4.8 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making
a linear transformation. In this section, we explore that notion further by
defining a linear filter and showing how it can be used to extract signals from
a time series. The linear filter modifies the spectral characteristics of a time
series in a predictable way, and the systematic development of methods for
taking advantage of the special properties of linear filters is an important topic
in time series analysis.

A linear filter uses a set of specified coefficients a;, for 7 =0, £1,£2,.. .,
to transform an input series, r;, producing an output series, y;, of the form

ye= Y ajzj, Y laj| < ce. (4.00)

j=—oa J=—oa

The form (4.99) is also called a convolution in some statistical contexts. The
coefficients, collectively called the |impulse response function) are required to
satisfy absolute summability so i in (4.99) exists as a limit in mean square
and the infinite Fourier transform

Ap(w) = ) aje ™7, (4.100)

called the| frequency response funcﬁ.an,| is well defined. We have already en-
countered several linear filters, for example, the simple three-point moving
average in Example 4.16, which can be put into the form of (4.99) by letting
a_1 = ag =01 = 1/3 and taking a, =0 for |j| = 2.
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Property 4.7 Output Spectrum of a Filtered Stationary Series
The spectrum of the filtered output y; in (4.99) is related to the spectrum
of the input x; by

fuy(w) = |Ayz(@)* frz(w), (4.101)
where the frequency response function Ay, (w) is defined in ({.100).




Example 4.19 First Difference and Moving Average Filters

We illustrate the effect of filtering with two common examples, the first
difference filter
yr = VI =14 — 18

and the symmetric moving average filter

5

Ui =ﬁ(h 6 + T+ rj +ﬁ Z Ti_p,

r=-5h

which 1s a modified Daniell kernel with m = 6.
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Fig. 4.14. 501 series (top) compared with the differenced SOI (middle) and a

centered 12-month moving average (bottom).

Notice that the effect of differencing is to roughen the series because it
tends to retain the higher or faster frequencies. The centered moving
average smoothes the series because it retains the lower frequencies
and tends to attenuate the higher frequencies. In general, differencing
is na example of a high-pass filter because it retains or passes the
higher frequencies, whereas the moving average is a low-pass filter
because it passes the lower or slower frequencies.
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Fig. 4.15. Spectral analysis of 501 after applying a 12-month moving average filter.
The vertical line corresponds to the 52-month cycle.

First Difference
4 T T T T T T T

T =
3 = -
§ ol i
1L _
o el 1 1 1 1 1 1 1 1
o o.05 o1 0.15 o2 o025 0.3 0.35 0.4 0.45 o5
frequency
12 Month Maoving Avg.
1 T T T T T T T T T
0Dgr -1
w 06 1
04r 1
02 E
o 1 e — ) 1 1 1 1 1 1
o o.05 o1 0.15 o2 o025 0.3 0.35 0.4 0.45 o5

frequency
Fig. 4.16. Squared frequency response functions of the first difference and 12-month
moving average filters.



Now, having done the filtering, it is essential to determine the exact way
in which the filters change the input spectrum. We shall use (4.100} and
(4.101) for this purpose. rfhe first difference filter %:an be written in the form
(4.99) by letting| g = 1.a; = —1, and a,. =0 Ptherwise. This implies that

Ay:{m} =1 _E—E*.rr:'n.l?
and the squared frequency response hecomes
|Ayz(w)]? = (1 — e ™) (1 — &™) = 21 — cos(2mw)). (4.102)

For the pentered 12-month moving average| we can take ja_s = ag = |
| 1/24, aj = /12 for —5 < k < b and a; = 0 |elsewhere. Substituting and
recognizing the cosine terms gives

Ayy(w) = 5|1+ cos(127mw) + 2 Z cns[ﬂﬂwk}] : (4.103)
k=1

the cross-spectrum satisfies

fyz(w) = Aye (W) frr(w),

s0 the frequency response 1z of the form

o fyzlw)
Ay (w) = e (4.104)
_ C(W)  gys(w) (4.105)

" Frr(@)  farw)’

where we have used (4.81) to get the last form. Then, we may write (4.105)
in polar coordinates as

Ayz (W) = [Ayz (@) exp{—i dy=(w)}, (4.106)

where the amplitude and phase of the filter are defined by

(@) +ah(w)

|Ayz(w)| = ) (4.107)
and (@)
wl] = a_n_l _M ) .
Pyz(w) =t ( Cy:{fd-’]) (4.108)

A simple interpretation of the phase of a linear filter 1s that it exhibits time
delays as a function of frequency in the same way as the spectrum represents
the variance as a function of frequency. Additional insight can be gained by
considering the simple delaying filter



yy = Axy_p,

where the series gets replaced by a version, amplified by multiplying by 4 and
delayed by D points. For this case,

fur(w) = Ae™2™D frp (w),
and the amplitude is |A|, and the phase is
Oyz(w) = —2mwD,

or just a linear function of frequency w. For this case, applying a simple
time delay causes phase delays that depend on the frequency of the periodic
component being delayed. Interpretation is further enhanced by setting

Ty = cos(2mwt),

in which case
yr = Acos(2mwt — 2rwD).
Thus, the output series, y;, has the same period as the input series, x;, but

the amplitude of the output has increased by a factor of |4| and the phase
has been changed by a factor of —2mw .

Example 4.20 Difference and Moving Average Filters

We consider calculating the amplitude and phase of the two filters discussed
in Example 4.19. The case for the moving average 1s easy because A, (w)
given in (4.103) is purely real. So, the amplitude is just |Ayz(w)| and the
phase is ¢y (w) = 0. In general, symmetric (a; = a_;) filters have zero
phase. The first difference, however, changes this, as we might expect from
the example above involving the time delay filter. In this case, the squared
amplitude is given in (4.102). To compute the phase, we write

Ayzl::[.d:l =1 E—in’-:.} — e—ixw{Et'm.; . E—:'*.n'.'.;}
= 2ie "™ sin(mw) = 2sin®(mw) + 2i cos(Tw) sin{mw)

_ Ga(w) . Gya(w)
fra(w)  frzlw)’

) =t (B0 (22

Cyz (W) sin(mw)
Noting that
cos(mw) = sin(—mw + 7/2)
and that
sin(mw) = cos{—mw + 7/2),
we get

Gyr(w) = —w + /2,
and the phase is again a linear function of frequency.



