Integrated Models for Nonstationary Data

Definition 3.11 A process 1 is said to be ARIMA (p.d. q) if
Vi, = (1 — B)%x,
is ARMA(p,q). In general, we will write the model as
B(B)(1 — B)*z, = §(B)w,. (3.143)
If E(Viz,) = p, we write the model as
$(B)(1 — B)%z, = 6 + 6(B)u,
where § = p(l — ¢ —--- — ¢yp).

It should he clear that, since i, = V92, is ARMA, we can use §3.5 methods
to obtain forecasts of y,, which in turn lead to forecasts for ;. For example, if
d = 1, given forecasts yg o, form = 1,2, wehave yp . = 0. —20 0 1,
so that

1’:+m = y:+1rrt + I:+m—1
with initial condition =3, = yfi, 4 + Tn (noting = = xy,).

It is a little more difficult to obtain the prediction errors P7, . but for
large n, the approximation used in §3.5, equation (3.86), works well. That is,
the mean-squared prediction error can be approximated by

[y

m—
Plim =0 Y ¥}, (3.144)
j=
where 1 is the coefficient of 27 in ¢*(z) = 8(z)/d(2)(1 — z)d.
To better understand integrated models, we examine the properties of
some simple cases; Problem 3.29 covers the ARIMA(L, 1,0) case.

Example 3.36 Random Walk with Drift

To fix ideas, we begin by considering the random walk with drift model first
presented in Example 1.11, that is,

xp =84+ 2y + oy,

for t =1,2,..., and zyp = 0. Technically, the model iz not ARIMA, but we
could include it trivially as an ARIMA(0, 1, 0) model. Given data x4, ..., Ty,

the one-step-ahead forecast is given by

Tny1 = Elzng I;I:n,....lrﬂl =E(d+ zp +wns | TpyeooyT1) =4 + 240

The two-step-ahead forecast is given by =f,0 = § + 25,y = 26 + 7y, and
consequently, the m-step-ahead forecast, form =1,2,..., i=s

Tpym = mb + Tn, {3.145)

To obtain the forecast errors, it is convenient to recall equation (1.4), Le.,
Tp =nd+ Z?:l wy, in which case we may write

n4m 41T
zﬂ+m={n+m}f5+2wj=mf5+rn+ E uy.
j=|. _]'=ﬂ:+1



From thi= it follows that the m-step-ahead prediction error is given by

41T

2
FPrim = E(znm _1"':+1-r.|.:|2 = E( Z w:?) = m‘:'tzu‘ (3.146)
i=n+1

Building ARIMA Models

Example 3.38 Analysis of GNP Data

In this example, we consider the analysis of quarterly U.S. GNP from
1947(1) to 2002(3), n = 223 cbservations. The data are real U5, gross

national product in billions of chained 1996 dollars and have been season-
ally adjusted. The data were obtained from the Federal Reserve Bank of
St. Louis (http://research.stlouisfed.org/). Figure 3.12 shows a plot
of the data, say, y. Because strong trend hides any other effect, it is not
clear from Figure 3.12 that the variance is increasing with time. For the
purpose of demonstration, the sample ACF of the data is displayed in Fig-
ure 3.13. Figure 3.14 shows the first difference of the data, Vi, and now
that the trend has been removed we are able to notice that the variability in
the second half of the data is larger than in the first half of the data.
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Fig. 3.12. Quarterly U.S. GNP from 1947(1) to 2002(3).

Fig. 3.13. Sample ACF of the CNF data. Lag i= in terms of years.



i: o il
- I"wuu.q~ﬁ||IJ| HM\ \ ‘\ ‘ “ | ! M Hh il L“
% _ I ' ' T T T

3
= ] M '
S !.. :
- J”|.| KH | *I H \ , 1| |! |I‘|i|'ll‘ l'*“|“ﬂ “| l”"-i"""' 4| Hpq f"'\.u“'lﬁ*'ef'lhﬁ‘d‘|'
11 -4

vJ\ H

T T T T T T
1950 1960 1970 1820 1880 2000

Time

Fig. 3.15. U.5. GNP quarterly growth rate.
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Fig. 3.16. Sample ACF and PACF of the GNP guarterly growth rate. Lag is in
terms of vears.



Using MLE to fit the MA(2) model for the growth rate, x;, the estimated

model is
xp = 008 po1y + .3[]3(355:,13;_1 + .21}4{_054}11:;_2 + i, {3.151)

where &y, = 0094 is based on 219 degrees of freedom.

The estimated AR(1) model is
e = 008 poyy (1—.347) + .34?{_&@}1;_1 + i, (3.152)

where 7, = 0095 on 220 degrees of freedom; note that the constant in
(3.152) is 008 (1 — .347) — .005.

Iy = .35.’[‘1_1 + Wy,
and write it in its cansal form, r; = Z;Zu tyw;_;, where we recall oy = 357,

Thus, tho = 1,31 = .350, ¢ = .123, 1 = .043, 0y = .015, b5 = .005, 1 =
002, 40 = 001, ¢hg = 0,10y = 0, ¢y = 0, and so forth. Thus,

Ty A .35‘11.';_1 + .12‘1”1_2 + W,
which is similar to the fitted MA(2) model in (3.152).

Investigation of marginal normality can be accomplished visually by look
ing at a histogram of the residuals. In addition to this, a normal probabilit;
plot or a Q-0) plot can help in identifying departures from normality. Se
Johnson and Wichern (1992, Chapter 4) for details of this test as well a
additional tests for multivariate normality.

The Ljung—EDx—Pier_oe ()-statistic given by

zlh)

— n—nh

(}=mn(n+2)

(3.154)

[¥]=
At

can be used to perform such a test. The value H in (3.154) is chosen somewhat
arbitrarily, typically, H = 20. Under the null hypothesis of model adequacy,
asymptotically (n — oo), @ ~ xir_p_g. Thus, we would reject the null hy-
pothesis at level a if the value of ) exceeds the (1 —a)-quantile of the xir_p_q
distribution. Details can be found in Box and Pierce (1970), Ljung and Box
(1978), and Davies et al. (1977). The basic idea is that if wy is white noise,
then by Property 1.1, np2,(h), for h = 1,..., H, are asymptotically indepen-
dent y{ random variables. This means that n ZE:i (k) is approximately a
¥3 random variable. Because the test involves the ACF of residuals from a
model fit, there is a loss of p+ g degrees of freedom; the other values in (3.154)
are used to adjust the statistic to better match the asymptotic chi-squared
distribution.



Example 3.39 Diagnostics for GNP Growth Rate Example
We will focus on the MA(2) fit from Example 3.38; the analysis of the AR(1)

residuals is similar. Figure 3.17 displays a plot of the standardized residuals,
the ACF of the residuals, a boxplot of the standardized residuals, and the
p-values associated with the (J-statistic, (3.154), at lags H = 3 through
H = 20 (with corresponding degrees of freedom H — 2).

Inzpection of the time plot of the standardized residuals in Figure 3.17
shows no obvious patterns. Notice that there are outliers, however, with
a few walues exceeding 3 standard deviations in magnitude. The ACF of
the standardized residuals shows no apparent departure from the model
assumptions, and the (J-statistic is never significant at the lags shown. The
normal Q-0) plot of the residuals shows departure from normality at the
tails due to the outliers that occurred primarily in the 1950s and the early
1980s.
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Fig. 3.17. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

Example 3.42 Model Choice for the U.5. GNP Series
Returning to the analysis of the U.S. GNP data presented in Examples 3.38
and 3.39, recall that two models, an AR(1) and an MA(2), fit the GNP

growth rate well. To choose the final model, we compare the AIC, the AICc,
and the BIC for both models.



\ sarima(gnpgr, 1, 0, 0) # AR(1)
$AIC: -8.294403  §AICc: -8.2848593 |§BIC: -9.263748
2 sarima(gnpgr, 0, 0, 2) # MA(2)

|HI’C: -8.297653  §AICc: -8.287864 | $BIC: -9.2561711
The AIC and AlCc both prefer the MA(2) fit, whereas the BIC prefers the
simpler AR(1) model. It is often the case that the BIC will select a model
of smaller order than the AIC or AICe. It would not be unreasonable in this
case to retain the AR(1) because pure antoregressive models are easier to
work with.

Multiplicative Seasonal ARIMA Models

@ p(B*)r, = Bg(B®)w,, (3.155)
with the following definition.
Definition 3.12 The operators
dp(B*)=1—-& B —$;B* — ... —dpBF* (3.156)

and

Bg(B*) =1+ 6B + &B% + ... + BB (3.157)

are the seasonal autoregressive operator and the seasonal moving av-
erage operator of orders P and (), respectively, with seasonal period s.

Amalogous to the properties of nonseasonal ARMA models, the pure sea-
sonal ARMA(P,()), is causal only when the roots of dp(z%) lie outside the
unit circle, and it is invertible only when the roots of Bg(2*) lie outside the
unit cirele.

Example 3.43 A Seasonal ARMA Series
A first-order seasonal autoregressive moving average series that might run
over months could be written as

(1— BBz = (1 + BB )uy,

ar
ry = Pry_g2 + wy + Ouwy_go.

This model exhibits the series r; in terms of past lags at the multiple of the
vearly seasonal period s = 12 months. It is clear from the above form that
estimation and forecasting for such a process involves only straightforward
modifications of the unit lag case already treated. In particular, the causal
condition requires |#| < 1, and the invertible condition requires |&| < 1.



Table 3.3. Behavior of the ACF and PACF for Pure SARMA Models

AR(P)s MA(Q). ABRMA(P, Qs
ACF* Tails off at lags ks, Cuts off after Tails off at
k=1,2...., lag ()= lags ks
PACF= Cuts off after  Tails off at lags ks Tails off at
lag Ps E=1,2,..., lags ks
*The values at nonseasonal lags h &£ ks, for £ =1,2, ..., are zero.

For the first-order seasonal (= = 12} MA model, z; = wy + Guwy_q2, it is
easy to verify that

~(0) = (14 6%)a?
7(£12) = B2
yih

1 =0, otherwise.

Thus, the only nonzero correlation, aside from lag zero, is
p(£12) = /(1 +87).

For the first-order seasonal (s = 12) AR model, using the techniques of
the nonseasonal AR(1), we have

7(0) = o?/(1 — &%)
v(£12k) = /(1 - %) k=1.2,...
Jlh} =0, otherwise,

In this case, the only non-zero correlations are

p(+12k) =d*, k=0,1,2,....

These results can be verified using the general result that (k) = &~k — 12},
for b = 1. For example, when h = 1, (1) = &(11), but when k = 11, we
have (11} = d(1), which implies that (1) = «{11) = 0. In addition to
these results, the PACF have the analogous extensions from nonseasonal to
zeasonal models.

In general, we can combine the seasonal and nonseasonal operators into
a multiplicative seasonal autoregressive moving average model, denoted by

ABMA(p, q) x (P, (@)s, and write
&p(B*)d(B)r, = Og(B*)8(B)uw, (3.158)



Example 3.44 A Mixed Seasonal Model
Consider an ARMA(D, 1) = (1,0)12 model

xy = Dry_19 +wy + By,

where @ < 1 and |f#| < 1. Then, because x;_ya, uy, and wy_y are uncorre-
lated, and =, is stationary, v(0) = #5(0) + op, + 805, or

1+6% o
M0) = =2z u-

In addition, multiplying the model by z;_p, k = 0, and taking expectations,
we have v(1) = $(11) + 63, and (k) = $y(h — 12), for k = 2. Thus, the
ACF for this model is

pl12h) =" h=12 ..

plh) =0, otherwise.

& h=0,1,2,...,

The ACF and PACF for this model, with ¢ = .8 and # = —.5, are shown in
Figure 3.20. These type of correlation relationships, although idealized here,
are typically seen with seasonal data.
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Fig. 3.20. ACF and PACF of the mixed seasonal ARMA model ;. = Bz_g0 +
e — .-Ei‘l!,‘:—j.

Definition 3.13 The multiplicative seasonal autoregressive integrated
moving average model, or SARIMA model is given by

$p(B*)(B)VEViz, = 6 + Og(B*)8(B)uw,, (3.160)

where wy is the usual Goussian whife noise process. The general model is
denoted as ARIMA(p, d.q) = (P,D,(});. The ordinary autoregressive and
moving avernge components are represented by polymomials $(B) and 8 B)
of orders p and g, respectively [see (3.5) and (3.18)], and the seasonal autore-
gressive and moving average components by $p(B*) and Og(B*®) [see (3.156)
and ['3.15?{/ of orders P and ) and ordinary and seasonal difference compo-
nents by V% = (1 — B)? and VP = (1 - B%)P,



Example 3.46 The Federal Reserve Board Production Index

A problem of great interest in economics involves first identifying a model

within the Box—Jenkins class for a given time series and then producing

forecasts based on the model. For example, we might consider applying
this methodology to the Federal Reserve Board Production Index shown in
Figure 3.21. For demonstration purposes only, the ACF and PACF for this
series are shown in Figure 3.22. We note that the trend in the data, the slow
decay in the ACF, and the fact that the PACFE at the first lag is nearly 1,

all indicate nonstationary behavior.
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Fig. 3.22. ACF and PACF of the production series.



Following the recommended procedure, a first difference was taken, and

the ACF and PACF of the first difference
Vr=m — 1
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Fig. 8.28. ACF and PACF of differenced production, (1 — B)r,.
ViaVz = (1 — B?)(1 — B)z,.
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Fig. 3.24. ACF and PACF of first differenced and then seasonally differenced pro-
duction, (1 — B){1 — Bz,



Fit.ti.ug the three ﬁmdels_sug-r_gested h1. these observations we obtain:
(i) ARIMA(2,1,0) x (0,1,1)4a:
AIC= 1.372, AICe= 1.378, BIC= .404
(i) ARIMA(2,1,0) x (0,1,3)a:
AIC= 1.299, AICc= 1.305, BIC= .351
(iii) ARIMA(2,1,0) x (2,1,1)2:
AIC= 1.326, AICc= 1.332, BIC= .379

The ARIMA(2,1,0) x (0,1, 3)12 is the preferred model, and the fitted model

in this case is
(1 —.30(05)B — .11 (05 B*)V 12V 5,
= (1 —.T4.05B"? — .14 pg) B** + 28, 05, B*)iti,

with 73, = 1.312.
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Fig. 3.25. Diagnostics for the ARIMA(2,1,0) = (0,1,3)12 fit on the Production
Index.



