ARIMA Models
Processos Lineares Estacionarios
Teorema(Wold): Todo processo estacionario

de segunda ordem, puramente nao-deterministico,
pode ser escrito como

[ ]
Xp=p+ ) ja-j, vo=1, (1)
=0

com {z¢} uma sequéncia de v.a. nao cor-
relacionadas, de média zero e variancia o2
constante (ruido branco)

o E(Xy) =up
® Var(Xt) — -‘.‘TQZ‘_?D:D U?

o . = a2 Zj’io Viviths 2 U;‘i} < 0C.

_ 2 =0Yi%ith
® P — 0o 12
=0 .r"'j'

Notagao: X: com média zero.



Podemos escrever a série Xt em uma forma alternativa, como soma de
valores passados Xt-1, Xt-2, mais um ruido wx:

Xe=7111 Xe-1 + 711 Xee1+ ...+ We
ou

H(B)Xt = Wt

Proposicao:

um processo linear sera estacionario se W(B) convergir para |[B| <1e
sera invertivel se MN(B) convergir para |B| <1.



Autoregressive Moving Average Models

1. Autoregressive Models

Antoregressive models are based on the idea that the current value of the
Hcrics,|:cf~ can be explained as a function of p past values, £, _,,2;_o..... Ty_p,
where p determines the number of steps into the past needed to forecast
the current value. As a typical case, recall Example 1.100 in which data were
generated using the model

Ty = rp—1 — 90xi_9 + wy,

where wy is white Gaussian noise with o2 = 1. We have now assumed the
current value is a particular linear function of past values. The regularity that
persists in Figure 1.9 gives an indication that for such a model
might be a distinct possibility, say, through some version such as

mn —
Tﬂ_'_l — ..IT'R - .'.':H::I..IF'.':H_]_:.I

where the quantity on the left-hand side denotes the forecast at the next
period n 4+ 1 based on the observed data, .22, ..., 2. We will make this

notion more precise in our discussion of forecasting (§3.5).
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Fig. 1.9. Autoregressive series generated from model (1.2).

Definition 3.1 An autoregressive model of order p, abbreviated AR(p).
15 of the form

Iy = @i +{$*'g$g_2+"'+t_ﬁpxg_p + g, {31}



where x, is stationary, and ¢, @q, ..., ¢, are constants (¢, # 0). Although it

is not necessary yet, we assume that w; is a Gaussian white noise series {ith

mean zero and variance o-,, unless otherwise stated. The mean of x; in (3.1)

is zero. If the mean, p, of ry is not zero, replace xy by xy — p in (3.1),

T — = O1(Te1 — p) + P2(Te2 — p) + -+ + Gp(Trp — p) +wn,

or write
Ty =+ @Iy + G2y o+ -+ OpTy_p + Wy, (3.2)
where|la = p(l — ¢y — -+ — Pp).
(1=61B - 2B — - — 6, B)z. = w, (33)

or even more concisely as

@(B)xy = wy. (3.4)

The properties of ¢(B) are important in solving (3.4) for x;. This leads to the
following definition.

Definition 3.2 The autoregressive operator is defined to be
‘F}[B}=1—¢3‘[B—¢QEZ—~--—¢FBP, (3.5)

We initiate the investigation of AR models by considering the first-order
model, AR(1), given by z; = ¢x;_; 4+ wy. Iterating backwards k times, we get

Ty = ¢ri_1 + wp = O(dxi_2 +wi_1) + wy
= ¢2It—z + Qw1 + wy

) k—1
= ¢k11_k + Zﬁf'jwt—y
j=0
This method suggests that, by continming to iterate backward, and provided

that |¢| < 1 and z; is stationary, we can represent an AR(1) model as a linear
process given by!

T = Z ¢ wi_;. (3.6)

. 2
! Note that limy_,, E (:.-f N D q?wf_}.) — limps o 6% (124) = 0, 50 (3.6)

exists in the mean square sense (see Appendix A for a definition).



The AR(1) process defined by (3.6) is stationary with mean

E(x:) = z &' E(w;—5) =0,

(Somn) (:é;w-*)l

:E[(w¢+h+“'+¢'hw; ¢h+lwt 1-|-“':|"[1Ut+¢*wt—l+“‘]] (3.7)

=0

and autocovariance function,

A(h) = cov(zrsn,z) = E

Recall that vy(h) = v(—h), so we will only exhibit the autocovariance function
for h = 0. From (3.7), the ACF of an AR(1) is

a(h)
p(h) = () =¢", h>0, (3.8)
and p(h) satisfies the recursion
p(h)=dp(h—1), h=12, ... (39)

We will discuss the ACF of a general AR(p) model in §3.4.
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Figura 2.5: F.a.c. de um processo AR(1) (a) =08 (b)gp=-0,8

Example 3.2 Explosive AR Models and Causality

In Example 1.18, it was discovered that the random walk = = =1 + uy
15 not stationary. We might wonder whether there is a stationary AR(1)
process with |¢| > 1. Such processes are called explosive because the values
of the time series quickly become large in magnitude. Clearly, because |o|
increases without bound as j — oo, E;T:Dl ¢ wy_; will not converge (in mean
square) as k — oo, so the intuition used to get (3.6) will not work directly.
We can, however, modify that argument to obtain a stationary model as
follows. Write x;, 1 = @xs + wiyq, in which case,

1

_ a1 S TP R L1 1
Ty =@ T — @ Wi =0 (07 Tego — @7 Wiyz) — 67w

k-1
= *ry gy — Z oI wyy (3.10)

j=1

by iterating forward k steps. Because |¢|~' < 1, this result suggests the
stationary future dependent AR(1) model

re= =Y 67wy, . (3.11)
J=1



know the future to be able to predict the future. IWheén a'process does not
depend on the future, such as the AR(1) when |¢| < 1, we will say the process
is causal. In the explosive case of this example, the process is stationary, but
it is also future dependent, and not causal.

Consider the AR(1) model in operator form

o(B)xy = wy, (3.12)
where ¢(B) = 1 — ¢B, and |¢| < 1. JAlso, write the model in equation (3.6)
using operator form as
Iy = Z piw_; = P(Bwy, (3.13)
=0

where ¥(B) = Z?iu ¢;B7 and v; = ¢. Suppose we did not know that
¥ = ¢f. We could substitute ¢»( B)w; from (3.13) for = in (3.12) to obtain

S(B)Y(B)w, = w. (3.14)

The coefficients of B on the left-hand side of (3.14) must be equal to those on
right-hand side of (3.14), which means

(1= 6B)(1+ 1B+ 6B + -+ ;B +--)=1.  (3.15)
Reorganizing the coefficients in (3.15),
L+ (%1 = 0)B + (6 — h9) B + -+ (1 — 0, 19) B 4+ =1,

we see that for each j = 1,2,..., the coefficient of B7 on the left must be zero
because it is zero on the right. The coefficient of B on the left is (14 — @), and
equating this to zero, ¥y — @ = (0, leads to iy = ¢. Continming, the coefficient
of B% is (Y, — Yn @), so ¥, = ¢*. In general,

'i.tr-’_f = T:bj—lqﬁ-.

with iy = 1, which leads to the solution ¢; = ¢.



Another way to think about the crperati{;rns we just performed is to consider
the AR(1) model in operator form, ¢(B)zx; = w,. Now multiply both sides by
¢~ !(B) (assuming the inverse operator exists) to get

¢~ (B)o(B)zi = ¢~ (B)w,

or

Iy = ¢_I{E}wg.
We know already that

67 (B)=1+06B+¢* B + -+ "B 4.,

that is, o~ ( B) is 1( B) in (3.13). Thus, we notice that working with operators
is like working with polynomials. That is, consider the polynomial ¢(z) =
1 — ¢z, where z i1s a complex number and |¢| < 1. Then,

6 (2) =1+gz+¢"2" +- 427+, 2| =1,

1
- (1-¢2)

and the coefficients of B7 in ¢~ '(B) are the same as the coefficients of 27 in
@ !(z). In other words, we may treat the backshift operator, B, as a com-
plex number, z. These results will be generalized in our discussion of ARMA
models. We will find the polynomials corresponding to the operators useful in
exploring the general properties of ARMA models.

2. Moving Average Models

Definition 3.3 The moving average model of order g, or MA(g) model,
is defined to be

Ty =wy w1 +0uwp_5 Lo+ qui—q". {315}

where there are q lags in the moving average and 6,,6,,....8; (B, # 0) are
parameters.? Although it is not necessary yet, we assume that w; is a Gaussian

white noise series with mean zero and variance o2, unless otherwise stated,

The system 1s the same as the infimite moving average defined as the linear
process (3.13), where ¢y =1, ¢ =8, for j =1,..., q, and 1; = 0 for other

values. We may also write the MA(qg) process in the equivalent form
Ty = B8 B)w,, (3.17)

using the following definition.



Definition 3.4 The moving average operator is
#(B)=1+6,B+ 6,B* +--- +6,B7. (3.18)

Unlike the autoregressive process, the moving average process is stationary
for any values of the parameters #;,...,#0,; details of this result are provided
in §3.4.

Example 3.4 The MA(1) Process
Consider the MA(1) model xy = wy + fw;_y. Then, E(x:) =0,

(1+6%)02 h=0,

Y(h) = { o, h=1,
0 h=1,
and the ACF is
g h=1,
plh) = { 0+
0 h =1
Note |p(1)| < 1/2 for all values of # (Problem 3.1). Also, x; i1s correlated with
T¢_1, but not with x;_s,x;_3,... . Contrast this with the case of the AR(1})

* Some texts and software packages write the MA model with negative coefficients;
that 1s, = = wy — Bywy_ 3 — w3 —--- — By .
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Fig. 3.2, Simulated MA(1) models: # = .5 (top); # = —.5 (bottom).

Example 3.5 Non-uniqueness of MA Models and Invertibility
Using Example 3.4, we note that for an MA(1) model, p(h) is the same for
f! and é: try 5 and ij for example. In addition, the pair 62 = 1 and # = 5
yield the same autocovariance function as the pair o2 = 25 and # = 1/5,
namely,



vh)={5 h=1,

Thus, the MA(1) processes
Ty =wy + tweoy,  we ~iid N(0,25)

and
yf_ = 1’1_ + 51’1__1,. Ut L ii’d N{U, 1}

are the same because of normality (1.e., all finite distributions are the same).
We can only observe the time series, x; or ;. and not the noise, w; or v,
s0 we cannot distinguish between the models. Hence, we will have to choose
only one of them. For convenience, by mimicking the criterion of causality
for AR models, we will choose the model with an infinite AR representation.

Such a process is called pn invertible process. |

To discover which model is the invertible model, we can reverse the roles
of r; and w; (because we are mimicking the AR case) and write the MA(1)
model as wy = —fw;_1 + x4, Following the steps that led to (3.6), if |#] < 1,
then w, = z;’:u{—ﬂ'}jxt_j, which is the desired infinite AR representation
of the model. Hence, given a choice, we will choose the model with crfﬂ =25
and # = 1/5 because it is invertible.

3. Autoregressive Moving Average Models

Definition 3.5 A time series {z,; t =0,£1,£2, ...} is ARMA(p,q) if it is

stationary and

I; = '?5’1-'1-'1_1 + -t f}hp-rg_p + wy + B]_w-[,_]_ +-- 4 qut_q., {319}

with ¢, # 0, 8, # 0, and 02 > 0. The parameters p and q are called the
autoregressive and the moving average orders, respectively. If x; has a nonzero

mean p, we set o = p(l — ¢, —--- — ¢p) and write the model as

Ty =+ Ty -+ t;‘hpl':_p 4oy 4+ B -4 ﬂqwt_q.. {3.2[}}

&(B)z, = 6(B)w,. (3.21)

Before we discuss the conditions under which (3.19) is causal and mnvertible,
we point out a potential problem with the ARMA model.



Example 3.6 Parameter Redundancy
Consider a white noise process x; = wy. Equivalently, we can write this as
Sry_; = .5w,;_,; by shifting back one unit of time and multiplying by .5.
Now, subtract the two representations to obtain

Ifi —_ ..ELT!__]_ = w!_ —_ .Ewt_]_,

or

Iy = .5.’1-':_1 — .Swt__l + Wy, {3.22}
which looks like an ARMA(1,1) model. Of course, z; is still white noise;
nothing has changed in this regard [i.e., r; = w; is the solution to (3.22)],

but we have hidden the fact that z; is white noise because of the parameter
redundancy or over-parameterization. Write the parameter redundant model

in operator form as ¢(B)x; = 6 B)wy, or
(1 —.5B)z; = (1 — .5B)wy.
Apply the operator ¢(B)~! = (1 — .5B)~! to both sides to obtain
z=(1—.5B)"'(1— 5B)z; = (1 — .5B)"}(1 — 5B)w; = w,

Examples 3.2, 3.5, and 3.6 point to a number of problems with the general
definition of ARMA (p, q) models, as given by (3.19), or, equivalently, by (3.21).

To summarize, we have seen the following problems:

(1) parameter redundant models,
(ii) stationary AR models that depend on the future, and
(ii1) MA models that are not unique.

To overcome these problems, we will require some additional restrictions
on the model parameters. First, we make the following definitions.

Definition 3.6 The AR and MA polynomials are defined as
p(z) =1—thz—--—p2¥, ¢ #0, (3.23)

and

Olz) =14tha+---+ 029, 0;#0, (3.24)

respectively, where 2 is a compler number.

To address the first problem, we will henceforth refer to an ARMA(p. q)
model to mean that it 1s in its simplest form. That 1s, in addition to the
original definition given in equation (3.19), we will also require that @(z)
and #(z) have no common factors. So, the process, ry = .5ry 1 — Swy_ ) + wy,
discussed in Example 3.6 1s not referred to as an ARMA(1, 1) process because,
in its reduced form, x, is white noise.



To address the ﬁrc-i‘:lem of tuture-dependent models, we formally introduce
the|cunce'pt of causality. |

Definition 3.7 An ARMA(p, q) model is said to be causal. if the time series
{zy; t =0,£1,£2,...} can be written as a one-sided linear process:

=5

e =Y bwe; = P(Buy, (3.25)

=0
where Y(B) = 372y w; BY, and 377 |ib] < oo we set g = 1.

In Example 3.2, the AR(1) process, r; = ¢x¢_1 + wy, is causal only when
|¢| < 1. Equivalently, the process is causal only when the root of ¢(2) = 1—¢=
is bigger than one in absolute value. That is, the root, say, z;, of ¢(z) is
zp = 1/¢ (because ¢@(zp) = 0) and |zg| > 1 because |¢| < 1. In general, we
have the following property.

Property 3.1 Causality of an ARMA(p.q) Process
An ARMA(p,q) model is causal if and only if ¢(z) # 0 for |z| < 1. The

coefficients of the linear process given in (3.25) can be determined by solving

o(z) = §¢jzf - olLES

Another way to phrase Property 3.1 is that an ARMA process is causal
|only when the roots of ¢(z) lie outside the unit circle:|that is, a(z) =0
only when |z| = 1. Finally, to address the problem of uniqueness discussed
in Example 3.5, we choose the model that allows an infinite autoregressive
representation.

Definition 3.8 An ARMA(p, q) model is said to be invertible, if the time
series {xy: t = 0,+£1,£2,...} can be written as

m(B)z; = Zﬂjx,,_j- = wy, (3.26)

where m(B) =272 m;B7, and 337 |m;| < ec; we set mp = 1.
Analogous to Property 3.1, we have the following property.

Property 3.2 Invertibility of an ARMA (p,q) Process
An ARMA(p. q) model is invertible if and only if #(z) # 0 for |z| < 1. The
coefficients w; of m(B) given in (5.26) can be determined by solving

w(z) = ZTTJEJ

ﬂ‘_‘-"@

, 2| < 1.



Another way to phrase Property 3.2 is that an ARMA process is invertible
only |when the roots of §(z) lie outside the unit circle;|that 1s, #(z) = 0 only
when |z| > 1. The proot of Property 3.1 1s given in Appendix B (the proof of
Property 3.2 is similar and, hence, is not provided). The following examples
illustrate these concepts.

Example 3.7 Parameter Redundancy, Causality, Invertibility
Consider the process

ry = .4.‘1.'1:_1 + .45I¢_2 +wy +we_1 + .25‘11'};_2,
or, in operator form,
(1 — 4B — 45B%)x, = (1 + B + 25B%)w,.

At first, x; appears to be an ARMA(2,2) process. But, the associated
polynomials

é(z) =1 — 4z — 4527 = (1 + .52)(1 — .9z)

B(z) = (142 + .252%) = (1 + .52)°

have a common factor that can be canceled. After cancellation, the poly-
nomials become ¢(z) = (1 — .92) and #(z) = (1 + .5z}, so the model is an
ABMA(1,1) model, (1 — 9B)z; = (1 + .58 )uy, or

Iy = .g.'rt_l + .Ewt__l + Uy {3.27}

The model iz causal because ¢(z) = (1 — .9z) = 0 when z = 10/9, which
is outside the unit circle. The model is also invertible because the root of
f(z) = (1 + .5z) is 2 = —2, which is outside the unit circle.

To write the model as a linear process, we can obtain the t-weights using

Property 3.1, ¢(z)u(z) = #(z), or
(1 —.92) (Yo + 1z + Yoz +---) = (1 4 .52).
Matching coefficients we get ¢ = 1, ¥y = .5+ .9 = 1.4, and ¢; = O,
for j > 1. Thus, ¢¥; = 1.4(.9)7-! for j > 1 and (3.27) can be written as
Iy = w4+ 142 .Qj_lwt_j.
i=1

Similarly, the mvertible representation using Property 3.2 1s

ze =14 (=5P 'zej+wi.
j=1



Example 3.8 Causal Conditions for an AR(2) Process

For an AR(1) model, (1—¢B)r; = wy, to be causal, the root of ¢(z) = 1 -z
must lie outside of the unit circle. In this case, the root (or zero) occurs at
= 1/¢ [i.e., ¢d(zp) = 0], so it is easy to go from the causal requirement on
the root, |1/¢| > 1, to a requirement on the parameter, |¢| < 1. It is not so
easy to establish this relationship for higher order models.

For example, the AR(2) model, (1 - ¢ B — q.lJzBZ:JIg = wy, 1s causal when
the two roots of @(z) =1 — g2 — @222 lie outside of the umit circle. Using
the quadratic formula, this requirement can be written as

¢ £ /97 + 42
— 2,

= 1.

The roots of ¢(z) may be real and distinct, real and equal, or a complex
conjugate pair. If we denote those roots by z; and z,, we can write ¢(z) =
(1—2;'2)(1 =25 '2); note that ¢(z1) = ¢(2z2) = 0. The model can be written
in operator form as (1 —2; ' B)(1—2; ' B)x; = w;. From this representation,
it follows that ¢; = {zl_l + 32—1} and ¢z = —(z122)~1. This relationship and
the fact that |z;| = 1 and |z3] = 1 can be used to establish the following
equivalent condition for causality:

dr+da<l, ¢o—cr <1, and |¢of < 1. (3.28)

This causality condition specifies a triangular region in the parameter space.
We leave the details of the equivalence to the reader (Problem 3.5).



