signal
period is 64 seconds. The sampling rate was one observation every 2 seconds
for 256 seconds (n = 128). For this example, we averaged the results over
subjects (these were evoked responses, and all subjects were in phase). The

series shown in Figure 1.6 are consecutive measures of blood oxygenation-
level dependent (BoLD) signal intensity, which measures areas of activation
in the brain. Notice that the periodicities appear strongly in the motor cor-
tex series and less strongly in the thalamus and cerebellum. The fact that
one has series from different areas of the brain suggests testing whether the
areas are responding differently to the brush stimulus. Analysis of variance
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Fig. 1.7. Arrival phases from an earthquake (top) and explosion (bottom) at 40
points per second.

Example 1.7 Earthquakes and Explosions
As a final example, the series in Figure 1.7 represent two phases or arrivals
along the surface, denoted by P (¢t = 1,...,1024) and 5 (¢t = 1025, ..., 20487,

at a selsmic recording station. The recording instruments in Scandinavia are
observing earthquakes and mining explosions with one of each shown in Fig-
ure 1.7. The general problem of interest 1s in distinguishing or discriminating
between waveforms generated by earthquakes and those generated hy explo-
sions. Features that may be important are the rough amplitude ratios of the
first phase P to the second phase S, which tend to he smaller for earth-
quakes than for explosions. In the case of the two events in Figure 1.7, the



Time Series Plot of Energia
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Por que fazer analise da série
temporal(histédrica)

* Deseja-se modelar o fendbmeno estudado
para, a partir dai, descrever o comportamento
da série, fazer estimativas e, por ultimo,
avaliar quais os fatores que influenciaram no
comportamento da mesma, tentando definir
relacoes de causa e efeito entre 2 ou mais
séries.

 Para tanto, ha diversas técnicas estatisticas
disponiveis que dependem do modelo
definido para a série, bem como do tipo de
série analisada e do objetivo do trabalho.



Processos estacionarios

* E importante definir se a série é estacionaria
ou nao para, a partir dai, estabelecer a
estrutura do modelo probabilistico que
estimara a mesma.

* Uma série é considerada estacionaria quando
suas observacoes ocorrem, aleatoriamente,
ao redor de uma média constante e a
correlacao entre dois pontos dependem
somente da defasagem entre eles.



Funcao de auto-correlacao

O coeficiente de
correlacéo entre as
observacoes X(t) e
x(t+j).
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no2

Time Series Plot of no2

400 4

300 4

2001

100

Autocorrelation

fungdo de auto-corelagao de CO

1,04
0,8
0,6
0,4
0,24

0,0
-0,2
-0,4
-0,64
-0,8
-1,0

PM10

160

140

1204

100 4

804

604

1) 11‘ "II‘| f
it 0

|

I

1.4
Ilv"c“‘ 1 |

Autocorrelation

fungdo de auto-corelagdo de PM10

1,04
0,8
0,6
0,4
0,24

0,0
-0,2
-0,4
-0,64
-0,8
-1,04




Componentes de uma série
temporal

 Tendéncia: T(t);

« Sazonalidade: S(t)

* Ruido branco: a(t):

X(t) = T(t) + S(t) + a(T)



Tendéncia

Ajustar uma funcéo polinomial do
tempo(estimar um modelo de regresséao)

Suavizar os valores da série ao redor de um
ponto, para estimar a tendéncia naquele
ponto;

Suavizar os valores da série através de
sucessivos ajustes de retas de minimos
quadrados ponderados;

Tomar diferencga para eliminar a tendéncia.
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Sazonalidade

* Defini-se um fendmeno sazonal aquele que
ocorre regularmente em periodos fixos de

tempo.

+ Sazonalidade deterministica — método de
regressao que incorporem fungdes do tipo
seno ou cosseno a variavel tempo.

« Sazonalidade estocastica: método de médias
moveis.



Time Series Decomposition Plot for Cananeia
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Time Series Decomposition Plot for ipialiment
Additive Model
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Time Series Plot of temperatura
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Modelos Estatisticos de Séries Temporais

Example 1.8 White Noise

A simple kind of generated series might be a collection of uncorrelated ran-

dom variables, w;, with mean 0 and finite variance o2. The time series
generated from uncorrelated variables i1s used as a model for noise in en-
gineering applications, where it is called white noise; we shall sometimes
denote this process as wy ~ 11=1:{{J._U;'::‘_|. The designation white originates
from the analogy with white light and indicates that all possible periodic
oscillations are present with equal strength.

Example 1.9 Moving Averages

We might replace the white noise series wy by a moving average that smooths
the series. For example, consider replacing wy in Example 1.8 by an average
of its current value and its immediate neighbors in the past and future. That
is, let

i’z=;—];(1f’f—1—wz+ﬂ-‘=+1]-. (1.1)
which leads to the series shown in the lower panel of Figure 1.8, Inspecting
the series shows a smoother version of the first series, reflecting the fact that
the slower oscillations are more apparent and some of the faster oscillations
are taken out. We begin to notice a similarity to the SOI in Figure 1.5, or
perhaps, to some of the fMRI series in Figure 1.6.
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Example 1.11 Random Walk with Drift

A model for analyzing trend such as seen in the global temperature data in
Figure 1.2, is the random walk with drift model given by

Example 1.10 Autoregressions
Suppose we consider the white noise series w; of Example 1.8 as input and
caleulate the output using the second-order equation

T =0+ +uy (1.3)
Ty =i — Oz +w (1.2) - e o . . .
! =t =2 : \-2) for t = 1,2,..., with initial condition z, = 0, and where w; is white noise.
successively for t = 1,2,..., 500. Equation (1.2) represents a regression or The constant 4 is called the drift, and when & = 0, (1.3) is called simply a

random walk. The term random walk comes from the fact that, when 4 =0,
the value of the time series at time ¢ is the value of the series at time t — 1
plus a completely random movement determined by w;. Note that we may
rewrite (1.3) as a cumulative sum of white noise variates. That is,

¢
Ty :cH—Zw_,- (1.4)
i=1

prediction of the current value x; of a time series as a function of the past
two values of the series, and, hence, the term autoregression is suggested

autoregression
random walk
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Fig. 1.9. Autoregressive series generated from model (1.2). Fig. 1.10. Random walk, o, = 1, with dnft § = .2 (upper jagged line}, without

drift, d = 0 (lower jagged line), and a straight line with slope .2 (dashed line).
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Example 1.12 Signal in Noise
Many realistic models for generating time series assume an underlying signal
with some consistent periodic variation, contaminated by adding a random
noise. For example, it is easy to detect the regular cycle {MRI series displayed
on the top of Figure 1.6. Consider the model

xy = 2cos(2mt /50 + .6m) + wy (1.5)

for t =1,2,...,500, where the first term is regarded as the signal, shown in
the upper panel of Figure 1.11. We note that a sinusoidal waveform can be
written as

A cos(2mwt + @), (1.6)
where 4 is the amplitude, w is the frequency of oscillation, and ¢ i1s a phase
shift. In (1.5), 4 = 2, w = 1/50 (one cycle every 50 time points), and
b = .G,

Zcos(2rt/s50+ 0.67)

T T T T
o o0 200 300 400 =00

2eos(2rt S0+ 0.6x) + M0, 1)

-4

2cos(2nxt) 50+ 0.68x) + (0, 25)

0 &5 1015
11

-5

Fig. 1.11. Cosine wave with period 50 points (top panel) compared with the cosine
wave contaminated with additive white Gaussian noise, o, = 1 (middle panel) and
Tw = 5 (bottom panel); see (1.5).
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