4.10 Lagged Regression Models

One of the intriguing possibilities offered by the coherence analysis of the
relation between the SOI and Recruitment series discussed in Example 4.18
would be extending classical regression to the analvsis of lagred regression
models of the form

ve= Y Bzt +u, (4.122)

where vy is a stationary noise process, ry is the observed input series, and
4y 15 the observed output series. We are interested in estimating the filter

coefficients . relating the adjacent lagged values of x; to the output series
.

We assume that the inputs and outputs have zero means and are jointly
stationary with the 2 x 1 vector process (x;, )" having a spectral matrix of

the form
oy [ fexl®) Fen(w)
1) (fy:[w} fyy[wi)‘ (4129)

Here, f,,(w) is the cross-spectrum relating the input z; to the output y,, and
frz(w) and fyy(w) are the spectra of the input and output series, respectively.
Generally, we observe two series, regarded as input and output and search for
regression functions {5;} relating the inputs to the outputs. We assume all
autocovariance functions satisfy the absolute summability conditions of the
form (4.30).

Then, mimmizing the mean squared error

- 2
MSE =E (y; - > ,B,zt_,.) (4.124)
leads to the usual orthogonality conditions

(yi - Z .Br'It—r) It—a] = [4125}

for all s = 0,£1,42,.... Taking the expectations inside leads to the normal
equations

]

> Br Yax(s — 1) = Tu=(s) (4.126)

r=—oa

for s = 0,41, 42, .. .. These equations might be solved, with some effort, if
the covariance functions were known exactly. '
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where

[ ]
Bw)= ) B, e ?mer (4.127)
F=—00
is the Fourier transform of the regression coefficients ;. Now, because v, (s)
is the inverse transform of the cross-spectrum f,,(w), we might write the
system of equations in the frequency domain. using the uniqueness of the
Fourier transform, as

B(w) fra(w) = fuyz(®). (4.128)

which then become the analogs of the usual normal equations. Then, we may
take

-

Bluy) = Jezlwr) (4.120)

f TT [’wk}
as the estimator for the Fourier transform of the regression coefficients, evalu-
ated at some subset of iindamental frequencies wy = k/M with M << n. Gen-
erally, we assume smoothness of B(-) over intervals of the form {wr +£/n; £ =

—(L-=1)/2,..., (L —1)/2}. The inverse transform of the function E[c‘.j would

give 3;, and we note that the discrete time approximation can be taken as

M-1
Bi=M=1" B(uw)e?munt (4.130)

k=0

fort =0.+1.+£2..... +(M/2 — 1). If we were to use (4.130) to define 3, for

[t| = M /2, we would end up with a sequence of coefficients that is periodic

with a period of M. In practice we define 5, = 0 for [t| = M /2 instead.
Problem 4.32 explores the error resulting from this approximation.

Example 4.24 Lagged Regression for SOI and Recruitment

The high coherence between the SOI and Recruitment series noted in Ex-
ample 4.18 suggests a lagred regression relation between the two series. A
natural direction for the implication in this situation is implied because we
feel that the sea surface temperature or SOI should be the input and the
Recruitment series should be the output. With this in mind, let x; be the
S0I series and y; the Recruitment series.

Although we think naturally of the SOI as the input and the Recruitment
as the output, two input-output configurations are of interest. With SOI as
the input, the model is



Ur = Z ArpTt_r + Wt

=

whereas a model that reverses the two roles would he

Iy = Z beye—r + vy,

r=—ao0

where w,; and v; are white noise processes. Even though there is no plausible
environmental explanation for the second of these two models, displaying
both possibilities helps to settle on a parsimonious transfer function model.
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Fig. 4.27. Estimated impulse response functions relating SOI to Recruitment (top)
and Recruitment to SOI (bottom) L = 15, M = 32.

Based on the script LagReg (see Appendix R, §R.1), the estimated re-
gression or impulse response function for SOI, with M = 32 and L = 15
15
Lagheg(=soi, rec, L=15, M=32, threshold=8)

lag = beta(s)

1,1 5 -18.4T79306
(2,1 6 —12.263296
3,1 T -8.539368
[4,] 8 -6.984EER3

The prediction equation is
rec(t) = alpha + sum_s[ beta(s)#soi(t-s) ], where alpha = 65.97
MSE = 414.08



approximately exponential and a possible model is
Y = E‘ﬁ — 18.5.1:!;_5 — 12.3.1::_5 — 8.5.1:!:_7 — TI[__E — W

If we examine the inverse relation, namely, a regression model with the
Recruitment series y; as the input, the bottom of Figure 4.27 implies a
much simpler model,

LagReg{rec, soi, L=15, M=32, inverse=TRUE, threshold=.01)

lag = beta(s)
[1,] 4 0.01593167
[2,] E -0.02120013

The prediction equation is
soi(t) = alpha + sum_s[ beta(s)*rec(t+s) ], where alpha = 0.41
MSE = 0.07

depending on only two coeflicients, namely,
oy = .41 4+ 016y 1q — 02y 5 + vy,
Multiplying both sides by 50B8° and rearranging, we have
(1 — .8B)y, = 20.5 — 50B°z; + ¢,

where ¢; is white noise, as our final, parsimonious model.

The example shows we can get a clean estimator for the transfer functions
relating the two series if the coherence pZ, (w) is large. The reason is that we
can write the minimized mean squared error (4.124) as

=]

MSE:E[{yt— > ﬁ,:n_,-)yr,] =7(0) — D Brray(-T);

r=—co r=—

using the result about the orthogonality of the data and error term in the Pro-
jection theorem. Then, substituting the spectral representations of the autoco-
variance and cross-covariance functions and 1dentifying the Fourier transform

(4.127) in the result leads to

1/2
MSE = f_ Uz[fyy{w] — B(w) fry(w)] dw

1/2
= [ fl@)t - pa(w)lde, (4.131)
—1/2
where p2,(w) is just the squared coherence given by (4.87). The similarity of
(4.131) to the usual mean square error that results from predicting y from =z
15 obvious. In that case, we would have

E(y— fz)* =a,(1—p3,)



for jointly distributed random variables & and y with zero means, variances
o2 and Jﬁ, and covariance ory = pry7:0,. Because the mean squared error
in (4.131) satisfies MSE = 0 with f,y(w) a non-negative function, it follows
that the coherence satisfies

0 < pry(w) <1

for all w. Furthermore, Problem 4.33 shows the squared coherence is one when
the output are linearly related by the filter relation (4.122), and there is
no noise, i.e., vy = 0. Hence, the multiple coherence gives a measure of the
association or correlation between the input and output series as a function
of frequency.

4.11 Signal Extraction and Optimum Filtering

A model closely related to regression can be developed by assuming again that

ye= Y Brzi,+u, (4.132)

but where the Fs are known and z; 1s some unknown random signal that is
uncorrelated with the noise process v;. In this case, we observe only y; and
are interested in an estimator for the signal z; of the form

[ ]

Fe= Y Grlir. (4.133)

r=—

In the frequency domain, it 1s convenient to make the additional assumptions
that the series z; and v; are both mean-zero stationary series with spectra
frz(w) and f,,(w), often referred to as the signal spectrum and noise spec-
trum, respectively. Often, the special case 3; = §;, in which §; 1s the Kronecker
delta, is of interest because (4.132) reduces to the simple signal plus noise
model



U =Ty + 14 (4.134)

in that case. In general, we seek the set of filter coefficients a; that minimize
the mean squared error of estimation, say,

MSE=E [(zt - i a,yt_,,) ] . (4.135)

F=—o

This problem was originally solved by Kolmogorov (1941) and by Wiener
(1949), who derived the result in 1941 and published it in classified reports
during World War II.

We can apply the orthogonality principle to write

(:c:— i ﬂrryt—r‘) yt—a] =0

r=—0o

E

for s = 0.+1, £2, ..., which leads to

(= s

Z ﬂrT:,ry{S_ T} = 'lel:-?},

r=—o

to be solved for the filter coeflicients. Substituting the spectral representations
for the autocovariance functions into the above and identifying the spectral
densities through the uniqueness of the Fourier transform produces

Aw) fyy(w) = fry(w), (4.136)

where A(w) and the optimal filter a; are Fourier transform pairs for B(w) and
;. Now, a special consequence of the model is that (see Problem 4.23)

fry(w) = B(w) fzz(w) (4.137)
and
f!.fln'[{“"} = |B{m}|zf11{wj + fvﬂ({ﬂf}, [4133}
implyving the optimal filter would be Fourier transform of
Alw) = Bw) ., (4.139)
(1B + £2)

where the second term in the denominator is just the inverse of the signal to
noise ratio, say,

SNR(w) = ?”Eﬂ (4.140)



M-1
atl = M1 Afwy et (4.141)

k=0

as the estimated filter function. It will often be the case that the form of the
specified frequency response will have some rather sharp transitions between
regions where the signal-to-noise ratio is high and regions where there is little
signal. In these cases, the shape of the frequency response function will have
ripples that can introduce frequencies at different amplitudes. An aesthetic
solution to this problem is to introduce tapering as was done with spectral
estimation in (4.61)-(4.68). We use below the tapered filter a; = hya; where
hy is the cosine taper given in (4.68). The squared frequency response of the
resulting filter will be |A{w)|?, where

Aw) =Y achpe ™" (4.142)

f=—oa

The results are illustrated in the following example that extracts the El Nino
component of the sea surface temperature series.

Example 4.25 Estimating the El Nino Signal via Optimal Filters
Figure 4.5 shows the spectrum of the SOI series, and we note that essentially
two components have power, the El Nino frequency of about .02 cycles per
month (the four-year cycle) and a yearly frequency of about .08 cycles per
month (the annual cycle). We assume, for this example, that we wish to
preserve the lower frequency as signal and to eliminate the higher order
frequencies, and in particular, the annual cycle. In this case, we assume the
simple signal plus noise model

Yy = T + Uy,

s0 that there 15 no convolving function ;. Furthermore, the signal-to-noise
ratio is assumed to be high to about .06 cycles per month and zero thereafter.
The optimal frequency response was assumed to be unity to .05 cycles per
point and then to decay linearly to zero in several steps. Figure 4.28 shows
the coefficients as specified by (4.141) with M = 64, as well as the frequency
response function given by (4.142), of the cosine tapered coefficients; recall
Figure 4.9, where we demonstrated the need for tapering to avoid severe
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Fig. 4.28, Filter coefficients (top) and frequency response functions (bottom) for
designed SOI filters.
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Fig. 4.29. Original SO series (top) compared to filtered version showing the esti-
mated El Nifio temperature signal (bottom).



