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Introduction
Nonlinear time series models started to be strongly 

developed from the 1980s (see e.g. Tong, 1993)with 

parametric models.

Nonlinear Models:

- Exponential autoregressive model (EXPAR)

Haggan and Ozaki (1981) 

- Threshold autoregressive model (TAR)

Tong(1983) 

- Functional-coefficient autoregressive model (FAR)

Chen and Tsay (1993)

- Functional coefficient regression model (FCR)

Cai, Z., Fan, J. and Yao, Q. (2000)

Huang and Shen (2004); Montoril et al. (2014)



Models

Functional coefficient regression model (FCR)



Wavelet-based estimator

VJ: 
Jk
(x) = 2J/2 (2Jx-k), J: resolution level

Wj of Vj in Vj+1: j,k
(x) = 2j/2(2jx-k),j,k  Z. 



Wavelet-based estimator

Frequently, studies related to wavelet-based

estimators require assumptions like equally spaced

data and dyadic (power of two) sample sizes.

However, in this work we use the Daubechies-Lagarias

algorithm (Daubechies and Lagarias, 1991, 1992).

This algorithm is an iterative method useful for

computing values of compactly supported orthonormal

wavelet functions (for example, Daublets and Symmlets)

in specific points of interest with preassigned

precision (more details in Vidakovic, 1999).

Besides, this algorithm has the advantage of not

requiring equally spaced data nor dyadic sample sizes.



Wavelet-based estimator
Warped wavelets (Kerkyacharian and Picard (2004), 

Cai and Brown (1998, 1999))



Wavelet-based estimator
The main idea of considering warped wavelets is that,

when the data set is too concentrated in some specific

region, this region will have more precise estimates,

while the region with lower density will have estimates

with higher variability.

In our case, since we are using the Daubechies-Lagarias

algorithm, it is not necessary to deal with equally

spaced data sets.

Our main interest is to be able to apply (if necessary)

some transformation so that the data used can be close

to a uniform distribution.

In this case, the variability of the coefficient

function estimates must be about the same in different

regions of the support of these functions. An

interesting feature of this approach is that it has the

classical wavelets as a particular case, when H(u) = u.



Wavelet-based estimator



Linear wavelet-based estimator



Theoretical results



Theoretical results



Theoretical results



Theoretical results



Algorithm for estimating the 

coefficient vector



Regularized wavelet-based 

estimators



Regularized wavelet-based 

estimators



Steps to obtain the regularized 

coefficient functions



Theoretical results



Selecting the resolution 

level and variables

In practical situations we do not know which value of

Ji should be chosen.

The same problem happens to the choice of the coarsest

level j0 used during the regularization.

An alternative is to use an automatic method to select

the more appropriate values for the finest and

coarsest levels (Ji - 1 and j0, respectively). These

values can be chosen based on some criterion function.

In this work we evaluate three different criteria,

namely: AIC Akaike (1974), AICc Hurvich and Tsai

(1989) and BIC Schwarz (1978).



Selecting the resolution 

level and variables



Selecting the resolution 

level and variables



Simulation study



Simulation study



Simulation study - First example













Simulation study - Second example













Application to Industrial Production 

Index

The monthly

Seasonally

Adjusted

Industrial

Production

index (IPI)

of the USA,

from December

1980 to

December

2007, with

325

observations.
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