MAE 5870 - Aula 3
Estimacao

Seja uma série temporal: X1, X2, ..., Xn

1. Media:
if a time series is stationary, the mean function (1.21) pu, = p
is constant so that we can estimate it by the sample mean,

i‘=lz:1.'f. (1.32)
n t=1

The standard error of the estimate is the square root of var(z), which can be
computed using first principles (recall footnote 3 on page 20), and is given by

_ 1 1 " .
var(I) = var (E ;.?:f) = ?cm‘ (; I¢1g Ia)
= iz (”"-’riﬂ} +(n—1)y2(1) + (n — 2)92(2) + - +7z(n — 1)

+(n—1)7a(=1) + (0 = D(=2) + - + (1 = m))

=5 X (-, 139
h=—mn

If the process is white noise, (1.33) reduces to the familiar #2 /n recalling that
vz(0) = oz. Note that, in the case of dependence, the standard error of £ may
he smaller or larger than the white noise case depending on the nature of the
correlation structure

Definition 1.14 The sample autocovariance function is defined as

n—h

F(h)=n""! Z[E‘”‘ — I)(xy — T), (1.34)

t=1

with §(—h) = F(h) for h="0,1,...,n— 1.

Definition 1.15 The sample autocorrelation function is defined, analo-
gously to (1.23), as

_ o A(R) -
k) = = (1.35)



Property 1.1 Large-Sample Distribution of the ACF

Under general conditions,” if x; is white noise, then for n large, the sample
ACF, po(h), for h = 1,2,... H, where H is fired but arbitrary, is approzi-
mately normally distributed with zero mean and standard deviation given by

g.ﬁz{h] = % {136}
Based on the previous result, we obtain a rough method of assessing
whether peaks in p(h) are significant by determining whether the observed
peak is outside the interval +£2//n (or plus/minus two standard errors); for
a white noise sequence, approximately 95% of the sample ACFs should be
within these limits. The applications of this property develop because many
statistical modeling procedures depend on reducing a time series to a white
noise series using various kinds of transformations. After such a procedure is

applied, the plotted ACFs of the residuals should then lie roughly within the

limits given above.

Definition 1.16 The estimators for the cross-covariance function, Y, (h), as
given in (1.26) and the cross-correlation, pg,(h), in (1.27) are given, respec-
tively, by the sample cross-covariance function

n—h
Fry(h) =n"" Y (2esn — ) (e — ), (1.37)

where Fpy(—h) = Fy(h) determines the function for negative lags, and the
sample cross-correlation function

Vry(h)

Prulh) = O )

(1.38)

Property 1.2 Large-Sample Distribution of Cross-Correlation
Under Independence
The large sample distribution of p,,(h) is normal with mean zero and

1
Doy = (1.39)

if at least one of the processes is independent white noise



Exemplos:

Example 1.23 A Simulated Time Series
To give an example of the procedure for calculating numerically the auto-
covariance and cross-covariance functions, consider a contrived set of data

generated by tossing a fair coin, letting x; = 1 when a head is obtained and
ry = —1 when a tail is obtained. Construct 1, as

W = 5+ Iy — .T:I'f,_l . {140}

Table 1.1 shows sample realizations of the appropriate processes with zp =

—1 and n = 10.

Table 1.1. Sample Realization of the Contrived Series y;

t 1 2 3 4 3 G T 8 9 10
Coin H H T H T T T H T H
Tt 1 1 -1 1 -1 —1 —1 1 -1 1

Uy 6.7 5.3 3.3 67 33 47 4T 67 2 I
y,—% 156 .16 —1.84 156 —1.84 —44 —44 156 —1.84 1.56

The sample autocorrelation for the series y; can be calculated using (1.34)
and (1.35) for h = 0,1,2,.... It is not necessary to calculate for negative
values because of the symmetry. For example, for h = 3, the autocorrelation
becomes the ratio of

Tu(3) = ﬁZ{sz — W)y —4)
= ﬁ[{l.ﬂﬁ}{l.ﬁﬁ} + (—1.84)(.16) + (—.44)(—1.84) 4 (—.44)(1.56)
+ (1:56)(~1.84) + (~1.84)(—.44) + (1.56)(—.44) | = —.048

to
:,ry{D} = %[[1.56}2 + {.lﬁ}zr + - [1.5532] = 2.030

that
o —048

ﬁyiaj = m = —.024.

The theoretical ACF can be obtained from the model (1.40) using the fact
that the mean of x; 1s zero and the variance of x4 1s one. It can be shown

that .
py(l) = T2 —AT7

and py(h) = 0 for |h| = 1 (Problem 1.24). Table 1.2 compares the theo-
retical ACF with sample ACFs for a realization where n = 10 and another
realization where n = 100; we note the increased variability in the smaller
size sample.



Table 1.2. Theoretical and Sample ACFs
for n = 10 and n = 100

n=10 n= 100

b pylh) py (k) py(h)

0 1.00 1.00 1.00
+1 — A7 —.53 —.45
+2 .00 A7 —.12
+3 .00 —.02 14
+4 .00 15 .
+5 .00 — .46 —.m
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Fig. 1.13. ACF of the speech series,
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Fig. 1.14. Sample ACFs of the S0I series (top) and of the Recruitment series
imiddle), and the sample CCF of the two series (bottom); negative lags indicate
S0 leads Recruitment. The lag axes are in terms of ssasons (12 months).



1.7 Vector-Valued and Multidimensional Series

We frequently encounter situations in which the relationships between a num-
ber of jointly measured time series are of interest. For example, in the previous
sections, we considered discovering the relationships between the SOI and Re-
cruitment series. Hence, it will be useful to consider the notion of a vector time
series £ = (Ty1, iz, ..., Tip) , which contains as its components p univariate
time series. We denote the p % 1 column vector of the observed series as ;.
The row vector ] is its transpose. For the stationary case, the p x 1 mean

vector

B = E(z) (1.41)
of the form g = (41, 2, ..., pep)" and the p x p autocovariance matrix
I'(h) = E[(Zih — p) (= —p)] (1.42)

can be defined, where the elements of the matrix I'(h) are the cross-covariance
functions

Yiz(h) = El(zyihi— Hi)(Ze5 — P»J‘]'] (1.43)
for i,j=1,...,p. Because v;;(h) = 15:(—h), it follows that
I'(—h)=TI"(h). (1.44)

Now, the sample autocovariance matrix of the vector series z; 1s the px p
matrix of sample cross-covariances, defined as

n—h
L(h)=n""Y (zin — 2)(z — 2, (1.45)

t=1

where N
g=n"') =z (1.46)
t=1

denotes the p x 1 sample mean vector. The symmetry property of the theoret-
ical autocovariance (1.44) extends to the sample autocovariance (1.45), which
is defined for negative values by taking

I'(—h)=T'(hY. (1.47)

In many applied problems, an observed series may be indexed by more
than time alone. For example, the position in space of an experimental unit
might be described by two coordinates, say, s; and s;. We may proceed in
these cases by defining a multidimensional process rg as a function of the rx 1
vector 8 = (81, 8z, ..., s.)', where s; denotes the coordinate of the ith index.



Example 1.26 Soil Surface Temperatures

As an example, the two-dimensional (r = 2) temperature series x,, 4, In

Figure 1.15 is indexed by a row number s; and a column number s. that

represent positions on a 64 x 36 spatial grid set out on an agricultural field.
The value of the temperature measured at row s; and column s;, is denoted
bv g = .1 .2. We can note from the two-dimensional plot that a distinet
change occurs in the character of the two-dimensional surface starting at
about row 40, where the oscillations along the row axis become fairly stable
and periodic. For example, averaging over the 36 columns, we may compute
an average value for each s; as in Figure 1.16. It is clear that the noise
present in the first part of the two-dimensional series is nicely averaged out,
and we see a clear and consistent temperature signal.

\
10 ‘ “ *t u
g 8 II' J\' Iy 1,
%% ” ,M‘l ”( “ﬁ :L tﬂ h %\ h‘t""ﬁk'\j
3 n ) n ﬂ :
\ud o t\ \’t fl jm#;

e

‘ i ‘i" ‘- .t "‘_.
[,ﬁ\“ 1\ } ‘;’#‘*‘ v

lﬂ

30

20

s

&0

Fig. 1.15. Two-dimensional time series of temperature measurements taken on a
rectangular field (64 x 36 with 17-foot spacing). Data are from Bazza et al. (1988).
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Fig. 1.16. Row averages of the two-dimensional soll temperature profile. #., =
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The autocovariance function of a stationary multidimensional process, rg,
can be defined as a function of the multidimensional lag vector, say, b =

{hl-. hg, . .,h,-:]’._ as

v(h) = El(zg, p — 1) (x5 — )], (1.48)

where

u=E(zs) (1.49)

does not depend on the spatial coordinate s. For the two dimensional tem-
perature process, (1.48) becomes

Y(h1,h2) = E[(Ts,4hy.s0+hs — 1) (Tsq,00 — 1], (1.50)

which is a function of lag, both in the row (k) and column (hs) directions.
The multidimensional sample autocovariance function 1= defined as

F(h) = (51S2---8,) 71D D Y (w5, p— F)(ws — ), (1.51)

where 8 = (s1,52,...,5,) and the range of summation for each argument is

1<s <5 —h,fori=1,...,r. The mean is computed over the r-dimensional
array, that 1s,

F=(S18S) YD D Ty e s (1.52)
&y &g A
where the arguments s; are summed over 1 < 5; < 5;. The multidimensional

sample autocorrelation function follows, as usual, by taking the scaled ratio

. F(h) .



Example 1.27 Sample ACF of the Soil Temperature Series

The autocorrelation function of the two-dimensional (2d) temperature pro-
cess can be written in the form

TRy, ha)

plhy, ha) = 50,0)

where

F(haha) = (8182) 'Y Y (Tay+hy sty — F) Ty — F)
&1 &g

Figure 1.17 shows the autocorrelation function for the temperature data,
and we note the systematic periodic variation that appears along the rows.
The autocovariance over columns seems to be strongest for h; = 0, implying
columns may form replicates of some underlying process that has a period-
icity over the rows. This idea can be investigated by examining the mean
series over columns as shown in Figure 1.16.
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Fig. 1.17. Two-dimensional autocorrelation function for the soil temperature data.



