Property 3.3 Best Linear Prediction for Stationary Processes

Given data ry, ..., Ty, the best linear predictor, T, = ag+ ¥ p_; Ok Tk,
of Tnym, form = 1, is found by solving
E[(zntm —Th n) o] =0, k=0,1,...,n, (3.60)
where rp = 1, for ap,ay, ... @y,

First, consider one-step-ahead prediction. That is, given {rq,..., Tn}, we

wish to forecast the value of the time series at the next time point, . The

BLP of x4 is of the form

Tpi1 = Pni1Tn + PraTn_1 + -+ + PnnT1, (3.61)

where, for purposes that will become clear shortly, we have written oy in
(3.59), as @p pp1—k in (3.61), for k= 1,... n. Using Property 3.3, the coeth-
cients {dn1, dna, - . . dpp b satisly

E[(I,-H.[ —-gémrnﬂ_j‘]znﬂ_k] =0, k=1,...,n,

or
n
S bupr(k— ) =A(k), k=1,...,n. (3.62)
=1
The prediction equations (3.62) can be written in matrix notation as
Pﬂ¢ﬂ = Tn.!' [E‘EEJ
where I'y = {y(k — j)}}p_1 is an n X n matrix, ¢, = (¢n1,...,¢nn) is an
n x 1 vector, and 4, = (7(1),...,v(n)) is an n x 1 vector.

The matrix I, is nonnegative definite. If 17, is singular, there are many
solutions to (3.63), but, by the Projection Theorem (Theorem B.1), 27, is
unique. If I'; i= nonsingular, the elements of ¢, are unique, and are given by

b = I (3.64)

For ARMA models, the fact that o2, > 0 and (k) — 0 as h — oo is enough to
ensure that I'y; is positive definite (Problem 3.12). It is sometimes convenient
to write the one-step-ahead forecast in vector notation

- B, (3.65)
where £ = (zy, Tn_1,...,71)".
The mean square one-step-ahead prediction error is
2 -1
P:+1 = E(zn+1 — I:+l]| =3(0) —7ady Tn- (3.66)

To verify (3.66) using (3.64) and (3.65),

E(zni1 —2hsy)” = E(rns1 — $42)" = E(znp1 — %ol 'z)”
= E{Ii_l_l — Eﬁll—'n_l:::['“+| + 11‘1_';11:"1—';11“}
= 7(0) — 29y + ¥l Tl oy

= (0) — AT .



Example 3.18 Prediction for an AR(2)

Suppose we have a causal AR(2) process 7y = ¢y +dory_a+wy, and one
observation xy. Then, using equation (3.64), the one-step-ahead prediction
of ra based on = is

T = dryzy = %I[ = p{1)xy.

Now, suppose we want the one-step-ahead prediction of x5 based on two
ohservations =y and r3; ie., ¥3 = da172 + Paaz;. We could use (3.62)

@a17(0) + aay(1) = (1)
@ay7(1) + @aay(0) = ¥(2)

to solve for ¢o) and goa, or use the matrix form in (3.64) and =solve

. -1
(cﬁ_}m) _ (’riﬂ'] ’T{l}) (TU])
P22 ¥(1) 7(0) 1(2))°
but, it should be apparent from the model that =3 = ¢1x2 + ¢z, Because
dr ro + por satisfies the prediction equations {3.60),

E{[rz — (¢122 + dar1 )1} = El(wzzy) =0,

E{[r3 — (¢122 + dar1)]ra} = Elwzza) =0,

it follows that, indeed, =] = &yxa + ¢ory, and by the uniqueness of the
coeflicients in this case, that ¢, = ¢ and ¢og = ¢ Continuing in this way,
it is easy to verify that, for n = 2,

1':4.[ = ‘ﬁ"lIn + Iiﬁ:"QI'r.L—ln

That is, @1 = @1, 0n2 = @o, and @y =0, for j =3,4,...,n.

From Example 3.18, it should be clear (Problem 3.40) that, if the time
series is a causal AR(p) process, then, for n = p,

I:+I| = 'i}lIl'.l- + {?-I’Q-Tn—l + -+ E;ipl'n.—p+1n {E.ﬁ?]



Property 3.4 The Durbin—Levinson Algorithm
Equations {3.64) and (3.66) can be solved iteratively as follows:

doo =0, PP =~(0). (3.68)
Form =1,
dun = P = >k G-t pln — B P —Pri1—g2,),  (3.69)

1 - Yko1 én-vk (k)
where, forn > 2,
Onk = Pn—1.k — PnnPn—tin-k, k=12,...,n—1 (3.70)
The proof of Property 3.4 is left as an exercise; see Problem 3.13.

Example 3.19 Using the Durbin—Levinson Algorithm
To use the algorithm, start with ¢gg = 0, P} = ~4(0). Then, for n = 1,

du=p(1), Pi=~(0)[1 45

For n =2,
_ p(2) —¢n p(1) o
) =T () da1 = P11 — daady,
P§ = Pi[1 — ¢33] = 7(0)[1 — &1,][1 — ¢5a].
For n =

by = PB) — &2 p(2) — 62 p(1)
1— o1 p(1) — gz p(2)
g3z = ¢o2 — @331, P31 = P21 — Paadan,
P} = P{[1 — ¢3;] = ~(0)[1 — &11][1 — ¢5a][1 — 33],

and so on. Note that, in general, the standard error of the one-step-ahead
forecast is the square root of

Py = 7(0) TT11 — &3]- (3.71)
=1

S yk—j)=alm+k-1), k=1...,n (3.74)
1=1

The prediction equations can again be written in matrix notation as

Tag™ =™, (3.75)

where 3™ = (y(m),...,7(m+n— 1)), and 5™ = (én1’,..., nn")" are
n ¥ 1 vectors.
The mean square m-step-ahead prediction error is

] o
Pl = E (Zngm — Them)” = 7(0) — 4™ I lylm. (3.76)

Another useful algorithm for caleulating forecasts was given by Brockwell
and Davis (1991, Chapter 5). This algorithm follows directly from applying
the projection theorem (Theorem B.1) to the innovations, r, — zi~!, for t =
1,....n, using the fact that the innovations z; — I ! and z, — %1 are
uncorrelated for s # ¢ (see Problem 3.41). We present the case in which =; is

a mean-zero stationary time series.



Property 3.6 The Innovations Algorithm
The one-step-ahead predictors, =}, and their mean-squared errors, Ff, |,
can be calculated iteratively as

=0, P =~(0)

t
I:+1 = ZHEJ{IL+I—J - I:;{—]]':- t=1,2,... (3.77)
j=1
t—1
Py =7(0) =3 8 Pl t=12,..., (3.78)
3=0
where, for j=0,1,...,t -1,
J—1
By = (’r{t —J)- Zﬂ;,j_ﬂﬁx,;_kPﬁH) /Pl (3.79)
k=0
Given data =y, ..., ry, the innovations algorithm can be caleulated sue-

cessively for t = 1, then t = 2 and so on, in which case the calculation of 27,
and Py, is made at the final step t = n. The m-step-ahead predictor and
its mean-square error based on the innovations algorithm (Problem 3.41) are
given by

n+m—1
+m—j—1
Toim= 3 Ontm-13(Tntm—g — Tnim_y h (3.80)
j=m
n4+m—1
2 fm—j—1
Paim =70~ Y bnim-1sPaimg - (3.81)
j=m

where the #41m_1 ; are obtained by continued iteration of (3.79).

Example 3.21 Prediction for an MA(1)
The innovations algorithm lends itself well to prediction for moving average
processes. Consider an MA(1) model, x, = wy + fuy_y. Recall that +(0) =
(1+8%)72, (1) = #ol, and y(h) = 0 for h > 1. Then, using Property 3.6,
we have
Bt = by, /Pr !
By =0, j=2,....n
P} = (1+6%)a2
P = (14 6% — 0y )l

n

Finally, from (3.77), the one-step-ahead predictor is

They =0 (zn — I:_l}gijp:_l_



