Periodogram and Discrete Fourier Transform

Property 4.2 The Spectral Density
If the autocovariance function, y(h). of a stationary process satisfies

Y (b)) < o0, (4.10)
h=—oc
then it has the representation
1/2 _
J(h) = f p?miwh flw)dw h=0,%£1,£2,... (4.11)
—1/2

as the inverse transform of the spectral density, which has the representation

oo

flw)= Y (e ™" —1/2<w<1/2 (4.12)

h=—oc

Definition 1.14 The sample autocovariance function s defined as

n—h

Fh) =01 (2 — 2) (2 — 2), (1.34)

t=1

with 5(—h) = 5(h) for h=0,1,...,n—1.

Definition 4.1 Given data x,, ..., x,,, we define the discrete Fourier trans-

form (DFT) to be o
d(wy) =n~/2Y " apem st (4.18)

i=1
for i =0,1,...,n— 1, where the frequencies w; = j/n are colled the Fourier
or fundamental frequencies.

n—1
we =0~ d(w;)e ! (4.10)
J=0

fort=1,...,n.



Definition 4.2 Given data x,.....x,. we define the periodogram to be
I(w;) = |d(w;)[* (4.20)

fori=0,1,2,...,n—1.

Note that I(0) = nZ?, where T is the sample mean. In addition, because
> exp(—2mitd) =0 for j # 0.° we can write the DFT as

d(ws) =n""2Y (@ — z)e T (4.21)

=1
for j £ 0. Thus, for j £ 0,

L] b

H(wy) = lde,)E = n* 33 (o0 — 2)(z, — e
t=1 =1
n—1 n—|h| .
= n—l Z Z {‘Tfr+|h| _ f:}{;rf, _ j}e—EI:th

h=—(n-1) t=1
n—1

_ Z :f[h}ﬂ_zﬂith {422}

h=—(n—1)

where we have put h =t — s, with F(h) as given in (1.34).7
Recall, P(w;) = (4/n)I(w;) where P(w;) is the scaled periodogram defined
in (4.6). Henceforth we will work with I{w;) instead of P{w;). In view of (4.22),
the periodogram, I (w;), is the sample version of f(w;) given in (4.12). That
is, we may think of the periodogram as the “sample spectral density™ of x;.
It 1s sometimes useful to work with the real and 1maginary parts of the
DFT individually. To this end, we define the following transforms.



Definition 4.3 Given data x,,..., Ty, we define the cosine transform

T

de(w;) =n=1/2 Z xy cos(2mw;t) (4.23)

t=1

and the sine transform

do(w;) =n"'? Z xi sin(2mw;t) (4.24)

t=1

where w; =j/n for j=0,1,....n— 1.

We note that d(w;) = d.(w;) —id,(w;) and hence

Iwj) = d2(w;) + d2(w;). (4.25)
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Figure 3.8: Cosine transform, sine trensform, and periodogram of a periodic
random series.

Example 4.1 A Periodic Series

Figure 4.1 shows an example of the mixture (4.3) with g = 3 constructed in
the following way. First, for t = 1,..., 100, we generated three series

Ty = 2cos(2mt 6,/100) + 3 sin(27t 6,/100)

T2 = dcos(2mt 10/100) + 5 sin(2rt 10,/100)

Tyg = Gcos(2mt 40/100) + T sin(2mt 40,/100)
These three series are displayed in Figure 4.1 along with the corresponding
frequencies and squared amplitudes. For example, the squared amplitude of
ry is A% = 22 + 32 = 13. Hence, the maximum and minimum values that
r¢; will attain are £v/13 = +3.61.

Finally, we constructed

Iy = Iy + Ty +.‘L"¢3
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.
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Example 4.2 The Scaled Periodogram for Example 4.1

pericdogram

In §2.3, Example 2.9, we introduced the periodogram as a way to discover
the periodic components of a time series. Recall that the scaled periodogram
is given by

2

P(j/n) = (% Z.‘L‘g cos{ﬂ’.rrtj,"n]) + (%Z;rtsin[ﬂ?rtjjn}) . (4.6)

and it may be regarded as a measure of the squared correlation of the data
with sinusoids oscillating at a frequency of w; = j/n, or j cycles in n time
points. Recall that we are basically computing the regression of the data
on the sinusoids varying at the fundamental frequencies, j/n. As discussed
in Example 2.0, the periodogram may be computed quickly using the fast
Fourier transform (FFT), and there is no need to run repeated regressions.

The scaled periodogram of the data, z;, simulated in Example 4.1 is shown
in Figure 4.2, and it clearly identifies the three components x4y, 242, and x4
of x;. Note that

P[jr'{njzpl:l_jf'{nj'- j=u,1,...11‘1—11

so there is a mirroring effect at the folding frequency of 1,/2: consequently,
the periodogram is typically not plotted for frequencies higher than the fold-
ing frequency. In addition, note that the heights of the scaled periodogram
shown in the figure are

P(6/100) =13, P(10/100) = 41, P(40/100) = 85,
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Fig. 4.2, Periodogram of the data generated in Example 4.1,



Large sample properties of the periodogram.

First, let g be the mean of a stationary process x; with absolutely
summable autocovariance function +(h) and spectral density f(w). We can
use the same argument as in (4.22), replacing T by p in (4.21), to write

n_1 n—lh|

Iwj)=n"" 3 D (Teepn — p)(me — p)e 2mest (4.27)

h=—(n-1) t=1

where w; is a non-zero fundamental frequency. Taking expectation in (4.27)

we obtain 1
Ellw)= S (P2t | pye2miesn 198
Tw)l= > —— ) (R)e” ", (4.28)
h=—(n-1)

For any given w # 0, choose a sequence of ﬁmdamental frequencies w;,,, — w®
from which it follows by (4.28) that, as n — oc”

(=]

E [I(wjn)] = flw) = Y v(h)e ™. (4.29)

h=—oo

% By this we mean wj.n = jn/n, where {jn} is a sequence of integers chosen so that
jn,.-"n 1= the closest Fourler frequency ta w; consequently, |jn/n — w| < E—
9 From Definition 4.2 we have I{0) = . 8o the analogous result of (4.29) for the
case w =0 1s E[I(0 ]—ﬂp: —nvm{z}%f{ﬂ]asn—hm



To examine the asymptotic distribution of the periodogram, we note that
if r; is a normal time series, the sine and cosine transforms will also be jointly
normal, because they are linear combinations of the jointly normal random
variables x,, 5. ..., ry. In that case, the assumption that the covariance func-
tion satisfies the condition

f= Z [R||y(h)] < e (4.30)
h=—nc

is enough to obtain simple large sample approximations for the variances and
covariances. Using the same argument used to develop (4.28) we have

cov|de(w;), de(wr)] ZZ (s — t) cos(2mw;s) cos(2mwet),  (4.31)
cov|d,.(w,), dy(ws)] ZZ v(s — t) cos(2mw;s) sin(2mwyt),  (4.32)

and
ov[d. (w;), da(we)] IZZ v(s — t) sin(2mw; s) sin(2mwet),  (4.33)

where the variance terms are obtained by setting w; = wy in (4.31) and (4.33).

under assumption (4.30), namely, for w;,wi # 0 or 1/2,

':c'v[d: [':"‘"_'i'}'. d-:{wk” = {f[wj}fg + &0 Wi = Wk, (4.34)
En W'y # W,
flw:) /24, w; =uw,
ds(w;), ds = ! o ' 4.95
covld (@), ds(wx)] { P CED
and
cuv[dr:{wj}ida{wk}] = Ens {436}
where the error term =, in the approximations can be hounded,
lenl < 6/, (4.37)

and @ is given by (4.30). If w; = wy = 0 or 1/2 in (4.34), the multiplier 1/2
disappears; note that d.(0) = d.(1/2) = 0, so (4.35) does not apply.



Example 4.9 Covariance of Sine and Cosine Transforms

For the three-point moving average series of Example 1.9 and n = 256 obser-
vations, the theoretical covariance matrix of the vectord = (d.(wag), das(was),

dr_' {‘"‘"2?} 5 da [{“"2?] :IJ 18

3752 —.0009 —.0022 — .0010
—.0009 S7TT —.0009 0003
—.0022 —.0009 3667 —.0010
—.0010 L0003 —.0010 o692

cov(d) =

The diagonal elements can be compared with half the theoretical spectral
values of % flwag) = 3774 for the spectrum at frequency wsg = 26/256,
and of % flws7) = 3680 for the spectrum at w,; = 27/256. Hence, the cosine
and sine transforms produce nearly uncorrelated variables with variances ap-
proximately equal to one half of the theoretical spectrum. For this particular
case, the uniform bound is determined from # = 8/9, yielding |s256| < .0035
for the bound on the approximation error.

If =, ~ iid(0, &%), then it follows from (4.30)-(4.36), Problem 2.10(d), and

a central limit theorem!? that
do(w;n) ~ AN(0,02/2) and d,(w;n) ~ AN(0,02/2) (4.38)

jointly and independently, and independent of d.(wk.r) and d.(wk-n) provided
Wim —+ wp and wi.n — we where 0 < w; # w2 < 1/2. We note that in this
case, fr(w) = o2 In view of (4.38), it follows immediately that as n — oo,

A (wjn) d 2 (wem) 4
% = x5 and % = x5 (4.39)

with I{w;.,) and I(wy.,) being asymptotically independent, where x ] denotes
a chi-squared random variable with » degrees of freedom.



Property 4.4 Distribution of the Periodogram Ordinates
If

Te= Y Pwe > <o (4.40)
f — j=—sa
where wy ~ id(0,02 ), and (4.30) holds, then for any collection of m distinct
frequencies w; € (0,1/2) with wj., — w;

2(wjm) 4 ..
Tu:;] — 1d xg {441}

provided f(w;) =0, forj=1,... ., m.

This result is stated more precisely in Theorem C.7 of §C.3. Other ap-
proaches to large sample normality of the periodogram ordinates are in terms
of cumulants, as in Brillinger (1981), or in terms of mixing conditions, such as
in Rosenblatt (1956a). Here, we adopt the approach used by Hannan (1970},
Fuller (1996), and Brockwell and Davis (1991).

The distributional result (4.41) can be used to derive an approximate
confidence interval for the spectrum in the usual way. Let y2(a) denote the
lower o probability tail for the chi-squared distribution with 1 degrees of
freedom; that is,

Prix? <x2(a)} = a. (442)

Then, an approximate 100(1 —a)% confidence interval for the spectral density
function would be of the form

2 Iwjen)
Xz(1—a/2)

< ) <2z (4.43)



Example 1.5 El Nino and Fish Population

We may also be interested in analyvzing several time series at once. Fig-
ure 1.5 shows monthly values of an environmental series called the Southern
Oscillation Index (SOI) and associated Recruitment (number of new fish)
turnished by Dr. Roy Mendelssohn of the Pacific Environmental Fisheries
Group (personal communication ). Both series are for a period of 453 months
ranging over the yvears 1950-1987. The SOI measures changes in air pressure,
related to sea surface temperatures in the central Pacific Ocean. The central
Pacific warms every three to seven years due to the El Nino effect, which has
been blamed, in particular, for the 1997 floods in the midwestern portions
of the United States. Both series in Figure 1.5 tend to exhibit repetitive
behavior, with regularly repeating cycles that are easily visible. This peri-
odic behavior is of interest because underlying processes of interest may be
regular and the rate or frequency of oscillation characterizing the behavior
of the underlying series would help to identify them. One can also remark
that the cycles of the SOI are repeating at a faster rate than those of the
Recruitment series. The Recruitment series also shows several kinds of oscil-
lations, a faster frequency that seems to repeat about every 12 months and a
slower frequency that seems to repeat about every 50 months.
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.



Example 4.10 Periodogram of SOI and Recruitment Series

Figure 4.4 shows the periodograms of each series, where the frequency axis
15 labeled in multiples of A = 1/12. As previously indicated, the centered
data have been padded to a series of length 480. We notice a narrow-band
peak at the obvious yearly (12 month) cycle, w = 1A = 1/12. In addition,
there is considerable power in a wide band at the lower frequencies that is
centered around the four-year (48 month) cycle w = —;rj = 1/48 representing
a possible El Nino effect. This wide band activity suggests that the possible
El Nino cycle is irregular, but tends to be around four years on average.
We will continue to address this problem as we move to more sophisticated

analyses.
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Fig. 4.4. Periodogram of SOl and Recruitment, n = 453 (n' = 480), where the
frequency axis is labeled in multiples of A = 1/12. Note the common peaks at
w =14 = 1/12, or one cycle per year (12 months), and w = %f_”'. = 1/48, or one

cycle every four years (48 months).



Noting x3(.025) = .05 and x3(.975) = 7.38, we can obtain approximate
05% confidence intervals for the frequencies of interest. For example, the
periodogram of the SOI series is Ig(1/12) = .97 at the yearly cycle. An
approximate 95% confidence interval for the spectrum fs(1,/12) is then

[2(.97)/7.38, 2(.97)/.05] = [.26, 38.4],

which is too wide to be of much use. We do notice, however, that the lower
value of .26 is higher than any other periodogram ordinate, so it is safe to
say that this value is significant. On the other hand, an approximate 95%
confidence interval for the spectrum at the four-year cycle, f5(1/48), is

[2(.05)/7.38, 2(.05)/.05] = [.01, 2.12],

which again is extremely wide, and with which we are unable to establish
significance of the peak.

The example above makes it clear that the periodogram as an estimator
Is susceptible to large uncertainties, and we need to find a way to reduce
the variance.



