4.7 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas
extends to the case in which there are several jointly stationary series, for

example| r; and ;. Fn this case, we can introduce the idea of a correlation
indexed by frequency, called the coherence. The results in Appendix C, 5C.2,

imply the cova

riance function

ﬂfﬂ‘y{h} = E[{It+h - Ju:r}{yt - Ju‘!.r”

has the representation

1/2 _
Yagl(h) = f Foy(@)e?™ e duy b= 0,41, 42, .., (4.79)
—1/2

where the cross-spectrum is defined as the Fourier transform

o

h=—sc

fry(@) = D Yeylh) 2™ —1/2<w < 1/2, (4.80)

assuming that the cross-covariance function is absolutely summable, as was
the case for the autocovariance. The cross-spectrum is generally a complex-

valued function, and it 1s often written as
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f-'ﬂy[':’“'} = ':Iyl:':*"} - IIQ:"y{WJ: {481}
where N
ery(W) = Y. Yay(h) cos(2mwh) (4.82)
h=—oa
and N
Qey(@) = Y Yay(h) sin(2mwh) (4.83)
h=—o0

are defined as the cospectrum and quadspectrum, respectively.

the relationship

Yy (h) = Yry(—h),

rearranging, tha

and

it follows, by substituting into (4.80) and

fyz(w) = fay(w). (4.84)

This result, in turn, implies that the cospectrum and quadspectrum satisfy
ye(W) = Coy(@) (4.85)
Gyz (W) = —Qey(w). (4.86)

1 For this section, it will be useful to recall the facts e ** = cos(a) — isin(a) and
if z=a+ ib, then T =a —ib.



A measure of the strength of such a relation is the|squared coherence function, |
defined as .
| fyz (w)]

2 1] —_—
Py() frz (@) fyy(w)’
where frr(w) and fyy(w) are the individual spectra of the z; and y; series,
respectively. Although we consider a more general form of this that applies to
multiple inputs later, it is instructive to display the single input case as (4.87)
to emphasize the analogy with conventional squared correlation, which takes
the form

(4.87)

2
P2 =
yr g2’
oiol

for random variables with variances o> and crs and covariance gy, = py. This
motivates the interpretation of squared coherence and the squared correlation
between two time series at frequency w.

Example 4.16 Three-Point Moving Average

As a simple example, we compute the cross-spectrum between x; and the
three-point moving average y; = (x¢_1+Ti+re41)/3, where ;4 is a stationary
input process with spectral density fr.(w). First,

Yey(h) = coV(ZTeyh, Ye) = 5 COV(Teih, Te—1 + Tt + Tepa)
1
- ﬁ("fﬂih‘F 1)+ Yz (h) + Yoz (h — 1))

uz _ _ _
— f Err:n.l +1 +E—2'JT“I-W] Ezmhfri'[w}du}
1/2
1/2
= af [1 + 2 cos(2mw)] fex(w)e?™ R dus,

1,2

where we have use (4.11). Using the uniqueness of the Fourier transform, we
argue from the spectral representation (4.79) that

fry(w) = 3 [1 + 2c08(2mw)] frz(w)

g0 that the cross-spectrum is real in this case. From Example 4.5, the spectral
density of y; is

fuy(w) = £[3 + 4 cos(2mw) + 2 cos(4mw)] f(w)
= 1 [1 4 2cos(2mw)]? fex(w),

using the identity cos(2a) = 2cos*(a) — 1 in the last step.



Property 4.6 Spectral Representation of a Vector Stationary
Process
If the elements of the p x p autocovariance function matrir

I(h) = El(zsn — ) (2 — p)’
of a p-dimensional stationary time series, £y = (Ty1, Tez,.... Typ)', has ele-
ments satisfying

> k(b)) < e (4.88)

h=—oc

forall j.k=1,.... p. then I'(h) has the representation

I'(h) = j: Y2 gamian flw) dw h=0,%1,%2,.., (4.89)

1/2
as the inverse transform of the spectral density matrir, f(w) = {fir(w)},

for .k =1,...,p. with elements equal to the cross-spectral components. The
matrir f(w) has the representation

flw) = f: [(h)e~2"iwh  _1/2 <w < 1/2, (4.90)

h=—oc

Example 4.17 Spectral Matrix of a Bivariate Process

Consider a jointly stationary bivariate process (x,y:). We arrange the au-
tocovariances in the matrix

Vez () Yzy(F)
)= ("fyr'[hj "-":.ry'[h}) ‘

The spectral matrix would be given by

- (0 2E)

where the Fourier transform (4.89) and (4.90) relate the autocovariance and
spectral matrices.

The extension of spectral estimation to vector series is fairly obvious. For
the vector series &; = (T4, T2, ..., Typ)', we may use the vector of DFTs, say

d(w;) = (dy(wy),da(w;),...,dp(w;))’, and estimate the spectral matrix by



e

flwy=L7" Y I(w;+k/n) (4.01)
k=—m
where now
I(w;) = d(w;) d"(w;) (4.92)

is a p x p complex matrix.'®
Again, the series may be tapered before the DFT is taken in (4.91) and
we can use weighted estimation,

flw)= > heI(w;+k/n) (4.93)

k=—m

where {hj} are weights as defined in (4.56). The estimate of squared coherence
between two series, y; and x; is

. | Fuz(w)?
P (w) = ———. 4.94
) Foz(w) fuy(w) e

If the spectral estimates in (4.94) are obtained using equal weights, we will
write > (w) for the estimate.
Under general conditions, if pg._z {w) = 0 then

Py (@)] ~ AN (lpy2(@)], (1 = p2.,(w))*/2Ln) (4.95)

where Ly, is defined in (4.57): the details of this result may be found in Brock-
well and Davis (1991, Ch 11). We may use (4.95) to obtain approximate
confidence intervals for the squared coherency p2 _(w).

We can test the hypothesis that pj .(w) = 0 if we use pa.z(w) for the
estimate with L > 1,'% that is,

i fuz(w)]?
Pyz(w) = M (4.96)
Frx(w) fyy(w)
In this case, under the null hypothesis, the statistic
2
o P (4.7)

(1 = pfalw))

has an approximate F-distribution with 2 and 2L — 2 degrees of freedom.
When the series have been extended to length n', we replace 2L — 2 by df — 2,

where df is defined in (4.52). Solving (4.97) for a particular significance level
a leads to
F- z,:;L—:zl:ﬂ’}

c, = 1.08
L—14Fya1_2(a) ( )

as the approximate value that must be exceeded for the original squared co-
herence to be able to reject pf,_i. (w) =0 at an a priori specified frequency.




Example 4.18 Coherence Between SOOI and Recruitment

Figure 4.13 shows the squared coherence between the SOI and Recruitment
series over a wider band than was used for the spectrum. In this case, we
used L = 19, df = 2(19)(453/480) = 36 and F; 4r_o(.001) = 8.53 at the
significance level & = .001. Hence, we may reject the hypothesis of no co-
herence for values of ﬁf‘,_r (w) that exceed Cgor = .32. -

S0l and Recruitment
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Fig. 4.13. Squared coherency between the S0O1 and Recruitment series; L = 19, n =
453, n' = 480, and o = .001. The horizontal line is C oos.



4.8 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making
a linear transformation. In this section, we explore that notion further by
defining a linear filter and showing how it can be used to extract signals from
a time series. The linear filter modifies the spectral characteristics of a time
series in a predictable way, and the systematic development of methods for
taking advantage of the special properties of linear filters is an important topic
in time series analysis.

A linear filter uses a set of specified coefficients a;, for 7 =0, £1,£2,.. .,
to transform an input series, r;, producing an output series, y;, of the form

ye= Y ajzj, Y laj| < ce. (4.00)

j=—oa J=—oa

The form (4.99) is also called a convolution in some statistical contexts. The
coefficients, collectively called the |impulse response function) are required to
satisfy absolute summability so i in (4.99) exists as a limit in mean square
and the infinite Fourier transform

Ap(w) = ) aje ™7, (4.100)

called the| frequency response funcﬁ.an,| is well defined. We have already en-
countered several linear filters, for example, the simple three-point moving
average in Example 4.16, which can be put into the form of (4.99) by letting
a_1 = ag =01 = 1/3 and taking a, =0 for |j| = 2.

Yyulh) = cov(ye p. ue)

= COV (Z Qe Tit h—rs Z ﬂa'rt—a)
r 5
= Z Z ﬂ'-r':'r::::{h —-r+ S}E’B
r &

1/2

-ZE|/.,
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Property 4.7 Output Spectrum of a Filtered Stationary Series
The spectrum of the filtered output y; in (4.99) is related to the spectrum
of the input x; by

fuy(w) = |Ayz(@)* frz(w), (4.101)
where the frequency response function Ay, (w) is defined in ({.100).




Example 4.19 First Difference and Moving Average Filters

We illustrate the effect of filtering with two common examples, the first
difference filter
yr = VI =14 — 18

and the symmetric moving average filter

5

Ui =ﬁ(h 6 + T+ rj +ﬁ Z Ti_p,

r=-5h

which 1s a modified Daniell kernel with m = 6.
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Fig. 4.14. 501 series (top) compared with the differenced SOI (middle) and a

centered 12-month moving average (bottom).

Notice that the effect of differencing is to roughen the series because it
tends to retain the higher or faster frequencies. The centered moving
average smoothes the series because it retains the lower frequencies
and tends to attenuate the higher frequencies. In general, differencing
is na example of a high-pass filter because it retains or passes the
higher frequencies, whereas the moving average is a low-pass filter
because it passes the lower or slower frequencies.



S80I - Twelve Month Moving Average
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Fig. 4.15. Spectral analysis of 501 after applying a 12-month moving average filter.
The vertical ine corresponds to the 52-month cycle.
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Fig. 4.16. Squared frequency response functions of the first difference and 12-month
moving average filters.




Now, having done the filtering, it is essential to determine the exact way
in which the filters change the input spectrum. We shall use (4.100} and
(4.101) for this purpose. rfhe first difference filter %:an be written in the form
(4.99) by letting| g = 1.a; = —1, and a,. =0 Ptherwise. This implies that

Ay:{m} =1 _E—E*.rr:'n.l?
and the squared frequency response hecomes
|Ayz(w)]? = (1 — e ™) (1 — &™) = 21 — cos(2mw)). (4.102)

For the pentered 12-month moving average| we can take ja_s = ag = |
| 1/24, aj = /12 for —5 < k < b and a; = 0 |elsewhere. Substituting and
recognizing the cosine terms gives

Ayy(w) = 5|1+ cos(127mw) + 2 Z cns[ﬂﬂwk}] : (4.103)
k=1

the cross-spectrum satisfies

fyz(w) = Aye (W) frr(w),

s0 the frequency response 1z of the form

o fyzlw)
Ay (w) = e (4.104)
_ C(W)  gys(w) (4.105)

" Frr(@)  farw)’

where we have used (4.81) to get the last form. Then, we may write (4.105)
in polar coordinates as

Ayz (W) = [Ayz (@) exp{—i dy=(w)}, (4.106)

where the amplitude and phase of the filter are defined by

(@) +ah(w)

|Ayz(w)| = ) (4.107)
and (@)
wl] = a_n_l _M ) .
Pyz(w) =t ( Cy:{fd-’]) (4.108)

A simple interpretation of the phase of a linear filter 1s that it exhibits time
delays as a function of frequency in the same way as the spectrum represents
the variance as a function of frequency. Additional insight can be gained by
considering the simple delaying filter



yy = Axy_p,

where the series gets replaced by a version, amplified by multiplying by 4 and
delayed by D points. For this case,

fur(w) = Ae™2™D frp (w),
and the amplitude is |A|, and the phase is
Oyz(w) = —2mwD,

or just a linear function of frequency w. For this case, applying a simple
time delay causes phase delays that depend on the frequency of the periodic
component being delayed. Interpretation is further enhanced by setting

Ty = cos(2mwt),

in which case
yr = Acos(2mwt — 2rwD).
Thus, the output series, y;, has the same period as the input series, x;, but

the amplitude of the output has increased by a factor of |4| and the phase
has been changed by a factor of —2mw .

Example 4.20 Difference and Moving Average Filters

We consider calculating the amplitude and phase of the two filters discussed
in Example 4.19. The case for the moving average 1s easy because A, (w)
given in (4.103) is purely real. So, the amplitude is just |Ayz(w)| and the
phase is ¢y (w) = 0. In general, symmetric (a; = a_;) filters have zero
phase. The first difference, however, changes this, as we might expect from
the example above involving the time delay filter. In this case, the squared
amplitude is given in (4.102). To compute the phase, we write

Ayzl::[.d:l =1 E—in’-:.} — e—ixw{Et'm.; . E—:'*.n'.'.;}
= 2ie "™ sin(mw) = 2sin®(mw) + 2i cos(Tw) sin{mw)

_ Ga(w) . Gya(w)
fra(w)  frzlw)’

) =t (B0 (22

Cyz (W) sin(mw)
Noting that
cos(mw) = sin(—mw + 7/2)
and that
sin(mw) = cos{—mw + 7/2),
we get

Gyr(w) = —w + /2,
and the phase is again a linear function of frequency.



We will occasionally use results for multivariate series &, = (x4,...,3,)"
that are comparable to the simple property shown in (4.101). Consider the

matrix filter
=

Y = Z Az . (4.109)

[ ——

where {A4;} denotes a sequence of g % p matrices such that E_?;_m [[4;] < oo
and || - || denotes any matrix norm, & = (re,....Tep) 15 a p x 1 stationary
vector process with mean vector g, and p % p, matrix covariance function
I'zz(h) and spectral matrix fr.(w), and g, is the g x 1 vector output process.
Then, we can obtain the following property.

Property 4.8 Output Spectral Matrix of a Linearly Filtered
Stationary Vector Series
The spectral matriz of the filtered output g, in (4.109) is related to the
spectrum of the input z, by
fuy(w) = A(w) frz(w) A" (w), (4.110)

where the matriz frequency response function A(w) is defined by

Aw) = Y Ajexp(—2miwj). (4.111)

f F—



