Estimation

method of moments estimators:

AR(p):
When the process is AR(p),
T = Q1Ty—1 + -+ GpTy_p +wy,
the first p + 1 equations of (3.47) and (3.48) lead to the following:
Definition 3.10 The Yule-Walker equations are given by

k) =¢1y(h—1)+---+opy(h—p), h=12....p, (3.98)

7 =(0) — é17(1) — -~ — GpY(p). (3.99)
In matrix notation, the Yule-Walker equations are
Lip =1 o =700 — &7, (3.100)

where I'p = {')v(k—_;j)}f__k=l is a pX p matrix, ¢ = (@1,...,¢p)’ is a px 1 vector,
and 7y, = (y(1),... .7(p))’ is a p x 1 vector. Using the method of moments,
we replace y(h) in (3.100) by 5(h) [see equation (1.34)] and solve

¢=1'F,, 55=70) -1, ‘% (3.101)
These estimators are typically called the Yule-Walker estimators. For calcula-
tion purposes, it is sometimes more convenient to work with the sample ACF.
By factoring 5(0) in (3.101), we can write the Yule-Walker estimates as

- —~—

$=R'p. 32=30[1-%R 5 (3.102)

where Rp = {p(k — j)}_};,k=l is a p X p matrix and p, = (p(1),...,p(p)) isa
p X 1 vector.
For AR(p) models, if the sample size is large, the Yule-Walker estimators
are approximately normally distributed, and 72, is close to the true value of
S :
oS

In the case of AR(p) models, the Yule-Walker estimators given in (3.102)

are optimal in the sense that the asymptotic distribution, (3.103), is the

| best asymptotic normal distributicrul This is because, given initial conditions,

AR(p) models are linear models, and the Yule-Walker estimators are essen-

tially least squares estimators. If we uze method of moments for MA or ARMA

models, we will not get optimal estimators because such processes are nonlin-
ear in the parameters.




Example 3.28 Method of Moments Estimation for an MA(1)

Consider the time series
Ty = wy + By,

where |#| < 1. The model can then be written as

a0
Ly = Z{—H:ljif:_j + W,
=1

which is nonlinear in #. The first two population autocovariances are (0] =
ao(1+ 6%) and (1) = o536, so the estimate of # is found by solving:

_A _ @
=0 " Tam

Two solutions exist, so we would pick the invertible one. If |g(1)] < %, the
solutions are real, otherwise, a real solution does not exist. Even though
lp(1)] =< % for an invertible MA(1), it may happen that |p(1)] = % because
it is an estimator. For example, the following simulation in B produces a
value of (1) = .507 when the true value is p(1) = .9/(1 + .9%) = .407.

When [p(1)| < %, the invertible estimate is

1— /1T —4p(1)2

a:

2p(1)
It can be shown that®
-~ 1+ 6%+ 46 + 65 4+ 6%\
I~ an (o, L)

AN is read asymptotically normal and is defined in Definition A5, page 515,
of Appendix A. The maximum likelihood estimator {which we discuss next)
of 8, in this case, has an asymptotic variance of (1 — §%)/n. When # = .5,
for example, the ratio of the asyvmptotic variance of the method of moments
estimator to the maximum likelihood estimator of # is about 3.5. That is,
for large samples, the variance of the method of moments estimator is about
3.5 times larger than the variance of the MLE of # when # = 5.



Maximum Likelihood and Least Squares Estimation

To fix ideas, we first focus on the cansal AR(1) case. Let

| me=pt oz —p)+w | (3.105)

where |¢| < 1 and w; ~ iid N(0, 7). pwen data ry, 79, ..., IﬂJ we seek the
likelihood

L{p, ‘?.}1‘7:_2”] = f{IhIﬂa*“aIﬂ I Hy qu}‘
In the case of an AR(1), we may write the likelihood as

Lip,¢,00) = f(z1)f(z2 | 1) -+ f(zn | za1),

where we have dropped the parameters in the densities, f(-), to ease the
notation. B-Bca.usel::; I g ~ N (p+ &{z_y — p), ﬂ'ﬁl}l we have

flz: I T g) = er[{ﬂ-'r, —p) — ey _.P'-]]1

where fi(-) is the density of wy, that is, the normal density with mean zero
and variance o, We may then write the likelihood as

L dyw) = fa1) TT fulCoe =) = does = )

To find fix), we can use the causal representation
[=1]
Ty =p+ Zf#’ﬂu—j
J=0

to see that =y is normal, with mean p and variance o2, /(1 — ¢?). Finally, for

an AR(1), the likelihood is

Liuduod) = (2no2) 21 - ' Pep [ SLD] (309

where

S(p,d) = (1—¢”) (@1 —p)* + 3 [(ze —p) — dlzer — ). (3.107)
=2

Typically, |5, @) is called the unconditional sum of squares.| We could have
also considered the estimation of p and ¢ using unconditional least squares,
that is, estimation by minimizing S{p, @).

Taking the partial derivative of the log of (3.106) with respect to o2, and
setting the result equal to zero, we see that for any given values of g and ¢
in the parameter space, o2, = n~'8(u, ) maximizes the likelihood. Thus, the

maximum likelihood estimate of o2, is

5o =n"'S(ji,8), (3.108)

where [i and @ are the MLEs of g and ¢, respectively. If we replace n in (3.108)
by n — 2, we would obtain the unconditional least squares estimate of T



If, in (3.106), we take logs, replace o3 by 7., and ignore constants, ji and
¢ are the values that minimize the criterion function

lp, ¢) = log [n 'S (p,¢)] —n ™' log(1 — ¢%); (3.109)

that is, (g, ¢) o —2log L(p, &, 72).% Because (3.107) and (3.109) are com-
plicated functions of the parameters, the minimization of [(@, @) or 5{g, @) is
accomplished numerically. In the case of AR models, we have the advantage
that, conditional on initial values, they are linear models. That is, we can

drop the term in the likelihood that canses the nonlinearity. Conditioning on
r1, the conditional likelihood becomes

Lip,¢.02 | z1) =[] fullze —n) — d(zes — p)]
t=2

_ (2mo2) D/ oy [_ Selp, 'ﬁ'}] 1 (3.110)

]
20,

where the conditional sum of squares is
Ejun — $lze—1 — p)]*. (3.111)

The conditional MLE of o3, is

= Se(ji, @)/ (n — 1), (3.112)

and i and ¢ are the values that minimize the conditional sum of squares,
Selpe, ¢). Letting o = p(1 — @), the conditional sum of squares can be written
as

1]
Se(p,d) =3 [z — (a+ drea)]*. (3.113)

=2
The problem is now the linear regression problem stated in §2.2. Following
the results from least squares estimation, we have & = %5 — &%), where
Ty =(n—1)" Ly _11 Ty, and Tigy = (n— 1)~ 15~% 5 7¢| and the conditional
m

Tp2) — 07(1)
1-4
Lii—alre — T))(Te1 — T(y))
Yotmalze-1 — F))?
From (3.114) and (3.115), we see that i = # and ¢ = g(1). That is, the
Yule-Walker estimators and the conditional least squares estimators are ap-
proximately the same. The only difference is the inclusion or exclusion of

terms involving the endpoints, 1 and z,,. We can also adjust the estimate of
2 in (3.112) to be equivalent to the least squares estimator, that is, divide

S.(ji, &) by (n — 3) instead of (n — 1) in (3.112).

ji—= (3.114)

b= (3.115)

_F;J-l'-gE]_lﬂl-'ﬂ.l J’LR{ p) models, maximum likelihood estimation, unconditional

least squares, and conditional least squares follow analogously to the AR(1)
example. For general ARMA models, it is difficult to write the likelihood as an
explicit function of the parameters. Instead, it is advantageous to write the
].ikellhon-d in terms of the innovations, or one-step-ahead prediction errors,
x; — r. 1. This will also be useful in C'hapter 6 when we study state-space
models.



For a/normal ARMA(p, q) model, |1etjﬁ (1,1, -y By By E:'q}f|he the
(p+ g+ 1}-dimensional vector of the model parameters. The [ikelihood can be
written as

L(.02) = [[ flzt | zits....m).

t=1
The conditional distribution of r; given r;_q,..., 7 i& Gaussian with mean
727! and variance PY~!. Recall from (3.71) that PF! = 4(0) n;;iu — &%)
For ARMA models, v(0) = a2, E?iu i,;',r_? in which case we may write

Py =7(0) H[l — 4. (3.71)

SE e
Pl =52 Z .12 H{l {,f,vﬂ = r:.r,_ﬂ rt,
where r; is the term in the braces. Note that the r; terms are functions only
of the regression parameters and that they may be computed recursively as
ree1 = (1 — @i )re with initial condition r; = Z;;EI t,":'?. The likelihood of the

data can now be written as

L(B,ou) = (2ran) ™ [ri(B)ra(B) - --ra(B)] P exp [‘%}] . (3.116)
where .
[l == (8)?
-3 [z @10

t=1

Both zi™! and r; are functions of 8 alone, and we make that fact explicit
in (3.116)-(3.117). Given values for f and o2, the likelihood may be evalu-
ated using the techniques of §3.5. Maximum likelihood estlma.tion would now
proceed by maximizing (3.116) with respect to f and o). As in the AR(1)
example, we have

5y =n'S(B), (3.118)

where ff is the value of B that minimizes the concentrated likelihood

[(B) =log [n~'S(B)] +n™' D " logre(B). (3.119)



