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Figure 3.1: Periodic components with periods 20 and 12 points, re;pective_ly.
and linear combination (bottom panel) corresponding to the model (3.3) with
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Figure 3.6: Cosine transform, sine trensform, and periodogram of a periodic
random series.
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4.5 Nonparametric Spectral Estimation

To continne the discussion that ended the previous section, we introduce a
frequency band, B, of L << n contignous fundamental frequencies, centered
around frequency w; = j/n, which is chosen close to a frequency of interest,
w. For frequencies of the form w*® = w; + k/n, let

B={w*:wj—E£w*£wj+E}, (4.44)
n n

where
L=2m+1 (4.45)

is an odd oumber, chosen such that the spectral values in the interval B,
flw; + kfm), k=-m,...,0,...,m

are approximately equal to f(w). This structure can be realized for large
sample sizes, as shown formally in §C.2.

We now define an averaged (or smoothed) periodogram as the average of
the periodogram values, say,

f{w}=% 3 I(wj+k/n), (4.46)

k=—m

over the band B. Under the assumption that the spectral density is fairly
constant in the band B, and in view of (4.41) we can show that under appro-
priate conditions,!! for large n, the periodograms in (4.46) are approximately
distributed as independent f(w)x3/2 random variables, for 0 < w < 1/2, as
long as we keep L fairly small relative to n. This result is discussed formally

in §C.2. Thus, under these conditions, L f(w) is the sum of L approximately
independent f(w)y3/2 random variables. It follows that, for large n,

2Lf(w) .
@) ~ Xar. (4.47)

where ~ means is approrimately distributed as.



Bul = E
n

(4.48)

the bandwidth.!* The concept of the bandwidth, however, hecomes more com-
plicated with the introduction of spectral estimators that smooth with unequal
weights. Note (4.48) implies the degrees of freedom can be expressed as

2L =2Byn,

(4.49)

or twice the time-bandwidth product. The result (4.47) can be rearranged to

obtain an approximate 100(1 — «)% confidence interval of the form

2L fiw 2L flw
xap (1l —a/2) xar (e/2)
for the true spectrum, f(w).
Series: soi
Raw Periodogranm
=
L=]
=
L=
= ]
= T T T T T
u} 1 2 3 4
frequency
bandwidth = 0.00722
Series: rec
Raw Periodogram
% _
E =z |
LT+
p_—
T T
u} 1 2 3 4
frequency

bandwidth = 0.00722

(4.50)

Fig. 4.4. Periodogram of S01 and Recruitment, n = 453 (' = 480), where the
frequency axis is labeled in multiples of A = 1/12. Note the common peaks at

w = 1A = 1/12, or one cycle per year (12 months), and w

eyele every four yvears (48 months).

1A = 1/48, or one



Example 4.11 Averaged Periodogram for SOI and Recruitment

Generally, it is a good idea to try several bandwidths that seem to be com-
patible with the general overall shape of the spectrum, as suggested by
the periodogram. The SOI and Recruitment series periodograms, previously
computed in Figure 4.4, suggest the power in the lower El Nino frequency
needs smoothing to identify the predominant overall period. Trying val-
ues of L leads to the[choice I = Ulas a reasonable value, and the result
is displaved in Figure 4.5. In our notation, the bandwidth in this case is
B, = 9/480 = .01875| cycles per month for the spectral estimator. This
bandwidth means we are assuming a relatively constant spectrum over about
01875/.5 = 3.75% of the entire frequency interval (0, 1/2). To obtain the
bandwidth, B,, = 01875, from the one reported by R in Figure 4.5, we
can multiply .065A (the frequency scale is in increments of A) by V12 as
discussed 1n footnote 12 on page 197.
Series: soi
smoothed Periodogram

o
.
=
L=]
E lq- ]
[=
f=]
=2 '
[=] T 1 1 I T T T
0 1 2 a 4 5 &
frequency
bandwidth = 0.065
Series: rec
smoothed Periodogram
2 :
= :
= i
= :
2 - 5
& :
o :
I I I I I I I
0 1 2 3 4 5 i
frequency

bandwidth = 0.065

Fig. 4.5. The averaged periodogram of the SOl and Recruitment series n =
453, n' = 480, L = 9, df = 17, showing common peaks at the four vear period,
W= %,_1_ = 1/48 eycles/month, the vearly period, w = 1A = 1/12 cycles /month and
some of its harmonics w = kA for £ = 2,3,

The adjusted degrees of freedom are|df = 2(9)(453)/480 ~ 17.[We can
use this value for the 05% confidence intervals, with fyg,(.025) = 7.56 and
[x3r(-975) = 30.17 Substituting into (4.53) gives the intervals in Table 4.1
for the two frequency bands identified as having the maximum power.




Table 4.1. Confidence Intervals for the Spectra of the SOOI and Recruitment Series

Series w Period Power Lower Upper
501 1/48 4 years 05 .03 A1
1/12 1 year 12 07 27

Recruits 1/48 4 years G.50 in 14.82
=107 1/12 1 year 2.19 1.24 4.93

Many times, the visual impact of a spectral density plot will be improved
by[plotting the {ogarithm of the spectrum) instead of the spectrum (the log
transformation is the variance stabilizing transformation in this situation).
This phenomenon can occur when regions of the spectrum exist with peaks of
interest much smaller than some of the main power components. For the log
spectrum, we obtain an interval of the form

llog f(w) + log 2L — log x5, (1 — a/2),
log f(w) + log 2L — logx3; (a/2)]. (4.51)

We can also test hypotheses relating to the equality of spectra using the
fact that the distributional result {4.47) implies that the ratio of spectra based
on roughly independent samples will hm'elau approximate Fay, oy, Idistrihutiuu.
The independent estimators can either be from different frequency bands or
from different series.
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Fig. 4.6. Figure 4.5 with the average periodogram ordinates plotted on a log,,
scale. The display in the upper right-hand corner represents a generic 95% confidence
interval.

To address the problem of resolution, it should be evident that the flat-
tening of the peaks in Figures 4.5 and 4.6 was due to the fact that simple
averaging was used in computing f(w) defined in (4.46). There is no partic-
ular reason to use simple averaging, and we might|{improve the estimator| by
emploving a weighted average, say

T

flw)="3" hpI(w; +k/n), (4.56)
k=

—Tm

using the same definitions as in (4.46) but where the weights hg = 0 satisfy

ihk=1.

k=—m



In particular, it seems reasonable that the resolution of the estimator will
improve if we use weights that decrease as distance from the center weight
ho increases; we will return to this idea shortly. To obtain the averaged pe-
riodogram, f(w), in (4.56), Eetfnr all k, where L = 2m + 1.
The asymptotic theory established for f(w) still holds for f{m} provided that
the weights satisty the additional condition that if m — o0 as n — oo but

m/n — 0, then
> hi—=0.

k=—m

Under these conditions, as n —+ oo,

() E (Fw)) = f(w)

(ii) (z;‘:_m hﬁ)_lcmr (f{wj,f{m) S fw) forw=A#£0,1/2,

In (ii), replace f2(w) by 0 if w # A and by 2f?(w) f w=A=0o0r 1/2.

We have already seen these results in the case of f{w), where the weights
are constant, by = L™', in which case 3" hi = L~'. The distributional
properties of (4.56) are more difficult now because fl:r,u} is a weighted linear
combination of asymptotically independent yv? random variables. An approx-

imation that seems to work well is to replace L by (3, hi]_l. That is,

define »
Ln— ( 3 hf.) (457)

k=—m

and use the approximation'®

2L flw)

L2
~ I 4.58
f{w] 2Ln { }
In analogy to (4.48), we will define the bandwidth in this case to be
Ly
B, = - (4.59)

Using the approximation (4.58) we obtain an approximate 100(1 — )% con-
fidence interval of the form
2L f(w) 2Ly fw)
Xz, (1 —a/2) Xz, (@/2)

for the true spectrum, f{w). If the data are padded to n’, then replace 2L in
(4.60) with df = 2Lyn/n’ as in (4.52).

< flw) < (4.60)



An easy way to generate the weights in R is by repeated use of the Daniell

kernel. For example, with m = 1 and L = 2m + 1 = 3, the|Daniell kernel

has weights {hi} = {. %, 2}t applying this kernel to a sequence of numbers,
{u; }, produces

= 1 1 1
U = g1 + gl + FUs41.

We can apply the same kernel again to the i,

= 1 1=~ 1=
Up = gliz_1 + Ut + gUhty1,
which simplifies to

=~ __ 1 2 3 2 1
Uy = ﬁul—ﬂ - §T.I!-|g__]_ - ﬁui — ﬁu‘t+l - ﬁuf-+2'

The modified Daniell kernel puts half weights at the end points, so with m = 1
the weights are {hi} = {3,3, 7} and
Uy = iut—l + %Ht + %Ut+1-

Applyving the same kernel again to u; yields

= 1 1 [ 1 1
Up = Jplt—2 + Tglt—1 + Ut + Tgle+1 + Tgle+2.

Example 4.13 Smoothed Periodogram for SOI and Recruitment

In this example, we estimate the spectra of the SOI and Recruitment se-
ries using the smoothed periodogram estimate in (4.56). We used a mod-
ified Daniell kernel twice, with m = 3 both times. This yields Ly =

/¥ hi = 0232 which is close to the value of L = 0 used in Ex-
ample 4.11. In this case, the bandwidth is B,, = 9.232/480 = .019 and the
modified degrees of freedom is df = 2L, 453/480 = 17.43.
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Fig. 4.8, Smoothed spectral estimates of the S0OI and Recruitment series; see Fx-
ample 4.13 for details.

We are now ready to briefly introduce the concept of [tapering: ]a more
detailed discussion may be found in Bloomfield (2000, §9.5). Suppose x; 15 a
mean-zero, stationary process with spectral density fr(w). If we replace the
original series by the tapered series

Yt = hizy, (4.61)
for t =1,2,...,n, use the modified DFT

dy(w;) =n~ 2N " hyaem 2t (4.62)

t=1

and let I (w;) = |dy(w;)|?, we obtain (see Problem 4.15)



1/2

Bl )l = [ Walws =) flw) d (4.63)
where
W(w) = [Hy(w)|* (4.64)
and N
Hp(w) =n"12) " he 2t (4.65)

The value Wi, (w) is called a spectral window because, in view of (4.63), it is
determining which part of the spectral density fr(w) is being “seen” by the
estimator [y(w;) on average. In the case that hy = 1 for all £, I (w;) = I-(w;)
is simply the periodogram of the data and the window is
sin” (nww)

nsin®(Tw)

with W, (0) = n, which is known as the Fejér or modified Bartlett kernel. If
we consider the averaged periodogram in (4.46), namely

. 1 =

felw) = fk_z_ Lz(w; + k/n),

the window, Wi (w), in (4.63) will take the form

1 & sin’[nm(w + k/n))
Wn(w) = nL F:=Z—m. sin’[m(w + k/n)] (467)
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Fig. 4.9. Averaged Fejér window (top row) and the corresponding cosine taper
window (bottom row) for L = 9, n = 4B0. The extra tic marks on the horizontal
axis of the left-hand plots exhibit the predicted bandwidth, B. = 9/480 = .01875.
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Fig. 4.10. Smoothed spectral estimates of the S0I without tapering (dashed line)
and with full tapering (solid line); see Example 4.14 for details.

We close this section with a brief discussion of lag window estimators.
First, consider the periodogram, I(wj;), which was shown in (4.22) to be

If\wﬂ — z "J‘Tr'[h:llﬂ_zmeh.
|hl<n
Thus, (4.56) can be written as

flwy= > hI(w; +k/n)

k| <m

— Z h. Z ;}&{hje—Eri[uJ+k.fn]h

|k|<m |k <n

= Y glh/n)F(h)e ?mh, (4.69)

|h|<n

where g(h/n) = zlklim hi. exp(—2mikh/n). Equation (4.69) suggests estima-

tors of the form N .
flw)y="3" w(h/r) F(h)e 7" (4.70)
[R|<r



where w(-) is a weight function, called the lag window, that satisfies
(i) w(0)=1
(11) |w(x)| £ 1 and w(z) =0 for |z| = 1,

(ii) w(zr) = w(—x).

Note that if w(z) = 1 for |z| < 1 and r = n, then f(w;) = I(w;), the
periodogram. This result indicates the problem with the periodogram as an
estimator of the spectral density is that it gives too much weight to the values
of F(h) when h is large, and hence is unreliable [e.g, there is only one pair of

observations used in the estimate F(n—1), and so on]. The smoothing window
is defined to be

L

W(w) =Y w(hfr)e ™", (4.71)

h=—r

and it determines which part of the periodogram will be used to form the
estimate of f(w). The asymptotic theory for f{w) holds for f(w) under the
same conditions and provided r — oo as n — oo but with r/n — 0. We have

E{f(w)} = f(w), (4.72)
gcnv (}"{m},}’w) = fz{m}f_l wiz)dr  w=A#£0,1/2.  (4.73)

In (4.73), replace f*(w) by 0 if w # A and by 2f?(w) if w=A=0or 1/2.

Many authors have developed various windows am:l|Hri11inger (2001, |Ch
3) and Brockwell and Dawis (1991, Ch 10) are good sources of detailed infor-
mation on this topic. We mention a few.

The|recta.ugular lag windnw.l| which gives uniform weight in (4.70),

w(z)=1, |z|<1,
corresponds to the Dirichlet smoothing window given by

W(w) = sin(2mr + m)w (474)

sin( mw)

var (@)} ~ . f2(w).

ThL Parzen lag window|is defined to be

(1 —6x +6|z]* |z| < 1/2,
w(z) =1 2(1 - |z|)? 1/2<r<1,

0 otherwise.

"



This leads to an approximate smoothing window of

6 sin*(rw/4)

73 sind(w/2)

Wiw) =

For large n, the variance of the estimator is approximately

var{ f(w)} = .530f2(w)/n.

The¢ Tukey-Hanning lag window| has the form

1
w(zr) = 5{1 +cos(z)), |r|<1
which leads to the smoothing window
Wi(w) = %D,{Qﬂw —m/r)+ %D‘T (2mew) + %DT[EW&J + m/r)

where D, (w) is the Dirichlet kernel in (4.74). The approximate large sample
variance of the estimator is

var(F(@)} = o0 2(w).

The|triangular lag window.|also known as the Bartlett or Fejér window,
given b

wiz)=1-|z|, |z| =1

leads to the Fejér smoothing window:

W (w) = sin“(mwrw)

rsin®(mw)

In this case, (4.73) yields

var(F(@)} ~ o (w).



The idealized rectangular smoothing window, also called thal Daniell| win-
dow, is given hy
. r |jw| <1/2r,
W(w) = :
0 otherwise,
and leads to the sinc lag window, namely

.. sn(Tr)
wr)= —.

T
From (4.73) we have
— T )
var{ f(w)} =~ —f%(w).
n
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For lag window estimators, the width of the idealized rectangular window
that leads to the same asymptotic variance as a given lag window estimator
15 sometimes called the equivalent bandwidth. For example, the bandwidth of
the idealized rectangular window 1s b, = 1/r and the asymptotic variance is
# f2. The asymptotic variance of the triangular window is % f2, so setting
# 2= % f* and solving we get b, = 3/2r as the equivalent handwidth.



4.6 Parametric Spectral Estimation

The methods of §4.5 lead to estimators generally referred to as nonparamet-
ric spectra because no assumption 1s made about the parametric form of the
spectral density. In Property 4.3, we exhibited the spectrum of an ARMA
process and we might consider basing a spectral estimator on this function,
substituting the parameter estimates from an ARMA(p, q) fit on the data into
the formula for the spectral density fz(w) given in (4.15). Such an estimator is
called a parametric spectral estimator. For convenience, a parametric spectral
estimator 1s obtained hyi fitting an AR(p) to the data, where the order p is de-
termined by one of the model selection criteria, such as AIC, AICe, and BIC,
defined in (2.19)-(2.21). Parametric autoregressive spectral estimators will of-
ten have superior resolution in problems when several closely spaced narrow
spectral peaks are present and are preferred by engineers for a broad vari-
ety of problems (see Kay, 1988). The development of autoregressive spectral
estimators has heen summarized by Parzen (1983).

I {iqkqbz.. . ~:,IJJ;. and 72 |are the estimates from an AR(p) fit to ¢, then
based on Property 4.3, a parametric spectral estimate of f.(w) is attained by
substituting these estimates into (4.15), that is,

frlw) = —2— Eﬁ’. _. 4.75
l: } |¢{E_2W‘MJ|2 { }
where N N ~ N

(2) =1— gz — daz® — ... — Pp2P. (4.76)

The asymptotic distribution of the autoregressive spectral estimator has been
obtained by Berk (1974) under the conditions p — e, p*/n — Oasp, n — oo,
which may be too severe for most applications. The limiting results imply a
confidence interval of the form

fe(w) fa(w)

(1+Czqpa) — <) = (1—Czyp)’ e

where C' = /2p/n and z,5|is the ordinate corresponding to the upper a/2
probability of the standard normal distribution. If the sampling distribution is
to be checked, we suggest applying the bootstrap estimator to get the sampling
distribution of fr(w) using a procedure similar to the one used for p =1 1n

Example 3.35. An alternative for higher order autoregressive series is to put

the AR(p) in state-space form and use the hootstrap procedure discussed in
86.7.



Property 4.5 AR Spectral Approximation
Let g(w) be the spectral density of a stationary process. Then, given € = 0,
there is a time series with the representation

r
Ty = Z Tk + Wy

k=1

where wy is white noise with variance G’i, such that

|fe(w) — g(w)| < € forall we [—1/2,1/2].

Mareover, p is finite and the roots of ¢(z) =1 - 3.%_, brz* are outside the
unit circle.

Example 4.15 Autoregressive Spectral Estimator for SOI

Consider obtaining results comparable to the nonparametric estimators
shown in Figure 4.5 for the SOI series. Fitting successively higher order
AR(p) models for p =T 7 30 yields ja minimum[BIC at p = 15 fand a
minimum| AIC at p = 16, |as shown in Figure 4.11. We can see from Fig-
ure 4.11 that BIC is very definite about which model it chooses; that is, the
minimum BIC is very distinct. On the other hand, it i1s not clear what is
going to happen with AIC: that is, the minimum is not so clear, and there
is some concern that AIC will start decreasing after p = 30. Minimum AICe
selects the p = 15 model, but suffers from the same uncertainty as AIC.
The spectra of the two cases are almost identical, as shown in Figure 4.12,

Information Criteria

G EG
-14 -13 -13

-145

-15

-1.5

Fig. 4.11. Model selection eriteria AIC and BIC as a function of order p for au-
toregressive models fitted to the 501 series.
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first peak corresponds to the El Nifio period of 52 months.



