3.4 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(qg) process, ; = {B)w,;, where
B)=1+6,B+---4+0;B9. Because r; is a finite linear combination of white
noise terms, the process is stationary with mean

q

E(x) =) 0;E(wi_;) =0,

§=0

where we have written f; = 1, and with autocovariance function

q q
v(h) = cov (ziyn, xe) = ccrv(Zi'?ijh_j—., zﬁ'ktﬂn—k)

g=0 =0
—h
0 h = q.

Recall that v(h) = v(—h), so we will only display the values for h = 0. The
cutting off of y(h) atter ¢ lags is the signature of the MA(g) model. Dividing
(3.42) by ~(0) yields the ACF of an MA(q):

—h

>0 0i0+h
plh)=q 1402 4... 462
0 h=gq.

1<h<g

(3.43)

For a causal ARMA(p,q) model, ¢(B)x; = #(B)w:, where the zeros of

@(z) are outside the unit circle, write

T, =) ;. (3.44)
J=0

It follows immediately that E(x;) = 0. Also, the autocovariance function of
Tz can be written as

(h) = cov(@erh,Te) = 05 Y Ustbin, h20. (3.45)

i=0

We could then use (3.40) and (3.41) to solve for the iy-weights.

Example 3.11 The ¢-weights for an ARMA Model

For a causal ARMA(p, g) model, ¢(B)z; = #( B)w;, where the zeros of ¢(z)
are outside the unit circle, recall that we may write

L= =]
Iy = E Wil g,
§=0

where the y-weights are determined using Property 3.1.



For the pure MA(q) model, ¢ =1, ¥; =8, for j=1,...,q, and ¥; =0,
otherwise. For the general case of ARMA(p, g) models, the task of solving
for the 1-weights is much more complicated, as was demonstrated in Exam-
ple 3.7. The use of the theory of homogeneous difference equations can help
here. To solve for the Y-weights in general, we must match the coefficients

in 6(2)¢(z) = 6(2):
(1 -1z —p2® — Yo+ thz + U2 +---) = (1 + b1z + 6227 +---).
The first few values are

T‘fr‘u =1
U — gt =61
U2 — 1ty — dotlp = 02
Pz — ;12 — oty — @athp = fa

where we would take ¢; =0 for j = p, and #; =0 for j = q. The y-weights
satisfy the homogeneous difference equation given by

P
v — Y drby k=0, j=max(pq+1), (3.40)
k=1

with imitial conditions

j
Yy — Y otk =0;, 0<j<max(pq+1). (3.41)
k=1

Example 3.9 The ACF of an AR(2) Process
Suppose £y = @1Ti—1 + Pazi—9+wy is a causal AR(2) process. Multiply each
side of the model by x;_j for h = 0, and take expectation:

E(riri_p) = 1 E(ri17i—n) + @2 E(zi—2me—pn) + E(wiri_n).
The result is
v(h)=d1y(h—1)+a@2v(h—-2), h=12,.... (3.36)
In (3.36), we used the fact that E(z;) =0 and for h = 0,

E(wzy_p) = E(Wtz vi‘jwt_h_j) = ).
=0

Divide (3.36) through by +(0) to obtain the difference equation for the ACF
of the process:

p(h) — dap(h— 1) — gap(h—2) =0, h=1,2,....  (337)

The initial conditions are p(0) = 1 and p(—-1) = ¢,/(1 — @), which is
obtained by evaluating (3.37) for h = 1 and noting that p(1) = p(—1).



L q
’]‘-{h} = -:{:N{-Tt+h-. -TL} = ::mr(z ‘?—L"jifg_+h_j + Z ijt+h—j-. It)
i=1 =0
P q (3.46)
=z¢j"r(h—j}+cr,ﬁ,24ﬂj¢j_h, h>0,
i=1 j=h

where we have used the fact that, for h = 0,

[= s

J— u — gl 2

COV(Wihjs Ty) = Cm’(wtm—j: > lﬂkw:_:\-) = Y _pOy-
k=0

From (3.46), we can write a general homogeneous equation for the ACF of a
causal ARMA process:

(h)—dry(h—1)—--- —dpy(h—p)=0. hZ=max(pg+1), (3.47)

with initial conditions
q

P
) =3 6rh— ) =023 Oy n, 0<h<max(pg+1). (348)
=1

i=h

Dividing (3.47) and (3.48) through by ~(0) will allow us to solve for the ACF,
p(h) = ~(h)/~(0).

Example 3.12 The ACF of an AR(p)

In Example 3.9 we considered the case where p = 2. For the general case, it
follows immediately from (3.47) that

p(h) — dyp(h—1) —---— ¢ p(h—p) =0, h>p. (3.49)



Example 3.13 The ACF of an ARMA(1.1)

Consider the ARMA(1, 1) process x; = ¢x_y + 0wy + wy, where |@| < 1.
Based on (3.47), the autocovariance function satisfies

¥h)—¢y(h—1)=0, h=273, ...,
and it follows from (3.29)—(3.30) that the general solution is

y(h) =c¢®, h=1,2.... (3.51)

To obtain the initial conditions, we use (3.48):
1(0) = 67(1) + 031 + 06+ 6% and (1) = 69(0) + 02.
Solving for 4(0) and ~(1), we obtain:

14200+ 62
10) =

To solve for ¢, note that from (3.51), v(1) = c¢@ or ¢ = v(1)/¢. Hence, the
specific solution for h = 1 is

v(h) = 2 gn Jfﬂ':lJrf’i?E?iJr 0) o1,

2 (1+60)(0+6)

and ~(l)=¢o T_ &2

¢
Finally, dividing through by ~{0) yields the ACF

_(1+60)(p+8) ny
)= operg O B2l (3.52)

Notice that the general pattern of p(h) in (3.52) is not different from that
of an AR(1) given in (3.8). Hence, it is unlikely that we will be able to
tell the difference between an ARMA(1,1) and an AR(1) based solely on an
ACF estimated from a sample. This consideration will lead us to the partial
autocorrelation function.




The Partial Autocorrelation Function (PACF)

For MA(q) models, the ACF will be zero for lags greater than q. Thus,
the ACF provides a considerable amount of information about the
order of the dependence when the process is a moving average
process.

If the process, however, is ARMA or AR, the ACF alone tells us little
about the orders of dependence. Hence, it is worthwhile pursuing a
function that Will behave like the ACF of MA models, but for AR
models, namely, the partial autocorrelation function (PACF).

To motivate the idea, consider a causal AR(1) model, xy = dxy_y + wy.

Then,

Yr(2) = cov(ze, x¢_2) = cov(dmi_) + wi, Ti_2)
= CU"‘{";"E-ATf_Z +owy_ +wy, 1y _g) = t.'f‘z"r'r'in}'

This result follows from causality because r;_» involves {wy_z,wi_3,...},
which are all uncorrelated with w; and wy_;. The correlation between x;
and x;_» is not zero, as it would be for an MA(1), because z; is dependent on
Tz through z;_;. Suppose we break this chain of dependence by removing
(or partial out) the effect z;_;. That is, we consider the correlation between
Ty — ry_y and xy_s — ox;_1. because it is the correlation between x; and
T;_» with the linear dependence of each on x;_; removed. In this way, we
have broken the dependence chain between z; and r;_;. In fact,

COV(Ty — Oy _1, Ty — Py _1) = cov(wy, Ty 5 — @y ) =0.

Hence, the tool we need i1s partial autocorrelation, which 1s the correlation
hetween . and x; with the linear effect of everything “in the middle” removed.

To formally define the PACF for mean-zero stationary time series, let I, , p,
for h > 2, denote| the regression” of ;.5 on {Tt4h—1,Ti4h—2,...,Tes+1 }} which
we Write as

Tih = BiTish1 + BaZign a2+ -+ Br 1T (3.53)

No intercept term is needed in (3.53) because the mean of r; is zero (other-
wise, replace x¢ by x¢ — g, in this discussion). In addition, let T; denote the
regression 0f|;r:, ON {Tpy1,Thyae.ens Ty h_1 },|then

Iy = hirier + Barigo + oo+ Bho1Tegn_1. (3.54)



Definition 3.9 The partial autocorrelation function (PACF) of a sta-

tionary process, r;, denoted ¢pp, forh=1,2,..., is

¢11 = corr(Tey1,7t) = p(1) (3.55)
and

O = COTT(Teah - Frenp Tt —Eb, h>2. (3.56)
Both (zy, — T, 4) and (z; —T,) are uncorrelated with {z; ,,..., x5 1}
The PACF, ¢y, 1s the correlation between xy.p and x; with the linear depen-
dence of {z¢s1,..., 2 h_1} on each, removed. If the process r; is Gaussian,
then ¢pn = corr(Tein, Tt | Tegr,.. ., Teph—1); that is, ¢pp is the correlation

coefficient between x; ; and x; in the bivariate distribution of (x; 5, r;) con-
ditional on {z¢i1, ..., Teh—1 )
Example 3.14 The PACF of an AR(1)

Consider the PACF of the AR(1) process given by zy = ¢x¢—1 + wi, with
|é| < 1. By definition, ¢11 = p(1) = ¢. To calculate ¢os, consider the
regression of x;, 2 on x4, say, T2 = Brie. We choose 5 to minimize

E(2y13 — F142)" = E(Ty4a — B441)* = 7(0) — 26¥(1) + A7(0).

Taking derivatives with respect to § and setting the result equal to zero, we
have 8 =~(1)/7(0) = p(1) = ¢. Next, consider the regression of z; on z;
say Ty = fBriyr. We choose 7 to minimize

E(z — &)° = E(z: — Bze41)” = 7(0) — 287(1) + £%(0).
This is the same equation as before, so 7 = ¢. Hence,

G2 = COTT(Ty 42 — Tyyz, Ty — Tt) = COTT(Tey 2 — T4, Ty — OTpyq)

= COIT(Wi42,Tf — OTi41) =0

by causality. Thus, ¢ = . In the next example, we will see that in this
case, oppp = 0 for all h = 1.

Example 3.15 The PACF of an AR(p)

The model implies x4 = E_?:l $iTith—j + Wirh, where the roots of
¢(z) are outside the unit circle. When h > p, the regression of z,,; on

P
Teph = Z DTty h—j-
j=1
We have not proved this obvious result yet, but we will prove it in the next
section. Thus, when h = p,

Ohh = COTT(Ti4h — Tithy Tt — Tt) = COTT(Wiph, Tp — Tg) =0,

because, by caunsality, r; — Ty depends only on {wysh_1, wWesh_2,...}; recall
equation (3.54). When h < p, ¢pp is not zero, and ¢q1,...,¢p—1 p—1 are not
necessarily zero. We will see later that, in fact, ¢,, = @,. Figure 3.4 shows
the ACF and the PACF of the AR(2) model presented in Example 3.10.
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Fig. 3.4. The ACF and PACF of an AR(2) model with ¢1 = 1.5 and ¢2 = —.75.

Example 3.16 The PACF of an Invertible MA(q)
For an invertible MA(q), we can write r; = — ZJL:] mjTi— + wg. Moreover,
no finite representation exists. From this result, it should be apparent that
the PACF will never cut off, as in the case of an AR(p).

For an MA(1), = = wy + fwe_y, with |#| < 1, calculations similar to
Example 3.14 will yield ¢ = —6%/(1 +#* + #*). For the MA(1) in general,
we can show that

(=6)"(1 - 6%

"i‘hhz W.. h:_"l

Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p. q)
ACF Tails off Cuts off Tails off
after lag g
PACF Cuts off Tails off Tails off

after lag p




Example 3.17 Preliminary Analysis of the Recruitment Series
We consider the problem of modeling the Recruitment series shown in Fig-
ure 1.5. There are 453 months of observed recruitment ranging over the
vears 10501987, The ACF and the PACF given in Figure 3.5 are con-
sistent with the behavior of an AR(2). The ACF has cycles correspond-
ing roughly to a 12-month period, and the PACF has large values for
h = 1.2 and then is essentially zero for higher order lags. Based on Ta-
ble 3.1, these results suggest that a second-order (p = 2) autoregres-
sive model might provide a good fit. Although we will discuss estimation
in detail in §3.6, we ran a regression (see §2.2) using the data triplets
{(z121,22) @ (Zay @2, 7)), (Ta; X3, T2), . .., (Ta53; Tasz, Tys1) } to fit a model of
the form
Ty = o + ¢17—1 + G2T1—2 + wy

for t = 3,4,...,453. The wvalues of the estimates were 59 = 6.74¢1 11y,
b1 = 1.35|_,;,.“,c-;}g = —.46/ g4y, and g2 = 89.72, where the estimated standard
errors are in parentheses.
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Fig. 1.5. Monthly S0I and Recruitment (estimated new fish), 1950-1987.
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Fig. 3.5. ACF and PACF of the Recruitment series. Note that the lag axes are in
terms of season (12 months in this case).



