Tabela 1.1 Núcleos e Janelas

$h(n/N), \ 0 \le n \le N$	$H^{(N)}(t), -\pi < t < \pi$	Autores
1	$D_N(t)$	Dirichlet
$1 - \frac{ n }{N+1}$	$F_{N+1}(t)$	Fejér, Bartlett
$\frac{1}{2}(1+\cos(\frac{\pi n}{N}))$	$\frac{\frac{1}{2}D_{N}(t) + \frac{1}{4}D_{N}(t - \frac{\pi}{N})}{+\frac{1}{4}D_{N}(t + \frac{\pi}{N})}$	Hamming, Tukey
$1 - \frac{6n^2}{N^2} (1 - \frac{ n }{N}), n \le \frac{N}{2}$ $2(1 - \frac{ n }{N})^3, n \ge \frac{N}{2}$	$\frac{2+\cos(t)}{4\pi N^3} \left[\frac{\operatorname{sen}(Nt/4)}{\operatorname{sen}(t/4)} \right]^4$	de la Vallé- Poussin, Parzen
$\exp\{-n^2/2N^2\}$	$pprox rac{N}{\sqrt{2\pi}} \exp\{-N^2 t^2/2\}$	Gauss, Weierstrass
$1 - \frac{n^2}{N^2}$	$D_N(t) + \frac{1}{N^2} \frac{d^2 D_N(t)}{dt^2}$	Riesz, Bochner, Parzen

1.5 Um Exemplo de Análise de Fourier

Vamos considerar a série $\{X_t, t=1,\ldots,N\}$ de temperaturas médias mensais da cidade de Cananéia, SP, de janeiro de 1976 a dezembro de 1985 (em graus Celsius), N=120 observações. Um gráfico da série é mostrado na Figura 1.7 e vemos claramente uma componente anual.



Figure 1.7: Série de temperaturas mensais em Cananéia.

$$a_n^{(N)} = \frac{2}{N} \sum_{j=0}^{N-1} f_j \cos(\lambda_n j),$$
 (1.33)

$$b_n^{(N)} = \frac{2}{N} \sum_{j=0}^{N-1} f_j \sin(\lambda_n j), \qquad (1.34)$$

A Tabela 1.2 mostra parte da análise de Fourier, com o número harmônico n, os coeficientes discretos de Fourier $a_n^{(N)}, b_n^{(N)}$ e $r_n^{(N)} = \sqrt{[a_n^{(N)}]^2 + [b_n^{(N)}]^2}$, calculados usando (1.33)-(1-34). Lembre-se que $a_0^{(N)} = \overline{X}$, a média amostral, e como N é par, podemos escrever

$$X_t = a_0^{(N)} + \sum_{j=1}^{N/2} \{a_j^{(N)} \cos(\lambda_j t) + b_j^{(N)} \sin(\lambda_j t)\},\,$$

onde $\lambda_j = 2\pi j/N$ são as frequências de Fourier. A energia média da série é dada por

$$s_N^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 = [a_0^{(N)}]^2 + \frac{1}{2} \sum_{j=1}^{N/2} [r_j^{(N)}]^2.$$

Table 1.2 - Análise de Fourier da série de temperaturas de Cananéia, SP de janeiro de 1976 a dezembro de 1985.

\overline{n}	$a_n^{(T)}$	$b_n^{(T)}$	$r_n^{(T)}$
0	21,5317	-	21,3517
1	0,1257	-0,0565	0,1378
4	-0,1575	-0,2458	0,2919
7	0,0738	-0,4317	0,4380
10	3,6522	0,8507	3,7500
15	-0,0433	-0,0406	0,0594
27	-0,0229	-0,1717	0,1732
35	-0,2030	-0,0656	0,2133
50	-0,1439	-0,1857	0,2349
55	0,0616	-0,0967	0,1146

A Figura 1.8 mostra o espectro (de linhas) de Fourier, $(n \times [r_n^{(N)}]^2/2)$. O valor 7,03 corresponde ao harmônico n=10, responsável por mais de 88% da variância total. Esse harmônico corresponde à periodicidade de 12 meses. Segue-se que um modelo conveniente para a série é

$$X_t = 21,532 + 3,652\cos(\frac{\pi}{6}t) + 0,851\sin(\frac{\pi}{6}t) + \varepsilon_t.$$

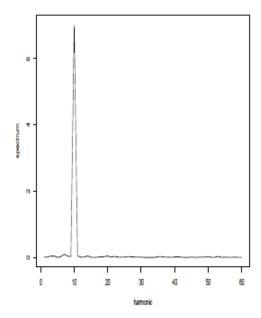


Figure 1.8: Espectro de Fourier para a série de temperaturas em Cananéia.

Funções Generalizadas

Para que f(t) tenha uma transformada de Fourier, ela deve satisfazer certas condições, por exemplo, ser de quadrado integrável ou absolutamente integrável.

Usando a teoria das funções generalizadas é possível estender a teoria para funções que não satisfazem essas condições.

A função delta de Dirac (ou função impulso) é definida pelas relações

$$\delta(t) = \begin{cases} +\infty, & \text{se } t = 0\\ 0, & \text{se } t \neq 0, \end{cases}$$
 (1.39)

$$\int_{-\infty}^{\infty} \delta(t)dt = 1. \tag{1.40}$$

A rigor, $\delta(t)$ não é uma função, pois assume o valor $+\infty$ para t=0 e a integral (1.40) deveria ser zero. Usualmente, $\delta(t)$ é introduzida pela propriedade

$$\int_{-\infty}^{\infty} \delta(t)f(t)dt = f(0), \tag{1.41}$$

se f(t) for uma função real, contínua e que se anula fora de um intervalo limitado. Contudo, como $\delta(t)$ não é uma função, a integral do primeiro membro de (1.41) não faz sentido.

Para contornar esse problema, vamos considerar uma sequência de funções contínuas $\delta_n(t)$, tais que:

- (i) $\delta_n(t) \geq 0$, para todo t;
- (ii) $\int_{-\infty}^{\infty} \delta_n(t) dt = 1$;
- (iii) para todo $\epsilon > 0, \eta > 0$, existe n_0 tal que, para $n \geq n_0$,

$$\int_{|t|>\eta} \delta_n(t)dt < \epsilon .$$

Dessa maneira, (1.41) poderia ser definida por

$$\int_{-\infty}^{\infty} \delta(t)f(t)dt = \lim_{n \to \infty} \int_{-\infty}^{\infty} \delta_n(t)f(t)dt.$$
 (1.42)

Uma sequência de funções $\delta_n(t)$ como a definida acima é chamada sequência de núcleos de Dirac. Pode-se demonstrar, usando (1.42), que a relação (1.41) é realmente correta, se impusermos a condição adicional que $\delta_n(t)$ seja par, para todo n. Veja Figueiredo (1977) para detalhes, e para alguns exemplos de tais funções e respectivas transformadas, veja Jenkins e Watts (1968, p. 31).

Duas outras funções úteis são a função de Heaviside e o pente de Dirac, que denotaremos por H(t) e $\eta(t)$, respectivamente. Essas são definidas por

$$H(t) = \begin{cases} 0, & \text{se } t < 0\\ 1/2, & \text{se } t = 0\\ 1, & \text{se } t > 0 \end{cases}$$
 (1.44)

e

$$\eta(t) = \sum_{j=-\infty}^{\infty} \delta(t - 2\pi j). \tag{1.45}$$

A função H(t) pode ser encarada como o limite de funções $H_n(t)$ (para $n \to \infty$) que têm limite zero, para t < 0, e um, para t > 0. Por exemplo, considere

$$H_n(t) = \begin{cases} e^{-nt}/2, & \text{se } t < 0\\ 1 - e^{-nt}/2, & \text{se } t \ge 0. \end{cases}$$

Derivando $H_n(t)$, obtemos $H'_n(t) = ne^{-n|t|}/2$, que é um núcleo de Dirac. Logo, formalmente, podemos dizer que a derivada de H(t) é $\delta(t)$.

A função $\eta(t)$ tem a propriedade

$$\int_{-\infty}^{\infty} f(t)\eta(t)dt = \sum_{j=-\infty}^{\infty} f(2\pi j).$$
 (1.46)