An Introduction to Wavelet

Analysis



1.FOURIER ANALYSIS
Math.View



L?(0,27) : all measurable functions f:

27 |
/ £(@)dz < oo
0

Extend these functions periodically to R : L2(0, 27) becomes
vector space of all functions, period 27, square integrable.

f € L0,2r) SN fl@)= )" cne™, (1)
n=-—oo
where ¢,, are the Fourier coefficients
27 .
Cn = — f(z)e ™% qz . (2)
27

Convergence in (1) is in L?(0,2r) .



° Two characteristics of (1):

(i) f is decomposed as an infinite sum of orthogonal
components

gn(x) — Cnez'nac

(ii) the orthonormal basis {wn(z) = ™2} of L3(0,27) is
generated by dilation of the single wave

w(z) = €' (3)
that is, wn(z) = w(nz), for all integers n .
FACT: Every periodic function, of period 27, square

integrable, is generated by a superposition of integral dilations
of the basic function w(z) = e |



2. WAVELETS

e \Wavelet Uses
signal processing, medical Imaging
pattern recognition, data compression

numerical and data analysis

e ToOlIs
wavelet transform
multiresolution analysis
time-scale and time-frequency analysis
best basis analysis

matching pursuit decompositions



oL~(R) : all measurable functions f:

/OO |f(2)]?de < o .

— 0o

Clearly. L2(0,27) and L?(R) are quite different. For the later.
functions have to decay to zero at infinity, so sinusoids do
not belong to it.

We look for ”waves” that generate L?(R) . These have to decay
to zero fast. That is, we look for wavelets to generate L*(R) .

As in L2(0,27r) prefer that a single function, v , generates
L*(R) . How to cover R, if ¥ has to have fast decay?

Obvious thing : Translate ¥ along R!



@ Let Z = {0,%£1,...}. The simplest way for ¢ to cover R is to
consider integral translations of ¢ , i.e, V(z —k), ke Z.

Consider waves with frequencies partioned in frequency bands.
For computational efficiency, user power of 2 for the partitions.
Consider the wavelets

v(2z - k),j ke Z .

This is obtained from v(z) by a binary dilation 2/ and a
dyadic translation k/27 .

Consider an orthonormal basis generated by v :
Vik(e) = 272920 — k), j ke 7 (1)

If ¥ has unit length, ¢,(.) also has.



o Definition: A function v € L?(R) is an orthogonal wavelet
if the family defined by (1) is an orthonormal basjs for L*(R) ,
1.e.

% wj,kawe,m e 5]€6km ) j)k7€3m € 'Z
and any f € L*(R) can be written as

o0

f@)= )" ejrtjn(z) (2)

T k=00
where convergence in (2) is in L?(R) .

The representation (2) is a wavelet serijes and the wavelet
coeflicients are given by

i =% Fibyi = / F@om@idz . (3)



Examples

s Example 2.1: Haar

1, 0<t<1/2
W (1) = {—1, 1/2<t<1

0, Otherwise,

(2112, e [2-ik, 0i(k 4 1 )
<H)( ) = —21/2 ¢ [2- I(k+3),2- J(k—l—l))
L O, otherwise.




e Example 2.2: Daublets, Symmlets, Coiflets

e Example 2.3.

Morlet(Modulated Gaussian):

b(t) = eiwote—t2/2.

Mexican hat:

Y(t) = (1 — t2)e~t°/2,

Shannon:

Tt
Y(t) = sm( )cos(%).



-2

Haar

j=0, k=0

Haar

j=1, k=0

Haar

j=-1,k=0

Haar Haar =
o
o
o
3 1 2 3 4 5 6
$E =0, k=2
Haar Haar
[9Y]
o
o
3 d 2 3 4 5 6
j=1, k=1 j=1, k=2
Haar Haar
o~
o
o
3 1 2 3 4 5 6
j=-1, k=1 j=-1, k=2
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e Scaling Function

o(t) = V23 4.(2t — k) (1)
k

Generates orthonormal family of L2(%),

i k(1) = 29/29(2t — k), j k€ Z

Mother wavelet can be obtained as

v(t) = V2> hye(2t — k), (2)
k
he = (—1)key_, (3)

(1) and (2): dilation equations

(3): quadrature mirror filter relation

¢



3.THE WAVELET TRANSFORM

Discrete wavelet transform(DWT):

= (fl,f2,---,fT)/: discrete signal with
T =2M A1 > 0 integer.

The DWT maps f to a vector of wavelet
coefficients

w = (8JadJ7d.]—1>'°'adl)l7 J<M

where

' /
SJ =— (SJ,la SJ2y" " SJ’T/QJ)

/
dy = (dj1,d52,-,d;71/50)

K



/

dy—1=(dj-1,1,dj_12, dy_1 1/2(-1))

/
dy = (d1,1,d1,2, "+, dy 1/2)

a2 T
STk — Z ft(bJ,k(t)a k= 4,5 ST
=1 -
5 /4
dj,k' — Z ftwj,k(t)a k= L, - '755
=]

ft can be obtained by

N
fr=2 sipbs@® + > > dj k) k(1)
k j=1 k&



4. MULTIRESOLUTION
ANALYSIS



NONPARAMETRIC
ESTIMATION WITH WAVELETS

. one of the great success stories of wavelets
IS in the field of nonparametric statistical

estimation.

wavelet shrinkage: removing noise by
shrinking wavelet coefficients towards zero.

. T The model:

yizfi+€i) i:1727"'7T

where ¢; v iidN (0, o2)



1. Choice of Threshold
(a) Choice of scheme
(i) Hard Threshlod

0, if |z] <)\
H _ ) e
ox (@) = {:c, it |x| > A

(ii) Soft Threshold

S | o, IT || < X
ox(@) = {szgn(x)(lxl —A), if |z| > A

¥



e Shrinkage procedure

[1] Take the discrete wavelet transform of
the data yq, ..., y7p, leading to the T wavelet
coefficients Y;.k» Which are contaminated
by noise.

[2] Use thresholds to reduce the coefficients,
making null those coefficients below a cer-
tain value. Several choices here are pos-
Sible and we will discuss some of them in
the next section. We obtain, in this stage,
the coefficients without noise.

[3] Take the inverse wavelet transform of
the coefficients in stage [2] to get the es-
timates f,.

A0



2. Choice of Parameters
(a) Universal
(b) SureShrink
(c) Cross-Validation

(d) Ogden and Parzen(1996)

2
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. Theoretical Properties of Wavelet Shrink-
age:

for certain choices of the ), the estimate fi
can almost achieve the minimax risk over
a broad class of functions F:

R(f;, f) ~ infgsupre rR(F, f)

Wavelet shrinkage gives nearly the best
possible estimate of f; making a minimum
of assumptions about the underlying na-
ture of F.
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Software

e \Wavethresh
Nason(1993)
StatLib, ftp

S-PLUS, UNIX version

e S+ WAVELETS
Bruce and Gao(1994)

UNIX and WINDOWS

e \WavelLab
Buckheit et al.(1995)

Macintosh, UNIX, WINDOWS

'y



