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Introduction

Nonlinear time series models started to be strongly
developed from the 1980s (see e.g. Tong, 1993)with
parametric models.

Nonlinear Models:

- Exponential autoregressive model (EXPAR)
Haggan and Ozaki (1981)
- Threshold autoregressive model (TAR)

Tong (1983)

- Functional-coefficient autoregressive model (FAR)

Chen and Tsay (1993)

- Functional coefficient regression model (FCR)

Cai, Z., Fan, J. and Yao, Q. (2000)
Huang and Shen (2004); Montoril et al. (2014)



Models

Functional coefficient regression model (FCR)

Let {Y;, U, X} be a jointly strictly stationary process, where Uy is a real random variable and X

a random vector in R?. Suppose that ]E(Yf) < oo. Considering the multivariate regression function
m(x,u) = E(Y:| X = o, U; = u), the FCR model has the form

d
m(x,u) =Y filu)z. (1)
i=1
where the f;(-)s are measurable functions from R to R and & = (x1,...,24) . with T denoting the

transpose of a matrix or vector. Frequently, the coefficient functions are assumed to be compactly sup-
ported in some closed interval C. For the sake of simplicity, assume that C = [0, 1]. In the nonpara-
metric framework, when U; and X ; are lagged values of Y;, FCR models correspond to the functional-
coefficient autoregressive (FAR) models of Chen and Tsay (1993).



Wavelet-based estimator

By wavelet basis we know that it has an associated multiresolution analysis (MRA ), where a sequence
of nested and closed subspaces {V; };cz of La(IR) satisfies the following properties:

o V; C Vit
o f(1)eVj= [(2) e Vjiu
o [Vi={0}
JEL
o | JV;=La(R):
JEL

e There exists a function ¢ € Vj such that {o(- — k) }rcz is a Riesz basis for V.

Vi 9, (x) = 292 ¢ (27x-k), J: resolution level

L (x) = 232y (23x-k),j,k € Z.



Wavelet-based estimator

Frequently, studies related to wavelet-based
estimators requilire assumptions 1like equally spaced
data and dyadic (power of two) sample sizes.

However, 1in this work we use the Daubechies-Lagarias
algorithm (Daubechies and Lagarias, 1991, 1992).

This algorithm 1s an 1terative method useful for
computing values of compactly supported orthonormal
wavelet functions (for example, Daublets and Symmlets)
in specific points of 1nterest with ©preassigned
precision (more details in Vidakovic, 1999).

Besides, this algorithm has the advantage of not
requiring equally spaced data nor dyadic sample sizes.



Wavelet-based estimator

Warped wavelets (Kerkyacharian and Picard (2004),
Cal and Brown (1998, 1999))

In order to explain how the warped wavelets work in our case, let H be a continuous distribution
function that is assumed to “spread™ the data in the unit interval, and H-1its inverse. For the sake
of simpliciry,| let us suppress the subscript 7 of the coefficient function f;. Denote g = f o H-1 and
y = H(u). u € [0,1]. Then we have that the orthogonal projection g’ of g, for some resolution level .J,
will be

9 (v) =) arpan(y), (2)
k
where y € [0, 1]. Thus, an approximation to the function f will be

flu)=g(H(w) = g"(H(u) =) arpsi(H (u)).
k

Note that. even in the case where the basis {1 } & is orthogonal. f is not approximated by the expansion
of an orthogonal basis, unless if H(u) = u, u € [0,1]. This happens because i is “warped” by the
distribution function H. A consequence of this is

1 1
aszﬂ ¢’ (9) o (y)dy = ﬁ 1 (w)p sx(H (u))du,

where f* = ¢/ o H.



Wavelet-based estimator

The main 1dea of considering warped wavelets 1s that,
when the data set 1s too concentrated in some specific
region, this region will have more precise estimates,
while the region with lower density will have estimates
with higher wvariability.

In our case, since we are using the Daubechies-Lagarias
algorithm, 1t 1s not necessary to deal with equally
spaced data sets.

Our main 1nterest 1s to be able to apply (1f necessary)
some transformation so that the data used can be close
to a uniform distribution.

In this <case, the wvariability of the coefficient
function estimates must be about the same 1n different
regions of the support of these functions. An
interesting feature of this approach is that 1t has the
classical wavelets as a particular case, when H(u) = u.



Wavelet-based estimator

It is important to mention that, in this situation, it is interesting to consider wavelets defined in the
unit interval, because H (u) € [0,1], u € [0, 1]. Periodized wavelets can be defined in such an interval,
and they have the advantage of handling boundary conditions. They are denoted by

o) = pilu—1), Y5 () = din(u—1), ue0,1],
[ I

where j€Z and k=1,...,27,

It is possible to see that the basis {¢" }x has an associated MRA in [0, 1] and. if {¢jz} is an
orthonormal basis, then {', }. is orthonormal as well (more details in Restrepo and Leaf, 1997). Here-
after, the superscript “p”~ will be removed from notation for convenience.



L_inear wavelet-based estimator

By model (1), one can think in expressing the process {Y;, Uz, X} according to the stochastic rep-
resentation

i
Y: =) filU)Xui+e,
i=1

where €; corresponds to the errors of the model. Now, let X be the covariance matrix of the errors and
assume initially that it is known. Thus we can estimate the wavelet coefficients in (3) minimizing the
least squares function

la)=(Y —Va) 2 HY - Va), (4)
where a = (af , .. .,adT}T. a; = (ap, . - .,aft-?g.:i_l)T, Y = (Yy,....Y,) andVisan x Ef=1 27:
matrix such that its ¢-th row corresponds to ¢ (H (U)X, i = 1,...,d. k=10,2,...,2" =1. The

coefficient vector estimator 1is
a=V'z vy lv ey, (5)

Note that we can assumg 3 as an identity matrix when the errors are uncorrelated and homoscedastic.

Based on the wavelet coefficient estimates. it is possible to estimate each coefficient function by

24 1

fitw) =Y Gandu(H(u)).
k=0

where &; = (&40, ..., &; 95, _4) ' is the estimator of ct;, i = 1,2,...,d.



Theoretical results

Since the wavelet coefficients depend on the distribution function H and are intrinsically related to
the functions f; o H ' we study the distance between the estimator and the coefficient function using
a norm weighted by the probability density function h(u) = dH (u)/du. The weighted norm, with a
weight function w, of a specific function f can be defined as

1 1/2
nmhmpz(ﬁf%ﬂw@mq |

Thus, 1n our case. the distances will be

1
Ifi= £l = [ (F0) = @) hia)d

Lo » 9 (6)
:mecw—mﬂmm@

=|lfioH™' = fio H7|3,

1/2
where || fll2 = (f[,l fg(-.r)d-.r) . The use of (6), it is worth mentioning, is not new in literature. It is

used, for example, in Kulik and Raimondo (2009).

The theoretical results presented in this paper are based on a set of frequently used assumptions.
Before exhibiting these assumptions, let us present two symbols that will be used. Let z,, and y,, be two
positive sequences. Thus we say that x,, < y, if the ratio x, /y,, is uniformly bounded, and x,, = y, if
Ln :"“; yn and yp :5 Ln.



Theoretical results

Assumptions

(WO0) The eigenvalues of ¥ are bounded away from zero and infinity;
(W1) The marginal density of U, is bounded away from zero and infinity uniformly on [0, 1];

(W2) The eigenvalues of ]E(X;XDUE = u) are uniformly bounded away from zero and infinity for all
w e [0,1];

(W3) 200 =25 =" 0<r<1,i=1,...,d;

(W4) The process {E=Xti”rf}zez; is jointly strictly stationary. The a-mixing coefficient «(t) of
{Y:, Xy, Us},oq satisfies aot) St~ fora > (2+7)/(1 —7);

(W5) For some sufficient large m > 0, E|X4;|™ < 00,2 =1,...,d;

(W6) The distribution function H used for warping the wavelet basis is continuous and strictly mono-
tone, and its probability density function A is bounded away from zero and infinity uniformly on
0, 1].



Theoretical results

Let us denote by g,f‘ the orthogonal projection of f; o H~! onto V. and p; = ||g,f‘ — gi||2. Thus we
can derive rates of convergence to zero for the distances between the wavelet-based estimators and the
real coefficient functions, which are presented below.

Theorem 2.1 Ifthe assumptions (W0) — (W6) hold, then

d d
SCEIf - £l <O (
i=1 i=1

for some C' > 0. In particular, if p; = o(1), then ]E||ﬁ — fi"%zr;h} =o(l),1=1,...,d

27
—+ p?) 5

1



Theoretical results

In practice we replace in (5) the matrix X by some estimator, say 3. resulting in
S PN [T . |
a=WV'Yy vViv'ey. (7)

Then, based on (7). the wavelet-based estimator of the coefficient functions in model (1) can be written

as
2 1

fitw) = " anda(Hw), i=1,....d.
k=0

One can find rates of convergence analogues for the wavelet-based estimator above, whenever the
estimator of the covariance matrix X is consistent in probability. The result follows in the theorem
below.

Theorem 2.2 If assumptions (W0)— (W6) hold and 3 is consistent in probability estimating 3, then

d B i 2‘1*
D OIfi- fi”%g{hj = Op (Z ( - +P?)) :
i—1

i=1

In particular, if p; = o(1), then f; is consistent in probability in estimating f;, i.e., ||ﬁ-—f1-||L2{hj = op(1),
i=1,...,d.



Algorithm for estimating the
coefficient wvector

Assuming that the errors are autoregressive, it is possible to rewrite (4) in terms of backshift notation,

aiming to minimize the white noise variance. In other words. denoting by

1 the vector (o', 67)T

and vy

as the t-th row of W/, we estimate the wavelet coefficients ax and the autoregressive coefficients @ jointly,

minimizing numerically

mn 2
o(n) = Z{HP{L) (1/; ~v/a)} @)
=1
where 6,(L) = 1 — 6L — ... — 6,LP, with the backshift operator satisfying LFV; = V,_;. k > 0. In

the following, an algorithm to compute the estimates for ac and @ is presented.

Algorithm

(al) Estimate the coefficient vector a by ordinary least squares, and denote it by &;

(a2) Fit an autoregressive model to the residuals of step (al). i.e.. & = Y; — y;rfx._ say,

A

gp(L}E; = &,

(a3) Estimate i numerically, minimizing (8), using the estimates in steps (al) and (a2) as initial values.



Regularized wavelet-based
estimators

Since in a MRA the space V7, for a specific resolution level J, can be written as Vj, @ W, & ... &
W;_1, the orthogonal projection g‘r of g, previously defined in (2), can be analyzed by father and mother
wavelets as

201 J-1271
g7 (y) = Z agokpik(¥) + D Y Birtbik(y),
J=ijo k=0

where the 3;1’s correspond to the detail coefficients at level j and jp to the coarsest level. In this
case, J — 1 is usually known as the finest level. The detail coefficients at coarser levels (closer to
70) tend to capture global features of gj, while those at finer levels (closer to J — 1) are more responsible
for local characteristics of the function. This is an advantage because one can reduce the noise in the
coefficient function estimates by shrinking or thresholding detail coefficient estimates. These detail
coefficients _Bjk’s can be easily obtained by applying discrete wavelet transform (DWT) to the coefficient
estimates ;. k =0, ... ;2“’* — 1 (see Mallat, 2008, for more details). Once the detail coefficients are
shrunk/thresholded, one can apply the inverse DWT and obtain the wavelet coefficient estimates back,
say ﬁ‘i}k (the superscript “h™ would indicate that it was applied the hard threshold to the detail coefficients
in the wavelet domain).




Regularized wavelet-based
estimators

Basically, the hard threshold method corresponds to the function 7y (x) = 1(x > A)z, where 1(A)
is equal to one, if A occurs, or zero otherwise. The value of A corresponds to the threshold and it can be
calculated under different approaches. In this work we consider the universal threshold of Donoho and
Johnstone (1994), which in our case will be A = o1/2(J — 1) log 2. The value of o (standard deviation
of the noise) is unknown in practice and is usually estimated by thelMAD|(median of absolute deviation),
of the wavelet coefficients from the finest level of detail. In other words, the MAD estimator of a vector
x is defined by MAD(x) = 1.4826 - median(|x — median(x)|), where 1.4826 is a scale factor useful to
ensure consistency for when the in the case of normality.

The regularization is based on the wavelet coefficient estimates of individual coefficient function
estimates fi. In order to make it clearer, the steps of regularization are summarized below.




Steps to obtain the regularized
coefficient functions

(s1) Apply the DWT to @ip, . .. , & 95,y and obtain {{@;or}, {Bjr}, r=0,...,2°~1, k=0,...,27—
1 j:jﬂ....jji—l};
(s2) Calculate ¢ = MAD(BJi_l). where BJI_']_ = (_EJ$_11D, . ?_Bji_llg.fi—l_l)—r, and set

A=6./2(J;, —1)log2;

(s3) Apply [}TIE hard thresholding method to each detail coefficient defining ,ka = ﬁi(_gjk). k =
0,....22 —1.5=y30,...,.Ji — 1;

(s4) Apply the inverse DWT to the thresholded coefficients and obtain 5{-‘0, . ,5-?2_,1_1.

1Zed coefficient function estimate will be

The regular-

2J;

—1
flw) =) aldw(H ().
k=0

The steps above must be applied to each coefficient function estimate, as stated before. and the value
of the coarsest level jp does not need to be the same in each case. Similarly, one could regularize the
coefficient function estimates f‘; i = 1,...,d. presented in Section 2.1. In this case. in step (s1) above,
the DWT would be applied to o, . .., &152%_1. The resulting regularized coefficient functions estimated

could be denoted by ff’ (w),2=1,...,d



Theoretical results

Theorem 2.3 Ifthe assumptions (W0) — (W6) hold, then

d d 9.J,
Eﬁmﬁ—m&mgcﬁj(n+£)
i=1 i=1
for some C > 0. In particular, if p; = o(1), then ]E||ﬁ‘-'1 — f?;||%2(h} =o(l),1=1,...,d

Theorem 2.4 If assumptions (W0) — (W6) hold and S is consistent in probability estimating 3, then

d B d 2Jﬁ
Z ||fz‘h - fi”%ﬂhj = Oy (Z ( - —l—p?)) :
i=1

i=1

In particular, if p; = o(1), then f! is consistent in probability in estimating fi, i.e., || fI' — fillLo(n) =
op(l),i=1,....d.



Selecting the resolution
level and wvariables

In practical situations we do not know which wvalue of
J. should be chosen.

The same problem happens to the choice of the coarsest
level j, used during the regularization.

An alternative 1s to use an automatic method to select
the more appropriate values for the finest and
coarsest levels (J;, - 1 and j,, respectively). These

1

values can be chosen based on some criterion function.

In this work we evaluate three different criteria,
namely: AIC Akaike (1974), AICc Hurvich and Tsai
(1989) and BIC Schwarz (1978).



Selecting the resolution
level and wvariables

Denote the sample size by n and the residual mean square by RMS., which will correspond to £(77) /n,
where £ is presented in equation (8) and 7 is obtained in step (a3) of the algorithm of estimation. Fur-
thermore, for specific values of finest and coarsest levels, let us denote

p =(number of autoregressive coefficients assumed for the errors)
+ (number of wavelet coefficients)

— (number of detail coefficients zeroed during the regularization process).

The criteria functions are then defined as
2
AIC = log(RMS) + £,
Tt

(p+1)(p+2)
nn—p—2) °
BIC = log(RMS) —I-glng(n).

2
AlCc = AIC +




Selecting the resolution
level and wvariables

Moreover, the criteria above can be used in the stepwise method for selecting the variables. This is
important specially when there is no knowledge on the physical background of the data. Doing similarly
to Huang and Shen (2004), in the case of the FAR model (the procedure is straightforward for situations
with exogenous variables), ffixed a constant g > 0. it is possible to select a threshold lag 1 < 7 < gland a

set of significant lags|.S, C {1,..., g}l which compose the class of candidate models
Yo=) filYer)Yeite
icS,

Fixing a threshold lag r, it is possible to choose an optimal set of significant lags S;* by adding and
removing variables. During the addition stage, we can choose one significant lag at a time among the
candidate lags, selecting the one that was not selected yet and that{minimizes the RMS| This procedure
stops when the specified number of significant lags g is reached. The deletion stage is similar to the
addition stage, where we start selecting the set with maximum number of significant lags and then we
remove one at a time. choosing the one that minimizes the RMS. Then we can choose the optimum set
of significant lags S, as the one which minimizes a criterion function (e.g. AIC) among the sequence of
subsets of lags obtained during the addition and deletion stages. The model to be chosen corresponds to
the one in which the pair {r, S} is minimum, for 1 < r < gq.




Simulation study

In order to evaluate how close i1s an estimate to the real function, we use an approximation of the
mean integrated squared error. This approximation is based on the average squared error related to each
coefficient function (ASE;), and it is defined as

d
ASE® =) " ASE;, with
i=1

ngn'd 1{2

ASE; = { gt 3 [Filw) = fuwn)]” b
k=1

where {ug, k=1,... ,-ngrid} is a grid of points equally spaced in an interval that belongs to the range of
the data set. Following Huang and Shen (2004), we selected the maximum of the 2.5 percentiles of the
simulated data sets as the left boundary (w1) and the minimum of the 97.5 percentiles of the data sets as
the right boundary (u, ). We consider nghg = 250.

Thus. small values of the ASE? indicate a good |perf0rmance of the estimates. These values can
be summarized by location/dispersion measures. Although it is not presented here, a few outliers were
observed from the ASE?’s obtained from the simulations. For this reason, we consider robust measures

such as the median and the MAD for location and dispersion measures, respectively.



Simulation study

10,000 samples of size 400 are simulated:

autoregressive errors generated with order 1. 2 and 3, with AR coefficients and standard deviation
of white noise presented in Table 1;

the white noises are iid and normally distributed:

the coefficient functions are estimated using different wavelet bases, which are Daublets D8, D12,
D16, D20, and Symmlets S8, S12, S16, S20, where DN corresponds to the N-tap of Daubechies’
Extremal Phase wavelet filter. and SNV represents the N-tap Daubechies’ Least-Asymmetric wavelet
filter;

FAR models with order 2 are studied (with two coefficient functions). For the sake of simplicity,
we use the same coarsest and finest level (jo and J — 1, respectively) and the same wavelet basis
during the estimation process of both coefficient functions, f{ and fs.

Table 1: Parameters of the autoregressive errors used in the simulation studies.

P ¢p(L) o=

I 1-—08L 0.1200
2 1—08L+0.7L? 0.1260
3 1—06L+0.7L%2—06L% 0.1348




Simulation study - First example

The first simulated model corresponds to the EXPAR model (Haggan and Ozaki, 1981; Cai et al.,
2000; Huang and Shen, 2004; Montoril et al., 2014)

Yi=fiYi )Y+ fo(Yi1)Yi o+ &,

where fi(u) = 0.138 + (0.316 + 0.982u)e =389 fo(u) = —0.437 + (0.659 + 1.260u)e 359,



Table 2: Median (MAD) of the ASE*’s for the Classical Wavelet (CW) and Warped Wavelet (WW) according t:
several different wavelet bases. These values were obtained according to different criteria functions (AIC, AIC:
and BIC) for selecting the coarsest and finest levels among 0 < j, < Jand J € {2,3,4}. The hard thresholc
method was used to regularize the estimates. Three different AR errors were used in the simulations of the dat
sets, with parameters presented in Table 1.

AR Basis AlC AlCc BIC

order CW WW CW WW CW WW
DR 0.004 | 0.011 0.004 | 0.010 0.004 0.006
(0.003) | (0.010) |(0.003)| (0.009) {0.003) | (0.005)

D12 0.004 | 0.027 0.004 | 0.025 0.006 0.018
~ |(0.003) | (0.024) [(0.003)| (0.021) (0.004) | (0.011)

D16 0.004 | 0.014 0.003 0.013 0.004 0.008
(0.003) | (0.012) |(0.003)| (0.0I1) {0.003) | (0.006)

D20 0.004 | 0.023 0.004 | 0.022 0.005 0.015
AR(1) (0.002) | (0.019) |(0.002)| (0.017) {0.004) | (0.008)
38 0.005 0.030 0.005 0.028 0.007 0.018
(0.003) | (0.028) |(0.003)| (0.025) ({0.005) | (0.012)

S12 0.004 | 0.025 0.004 | 0.024 0.007 0.014
(0.003) | (0.024) |(0.003)| (0.022) {0.005) | (0.008)

S16 0.004 | 0.021 0.004 | 0.020 0.006 0.011
(0.003) | (0.020) |(0.003)| (0.018) {0.004) | (0.007)

$20 0.004 | 0.021 0.004 | 0.019 0.006 0.012
- (0.003) | (0.018) [(0.003)] (0.016) (0.004) | (0.007)




Table 2: Median (MAD) of the ASE*’s for the Classical Wavelet (CW) and Warped Wavelet (WW) according to
several different wavelet bases. These values were obtained according to different criteria functions (AIC, AICc
and BIC) for selecting the coarsest and finest levels among 0 < j, < J and J € {2,3,4}. The hard threshold
method was used to regularize the estimates. Three different AR errors were used in the simulations of the data
sets, with parameters presented in Table 1.

AR Basis AlC AlCc BIC
order o CW WW CW WW CW WW

0.005 0.007 0.005  0.006 0.006 0.004

DS (0.003) (0.005) (0.003) (0.004) (0.003) (0.002)
DI2 0.004 0.007 0.003 0.006 0.004 0.004
~ (0.002) (0.006) (0.002) (0.005) (0.002) (0.003)
D16 0.004 0.004 0.003 0.004 0.004 0.003
(0.002) (0.003) (0.002) (0.003) (0.002) (0.002)

D20 0.003 0.006 0.003 0.005 0.004 0.004
AR(2) (0.002) (0.005) (0.002) (0.004) (0.002) (0.002)
S8 0.005 0.009 0.005 0.009 0.004 0.006
(0.003) (0.007) (0.002) (0.007) (0.002) (0.003)

12 0.004 0.006 0.004  0.006 0.004 0.004
- (0.002) (0.005) (0.002) (0.004) (0.002) (0.003)
S16 0.004 0.005 0.003 0.004 0.004 0.003
(0.002) (0.004) (0.002) (0.003) (0.002) (0.002)

$20 0.003 0.005 0.003 0.005 0.003 0.003

(0.002) (0.004) (0.002) (0.004) (0.002) (0.002)




Table 2: Median (MAD) of the ASE®’s for the Classical Wavelet (CW) and Warped Wavelet (WW) according to
several different wavelet bases. These values were obtained according to different criteria functions (AIC, AICc
and BIC) for selecting the coarsest and finest levels among 0 < j, < J and J € {2,3,4}. The hard threshold
method was used to regularize the estimates. Three different AR errors were used in the simulations of the data
sets, with parameters presented in Table 1.

AR Basis AlC AlCc BIC
order o CW WW CW WW CW WW

0.008  0.010 0.008  0.010 0.009 0.010

DS (0.004) (0.007) (0.004) (0.007) (0.006) (0.006)

DI2 0.007 0.010 0.007 0.009 0.008 0.006
— (0.004)  (0.008) (0.004) (0.006) (0.005) (0.004)

D16 0.007 0.009 0.007 0.009 0.009 0.009
(0.004) (0.007) (0.004) (0.006) (0.005) (0.004)

D20 0.006  0.009 0.006  0.008 0.008 0.007
AR(3) (0.004) (0.006) (0.004) (0.006) (0.005) (0.004)

S8 0.008  0.013 0.008  0.012 0.009 0.008
(0.004) (0.011) (0.004) (0.009) (0.005) (0.004)

12 0.007 0.011 0.007 0.010 0.008 0.008
- (0.004) (0.009) (0.004) (0.007) (0.005) (0.004)

S16 0.007 0.011 0.007 0.010 0.009 0.008
(0.004) (0.008) 25(]_{}(]4) (0.007) (0.005) (0.005)

$20 0.007 0.010 0.007 0.009 0.008 0.008

(0.004) (0.008) (0.004) (0.007) (0.005) (0.005)




Table 3: Median (MAD) of the ASE? ’s for the (quadratic) spline-based (Spl) estimates. These values were obtained
according to different criteria functions (AIC, AICc and BIC) for selecting the number of (equally spaced) knots
among {2,3,4,5}. Three different AR errors were used in the simulations of the data sets, with parameters
presented in Table 1. For the sake of comparisons, ASE® estimates of the Classical case (CW) and Warped case
(WW) are presented, for the estimates based on the Daubechies DI6.

AR AIC AICc BIC
order — Spl. CW  WW _ Spl. CW  WW__ Spl CW  WW
0.004 0.004 0014 0004 0003 0013 0005 0004 0.008
(0.002) (0.003) (0.012) (0.002) (0.003) (0.011) (0.003) (0.003) (0.006)
0.003  0.004 0004 0003 0003 0004 0003 0004 0.003
(0.002) (0.002) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002)
0022 0.007 0009 0022 0007 0009  0.022 0009  0.009
(0.008) (0.004) (0.007) (0.008) (0.004) (0.006) (0.009) (0.005) (0.004)

AR(I)

AR(2)

AR(3)
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Figure 1: Classical wavelet-based (dashed lines), Warped wavelet-based (dotted lines) and Spline (dot-dashed
lines) estimates of the coefficient functions f, (left side) and f- (right side) of the EXPAR model generated. The
real coefficient functions correspond to the solid lines. The wavelet estimates are based on the 16-tap Daubechies
wavelet filter (Daubler D16), and the spline estimates based on the quadratic splines.



Simulation study - Second example

In this simulation study. we consider the same structure of the EXPAR model in the first simulation
example. However, the coefficient functions are a little more irregular. Denoting by d(x; pu; o) the
probability density function of a normal distribution with mean g and standard deviation o at the point
x, the coefficient functions used in this example are

fi(u) = 0.8 + 0.5d(wu;0;0.03)
fa(u) = —0.4 — 0.25(d(w; —0.2; 0.05) + d(u;0.2,.05)).



Table 4: Median (MAD) of the ASE*’s for the Classical Wavelet (CW) and Warped Wavelet (WW) according te
several different wavelet bases. These values were obrained according to different criteria functions (AIC, AIC
and BIC) for selecting the coarsest and finest levels among 0 < jo < J and J € {4,5,6}. The hard thresholc
method was used to regularize the estimates. Three different AR errors were used in the simulations of the datc
sets, with parameters presented in Table 1.

AR Basis AlC AlCc BIC
order CW WW CW WW CW WW
DR 0.890 0.267 0.905 0.270 1.073 0.324
(0.566) |(0.189) | (0.559) [(0.197) (0.713) |(0.264)
DI2 0.828 0.263 0.834 | 0.289 0.907 0.452
~ (0.390) |(0.178) | (0.384) [(0.213)] (0.467) |(0.359)
D16 0.803 0.248 0.806 0.277 (.868 (0.581
(0.291) |(0.185) | (0.284) [(0.232)| (0.307) | (0.433)
D20 0.808 0.255 0.819 0.321 (.848 (0.638
AR(1) (0.284) |((0.189) | (0.268) |(0.256)] (0.301) | (0.389)
S8 0.785 0.281 0.805 0.289 0.944 (0.324
(0.521) |(0.193) | (0.511) [(0.198) (0.576) |(0.236)
12 0.748 0.268 0.758 0.285 (0.832 0.344
(0.355) ((0.197) | (0.340) ((0.215)] (0.373) | (0.273)
S16 0.735 0.257 0.747 0.269 0.794 (0.392
(0.286) |(0.199) | (0.275) [(0.212)] (0.301) | (0.335)
320 0.734 0.248 0.740 | 0.270 0.785 0.455
(0.260) |(0.185) | (0.248) |(0.210)] (0.260) | (0.391)




Table 4: Median (MAD) of the ASE*’s for the Classical Wavelet (CW) and Warped Wavelet (WW) according to
several different wavelet bases. These values were obtained according to different criteria functions (AIC, AICc
and BIC) for selecting the coarsest and finest levels among 0 < j, < J and J € {4,5,6}. The hard threshold
method was used to regularize the estimates. Three different AR errors were used in the simulations of the data
sets, with parameters presented in Table 1.

AR AIC AlCc BIC
order 0 CW |WW | CW |WW]| CW | WW |
415 0200 1409 0.168 1431  0.180
(0.613) (0.153) (0.594) (0.119) (0.532) (0.136)

1.337 0.199 1.343 0.157 1.350 0.202

D8

bl (0.582) (0.153) (0.568) (0.114) (0.515) (0.165)
D16 1.277 0.181 1.284  0.146 1.306 0.213
(0.591) (0.147) (0.576) (0.113) (0.524) (0.188)

D20 1.285 0.186 1.287 0.144 1.276 0.209
AR(2) (0.619) (0.143) (0.603) (0.102) (0.516) (0.174)
S8 1.356 0.209 1.355 0.165 1.383 0.178
(0.632) (0.163) (0.619) (0.119) (0.557) (0.132)

12 1.277 0.182 1.287 0.152 1.300 0.170
- (0.610) (0.141) (0.592) (0.107) (0.544) (0.121)
S16 1.269 0.175 1.254  0.145 1.271 0.180
(0.624) (0.136) (0.608) (0.105) (0.527) (0.146)

$20 1.269 0.169 1.268 0.143 1.272 0.182

(0.632) (0.129) (0.609) (0.102) (0.506) (0.151)




Table 4: Median (MAD) of the ASE*’s for the Classical Wavelet (CW) and Warped Wavelet (WW) according to
several different wavelet bases. These values were obtained according to different criteria functions (AIC, AICc
and BIC) for selecting the coarsest and finest levels among 0 < j, < J and J € {4,5,6}. The hard threshold
method was used to regularize the estimates. Three different AR errors were used in the simulations of the data
sets, with parameters presented in Table 1.

AR Basis AlC AlCc BIC
order CW WWwW CW WW CW WW
D8 1.289 0.238 1.301 0.207 1.547 (0.280
(1.1539) (0.187) (1.168) (0.144) (1.198) (0.224)
D12 0.999 0.219 1.008  0.209 1.109 (0.349
— (0.548)  (0.176)  (0.548) (0.166) (0.685) (0.301)
D16 0.893 0.219 0.892  0.211 0.914 (0.449
(0.369) (0.179) (0.363) (0.167) (0.383) (0.330)
D20 0.899 0.213 0.898  0.220 0.922 0.473
AR(3) (0.364) (0.173) (0.351) (0.176) (0.373) (0.315)
38 1.092 0.236 1.094  0.214 1.226 0.257
(0.870) (0.180) (0.857) (0.151) (1.007) (0.200)
12 0.892 0.225 0.894  0.208 0.919 (0.300
- (0.452) (0.177) (0.454) (0.152) (0.467) (0.241)
S16 0.843 0.223 0.841 0.211 (0.853 (0.329
(0.356) (0.175) 2(7[].3‘5{})' (0.163) (0.356) (0.270)
$20 0.829 0.221 0.832  0.209 (.839 0.370

(0.315) (0.178) (0.303) (0.161) (0.313) (0.295)




Table 5: Median (MAD) of the ASE® s for the (quadratic) spline-based (Spl) estimates. These values were obtained
according to different criteria functions (AIC, AICc and BIC) for selecting the number of (equally spaced) knots
among {2,...,30}. Three different AR errors were used in the simulations of the data sets, with parameters

presented in Table 1. For the sake of comparisons, ASE® estimates of the Classical case (CW) and Warped case
(WW) are presented, for the estimates based on the Daubechies DI6.

AR AIC AICc BIC
order — Spl. CW  WW _ SpL CW  WW __ Spl CW  WW
AR(l) 1042 0803 0248 1.040 0806 0277 LII2 0868  0.58]
(0.268) (0.291) (0.185) (0.266) (0.284) (0.232) (0.266) (0.307) (0.433)
ARy 0880 1277 0181 0885 1284 0.146 0909 1306 0213
(0.199) (0.591) (0.147) (0.199) (0.576) (0.113) (0.204) (0.524) (0.188)
ARz 1031 0893 0219 1041 0892 0211 1084 0914 0449

(0.195) (0.369) (0.179) (0.196) (0.363) (0.167) (0.217) (0.383) (0.330)
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Figure 2: Classical wavelet-based (dashed lines), Warped wavelet-based (dotted lines) and Spline (dot-dashed
lines) estimates of the coefficient functions f, (left side) and f- (right side) of the data generated in according to
the simulation of the second example. The real coefficient functions correspond to the solid lines. The wavelet

estimates are based on the 16-tap Daubechies wavelet filter (Daubler D16), and the spline estimates based on the
quadratic splines.



Application to Industrial Production

The monthly
Seasonally
Adjusted
Industrial
Production
index (IPI)
of the USA,
from December
1980 to
December
2007, with
325

observations.

Index

Y; = 100 x log(X;/X¢_1)
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Figure 3: Log-return of the monthly seasonally adjusted industrial production index, from January 1981 to De-
cember 2007,



Table 6: Classical wavelet-based model selections for the industrial production index according to the coarsest
(jo) and finest (J — 1) levels using the 16-tap Daubechies wavelet filter (Daubler D16). AICcY) corresponds
to the criterion function value in the first stage of selection that provided the smallest AICc, v and S} are the
resulting threshold and the significant lags, respectively. The two last columns correspond to the autoregressive
order suggested to the errors after a residual analysis and the updated value of AICc in the final model.

do J  AICY o s p AICc
0 2 -1.210 1 {1,2,3} 1 -1.219
1 2 -1215 1 {1,2,3} 1 -1.232
2 2 41215 3 {23} 0 -1215
0 3 1189 3 {23} 0 -LI189
1 3 1189 3 {23} 0 -LI89
2 3 1189 3 {23} 0 -LI89
3 03 41243 1 {1.2,3} 1 -1.263
0 4 1147 2 {2} 3041171
1 4 -1146 2 {2} 3 -1L171
2 4 1130 2 {2} 3 -1.169
304 1130 2 {2} 3 -1.169
4 4 1218 1 {23}y 17 -1.273

The resulting model selected for the Classical wavelet-based approach is then

Yi=fYi )Y o+ faYi1)Yia+ &

(9)
€ = €1+ Poey_o + Oq6_q + Oy g+ Oz, + Oger_g + Owep 7 + &,

where ¢, is a white noise. The estimated coefficient functions are presented in Figure 4, and the autore-
gressive estimates are f7(L) = 1 — 0.129L — 0.514L7 + 0.145L% — 0.048L* — 0.215L° — 0.051L° +
0.124L7.
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Figure 4: Classical wavelet-based estimates of the coefficient functions of model (9) for the industrial production
index series. The coefficient functions are estimated using the 16-tap Daubechies wavelet filter (Daublet DI16).



Table 7: Warped wavelet-based model selections for the industrial production index according to the coarsest
(jo) and finest (J — 1) levels using the 16-tap Daubechies wavelet filter (Daubler D16). AICc'Y) corresponds
to the criterion function value in the first stage of selection thar provided the smallest AICc, v and S* are the
resulting threshold and the significant lags, respectively. The two last columns correspond to the autoregressive
order suggested to the errors after a residual analysis and the updated value of AICc in the final model.

jo 1 AlCc r Sr* p AlCc
0 2 -1.200 3 {2.3} 0 -1.201
12 -L197 3 {2.3} 0 -1.197
(2 2 1213 3 {23} 0 -1.213]
0 3 -1188 3 {23} 0 -1.188
I 3 -1189 3 {2.3} 0 -1.189
2 3 -1185 3 {23} 0 -1.185
i 3 -7 3 {2.3y 0 -1.177
0 4 -1.190 3 {2.3} 0 -1.190
1 4 -1.200 3 42,3} 0 -1.201
2 4 -1.192 3 {23} 0 -1.192
3 4 -1.177 3 {2.3} 0 -1177
4 4 -1131 2 {2} 3 -1.146
Y = fa(Yi-3)Yi-a + fa(Yi-3)Yi-3 + €, (10)

where ¢, is white noise.
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Figure 5: Warped wavelet-based estimates of the coefficient functions of model (10) for the industrial production
index series. the coefficient functions are estimated using the 16-tap Daubechies wavelet filter (Daublet DI16).



Table 8: MSPEs of multi-step-ahead forecasts, based on 60 subseries of the monthly seasonally adjusted industrial
production index. The second column corresponds to AR model results, the third column to the Classical wavelet-
based (CW) results, the fourth column to the Warped wavelet-based (WW) forecasts and the fifth column to the
(quadratic) spline-based results. The wavelet estimates are based on the 16-tap Daubechies wavelert filter ( Daublet
Diad).

AR CW WW Spline
0280 0354 0.328 0.305
0301 0372 0331 0345
0305 0378 0317 0345
0294 0.318 [0.288| 0.307
0.288 0.325 0.305 0310
0.287 0.315 0.298
0279 0.326 0.285 0.307
0.284 0.298 [0.265] 0.290
9 0.289 0301 [0.288 0.298
10 0288 0.280 [0.277| 0.288
11 0289 0274 |0.278] 0.289
12 0273 0262 |0.271] 0.289

= = N R T R =
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