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5.2 Long Memory ARMA and Fractional Differencing

The conventional ARMA(p, ¢) process is often referred to as a short-memory
process hecause the coefficients in the representation

e
Iy = E L'_jf.i!"!_j.

j=0

obtained by solving
dz)b(z) =0(z),

are dominated by exponential decay. As pointed out in §3.3, this result implies
the ACF of the short memory process p(h) — 0 exponentially fast as h — oo.

Example 3.32 Fitting the Glacial Varve Series
Consider the series of glacial varve thicknesses from Massachusetts for n =
634 years, as analyzed in Example 2.6 and in Problem 2.8, where it was
argued that a first-order moving average model might fit the logarithmically
transformed and differenced varve series, say,

. r L't
Vlog(z;) = log(x;) — log(z,_,) = log ( - ) .
i1
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Fig. 2.6. Glacial varve thicknesses (top) from Massachusetts for n = 634 years
compared with log transformed thicknesses (bottom).
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Fig. 3.7. ACF and PACF of transformed glacial varves.



leads to fitting an ARIMA(1, 1, 1) model,
vl!g = @?x,_] 4wy 4+ H?.u'_-'g_]..

where we understand z; 1s the log-transformed varve series. In particular,
the estimates of the pdl’dln(‘t(‘l‘h (and the standard errors) were :p = .23(.05),
6= —.80(.03), and 7 = .23. The use of the first difference Vz; = (1 — B)x,
can be too severe a modification in the sense that the nonstationary model
might represent an overdifferencing of the original process.

(1 - B)'zy = w, (5.1)

where w; still denotes white noise with variance 2. The fractionally differ-
enced series (5. 1} m is often called fractwual noise [c:{cr]:rt when d is
zero). Now, d becomes a paramctcr to be estimated along with 3. Differenc-
ing the ﬂrlgmd.l process, as in the Box—Jenkins approach, may be thought of
as simply assigning a value of d = 1. This idea has been extended to the class

off fractionally mtegrated ARMA, or ARFIMA models, where — 5 < d < b

when d 1s negative, the term antipersistent is used.
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Fig. 5.1. Sample ACF of the log transformed varve series.



To investigate its properties, we can use the binomial expansion (d > —1)
to write

we = (1 — B)x, = z mj Biz, = z TiTt_j (5.2)
=0 3=0
where rG—d
_ J— -
T TG+ DI —d) (5.3)

with I'(x + 1) = xI'(x) being the gamma function. Similarly (d < 1), we can
write

zi=(1—B)we =Y 0 Blwe = tyw_; (5.4)
j=0 =0
where Flivd

PTG DI@

When |d| < .5, the processes (5.2) and (5.4) are well-defined stationary pro-

cesses (see Brockwell and Davis, 1991, for details). In the case of fractional

differencing, however, the coefficients satisfy 3 T:'? < oo and 3 i,:'l_f < oo as

opposed to the absolute summability of the coefficients in ARMA processes.

Using the representation (5.4)-(5.5), and after some nontrivial manipula-
tions, it can be shown that the ACF of x; is

_ I'th+d)I'(1 —d)

() = Fh—arnr@ ~ " (5.6)

for large h. From this we see that for 0 < d < .5

0

3 Ip(h)] = o

h=—oc

and hence the term long memory.

Gamma function

From Wikipedia, the free encyclopedia

For the gamma function of ordinals, see Veblen function. For the gamma distribution in statistics, see Gamma distribution

In mathematics, the gamma function (represented by the capital Greek alphabet letter T') is an
extension of the factorial function, with its argument shifted down by 1, to real and complex numbers.
That is, if 7 is a positive integer

T(n) =(n—1)!

The gamma function is defined for all complex numbers except the non-positive integers. For complex
numbers with a positive real part, it is defined via a convergent improper integral:

F(z)=f e da
0

This integral function is extended by analytic continuation to all complex numbers except the non-

positive integers (where the function has simple poles), yielding the meromorphic function we call the
gamma function. It has no zeroes, so its reciprocal 1/T(Z) is a holomorphic function. In fact the gamma
function corresponds to the Mellin transform of the negative exponential function: The gamma function along part of the real axis &

T(z) = {Me™"}(2)

The gamma function is a component in various probability-distribution functions, and as such it is applicable in the fields of probability and statistics, as well as
combinatorics.




_ U —dim;({d)
Trj+1|:|'i} = {j i 1} s (57}

for j =0,1,..., with my(d) = 1. Maximizing the joint likelihood of the errors
under normality, say, wy(d), will involve minimizing the sum of squared errors

Q(d) = ¥ wi(d).
The usual Gauss—Newton method, described in §3.6, leads to the expansion
we(d) = we(do) + w}(do) (d — do),

where
Bm

wi(do) = S

d=dp

and dy, is an initial estimate (guess) at to the value of d. Setting up the usual

regression leads to

¥, wh(do)uwy(do)
3, wi(do)”
The derivatives are computed recursively by differentiating (5.7) successively
with respect to d: 7, (d) = [(j — d)7}(d) — 7;(d)]/(j + 1), where }(d) = 0.
The errors are computed from an approximation to (5.2), namely,

d=do— (5.8)

wi(d) = 3 my(d)a. (5.9)

It is advisable to omit a number of initial terms from the computation and
start the sum, (5.8), at some fairly large value of t to have a reasonable
approximation.

Example 5.1 Long Memory Fitting of the Glacial Varve Series

We consider analyzing the glacial varve series discussed in Examples 2.6
and 3.32. Figure 2.6 shows the original and log-transformed series (which
we denote by r¢). In Example 3.40, we noted that z; could be modeled as
an ARIMA(1,1,1) process. We fit the fractionally differenced model, (5.1),
to the mean-adjusted series, r; — T. Applying the Gauss—Newton iterative
procedure previously described, starting with d = .1 and omitting the first 30
points from the computation, leads to a final value of{d = .384] which implies
the set of coefficients m;(.384), as given in Figure 5.2 with m,(.384) = 1. We
can compare roughly the performance of the fractional difference operator
with the ARIMA model by examining the autocorrelation functions of the
two residual series as shown in Figure 5.3. The ACFs of the two residual
series are roughly comparable with the white noise model.
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Fig. 5.3. ACF of residuals from the ARIMA(1,1,1) fit to the logged varve series

(top) and of the residuals from the long memory model fit, (1 — B)%z,

d = .334 (bottom).
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No obvious short memory ARMA-type component can be seen in the ACF
of the residuals from the fractionally differenced varve series shown in Fig-
ure 5.3. It is natural, however, that cases will exist in which substantial short
memory-type components will also be present in data that exhibits long mem-
ory. Hence, it is natural to define the general ARFIMA(p.d,q), —5<d < .5
process as

S(B)V¥(z, — ) = 6B, (5.13)

where ¢(B) and #(B) are as given in Chapter 3. Writing the model in the
form

&(B)ma(B)(ze — 1) = O(B)w, (5.14)

Forecasting long memory processes 1s similar to forecasting ARIMA mod-
els. That 15, (5.2) and (5.7) can be used to obtain the truncated forecasts

From == () Ty s (5.10)
j=1
for m=1,2,... . Error bounds can he approximated by using

P, =52 (Z w?t&“}) (5.11)

where, as in (5.7), B ~
) G+ D) 5

-

with (d) = 1.
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5.3 Unit Root Testing

As discussed in the previous section, the use of the first difference Vi, =
(1 - B)z; can be too severe a modification in the sense that the nonstationary
model might represent an overdifferencing of the original process. For example,
consider a causal AR(1) process (we assume throughout this section that the
noise 15 Gaussian),

Iy = {,f’.'l.':_l + wi. {526}

Applying (1 — B) to both sides shows that differencing, Vay = oV +Vuy,
or

Ut = OYi—1 +wp — wi_q,

where ¥ = Vx;, introduces extraneous correlation and invertibility problems.
That is, while x; is a causal AR(1) process, working with the differenced
process i will be problematic because it is a non-invertible ARMA(1,1).

A unit root test provides a way to test whether (5.26) is a random walk
(the null case) as opposed to a causal process (the alternative). That is, it
provides a procedure for testing

Hyo:p=1 wersus Hy:|o| < L.

To examine the hehavior of [:}; — 1) under the null hypothesis that ¢ =1,
or more precisely that the model is a random walk, x; = fo:l wj, OF Ty =
x4 + wy with g = 0, consider the least squares estimator of ¢. Noting that
pz = [, the least squares estimator can be written as

1 oon Rt
n Z:=1 Tglg 1 o z:=1 W1
T—n 2 Tw7 =

7 21 Tio  2t—1 Tio1
where we have written ry = 17 + w; in the numerator; recall that zq =0

and in the least squares setting, we are regressing r; onxr;_ fort =1,...,n.
Hence, under H, we have that

b= (5.27)
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(5.28)

1 noz
=) > 1Tt 1

Consider the numerator of (5.28). Note first that by squaring both sides

of ¥, = x;_1 + wy, we obtain If = .'I:f_l + 25 _quny + wf so that

1
Tiawe = 5(7f — 3, —wj),

and summing,

LZﬂ;.'I|',—1’|‘.L'r, = 1( Ii - E;t=1 WLZ)

2 2
2\nos no;,

Because x, = " wy, we have that z, ~ N(0,no2), so that %E,"Tﬁ ~x7, the
chi-squared distribution with one degree of freedom. Moreover, because wy is
white Gaussian noise, - 3.7 wj —p a5, or —= > wj —+p 1. Consequently,
(n — oo)

1 T
w1

Definition 5.1 A continuous time process {W(t): t = 0} is called standard
Brownian motion if it satisfies the following conditions:

(i) W(0) = 0;

(1i) {W(ta) — W(ty), Wi(ts) — Wita),...,W(t,) —W(t,_,)} are independent
for any collection of points, 0 < t; < ty--- < t,,, and integer n > 2;

(i) W(t 4+ At) — W(t) ~ N(0, At) for At = 0.

The result for the denominator uses the functional central limit theorem,
which can be found in Billlingsley (1999, §2.8). In particular, if &,...,&, s

a sequence of 1id random wvariables with mean 0 and variance 1, then, for
0 <t <1, the continuous time process

1 [nt]

Snlt) = ﬁ;g—a 5 W), (5.30)
as n — oo, where [ | is the greatest integer function and W{t) is standard
Brownian motion on [0, 1]. Note the under the null hypothesis, z, = wy +
oo 4w, ~ N{0,s02), and based on (5.30), we have E”—ﬂ—ﬁ —4 W(s). From

this fact, we can show that (n — oo)

S (Z) 3 [ W (531)

t=1




The denominator in (5.28) is off from the left side of (5.31) by a factor of n—1,
and we adjust accordingly to finally obtain (n — oc),

1 L .
nos, z =1 WeTi—1

206G~ 1) (5.32)

n(¢—1) =

2

1 m
nial 21T

[ W2(t)dt

The test statistic n(¢ — 1) is known as the unit root or Dickey-Fuller (DF')
statistic (see Fuller, 1996), although the actual DF test statistic is normalized

Example 5.3 Testing Unit Roots in the Glacial Varve Series
In this example we use the R package tseries to test the null hypothesis
that the log of the glacial varve series has a unit root, versus the alternate
hypothesis that the process is stationary. We test the null hypothesis using
the available DF, ADF and PP tests; note that in each case, the general
regression equation incorporates a constant and a linear trend. In the ADF
test, the default number of AR components included in the model, say k, is
[(n— 1]%]], which corresponds to the suggested upper bound on the rate at
which the number of lags, &k, should be made to grow with the sample size
for the general ARMA(p, g) setup. For the PP test, the default value of k is

[.04n7].
library(tseries)
adf .test(log(varve), k=0)

Dickey-Fuller = -12.8572, Lag order
alternative hypothesis: staticnary

B e

adf .test(log(varve))

[~

# DF test
= 0] p-value < 0.01
# ADF testi
8, [pvalue = 0.04071

Dickey-Fuller = -3.5166, Lag order =

alternative hypothesis: stationary
1 library(tseries)
a adf . test(log(varve), k=0)

Dickey-Fuller = -12.8572, Lag order
alternative hypothesis: stationary

2 adf .test(loglvarve))

Dickey-Fuller = -3.5166, Lag order =

alternative hypothesis: stationary

# DF tesi

0) pvalue < 0.01

# ADF test

8, |[pvalue = 0.04071




