Wavelet-Smoothed Empirical Copula Estimators

Resumo

O objetivo deste artigo é introduzir um estimador de cépulas baseado na
suavizacao de cépulas empiricas, para o caso de séries temporais. As pro-
priedades desse estimador sao avaliadas por meio de simulacoes e seu desem-
penho é comparado com outros estimadores. Também sao feitas aplicagoes
a dados reais.
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Abstract

We introduce a copula estimator based on wavelet smoothing of empirical
copulas for the case of time series data. We then study the properties
of this estimator via simulations and compare its performance with other
estimators. Applications to real data are also given.

Keywords: Copula, empirical copula, time series, wavelets, wavelet esti-
mators



1 Introduction

Copulas provide a convenient tool for describing the dependence
between variables. Copula techniques have been developed basically for the
independent, identically distributed (i.i.d.) case, which would prevent, at
least theoretically, their applications to dependent data, eg time series data,
appearing in economics, finance and other areas. The presence of serial
correlation and time-varying heteroscedasticity in financial time series, for
example, calls for the development of new methodologies for analyzing this
kind of data, especially in the field of copula estimation.

For i.i.d. samples of bivariate or multivariate distributions, parametric
and nonparametric methods of analysis are well known, with several such
approaches comonly used for copula estimation. If the copula is assumed
to belong to some parametric family of copulas, consistent and asymptoti-
cally normal estimators of the parameters can be obtained by the method
of maximum likelihood (ML); see Genest and Rivest (1993) and Shih and
Louis (1995). A two-step procedure called inference function for margins
can be used: first the parameters of the marginals are estimated and then
the parameters of the (parametric) copula are estimated, both via ML. See
for example Joe and Xu (1996). These estimators are consistent and asymp-
totically normal and also almost as efficient as the full MLE.

Another approach is to use the so-called empirical copulas, introduced
by Deheuvels (1979, 1981a,b). These are highly discontinuous, so some
form of smoothing is necessary to obtain better estimates. One approach, of
Fermanian et al. (2004), uses kernel estimates based on empirical copulas.

Concerning the estimation of copulas for time series, to our knowledge
the only works are those of Fermanian and Scaillet (2003), using nonpara-
metric techniques with kernels, and of Morettin et al. (2008), using wavelets.
A related paper by Chen and Fan (2004) focuses on stationary Markov pro-
cesses of order one, while assuming a parametric form for the copula func-
tion. For the case of independent samples, see Genest et al. (2009) and
Autin et al. (2008).

In the present paper we propose wavelet estimators based on the empir-
ical copula.

The plan of the article is as follows. In Section 2 we set down the
necessary background on copulas and wavelets. In Section 3 we describe
the estimation of copulas for the time series setting, first discussing the
fitting of volatility models before estimating copulas and then introducing
our nonparametric estimators. In Section 4 we perform some simulation
studies and in Section 5 we apply the proposed techniques for some sets of



real data. In Section 6 we onclude with additional remarks

2 Background

In this section we present some basic notions on copulas and wavelets.

2.1 Copulas

For ease of notation we restrict our attention to the bivariate case;
the extensions to the n-dimensional case are straightforward.
A copula can be viewed as a function C defined on I? = [0, 1]? with values
in I, satisfying, for 0 < z < 1 and x1 < x2, 11 < ¥2, (21,%1), (T2,92) € I?,
the conditions

C(z,1)=C(l,z) =z, C(x,0)=C(0,z) =0, (1)

C(x2,y2) — C(x2,y1) — C(21,92) + C(21,91) > 0. (2)

Property (1) means uniformity of the margins, while (2), the n-increasing
property (with n = 2) means that P(z1 < X < x9,y1 <Y < 1) > 0 for
(X,Y) with distribution function (d.f.) C.

See Nelsen (2006) for a general definition and further details on copulas.
The following important theorem links the definition of copula with a d.f.
and its marginal distributions; a proof can be found in Sklar (1959).

Theorem 1 (i) Let C be a copula and Fj, F5 univariate d.f.’s. Then

F(z,y) = C(Fi(2), B2(y)), (z.y) € R (3)

defines a d.f. F' with marginals F}, F5.

(ii) Conversely, for a two-dimensional d.f. F' with marginals F, Fy, there
exists a copula C' satisfying (3); this is unique if Fy, F» are continuous and
then, for every (u,v) € I?,

Cu,v) = F(F (u), Fy ' (v), (4)

where F|~ L Fy ! denote the generalized left-continuous inverses of Fy, Fb.

Briefly, copulas are bivariate or, more generally, multivariate d.f.’s with
uniform univariate marginals. See also Schweizer (1991), Kolev et al. (2006)
and Charpentier et al. (2006) for good reviews on copulas. In what follows
we assume that I and F5 are continuous.



We now introduce empirical copulas. Let (X;,Y;), ¢ = 1,...,n, be an
i.i.d. sample from (X,Y’) and let

1 n
Fn(%y):gzl{XszU,YzSy}, —00 <7,y < +00 (5)
i=1
be the empirical d.f. and let Fi,(z), F2,(y) be the corresponding marginal
d.f.’s, namely

Fip(x) = F(z,+00), Fou(y) = Fr(4+00,y), —o0 < z,y < +00.

Then the empirical copula function is defined by

Cn(u,v) = Fo(Fi (u), Fyl(v), 0<u,v<1, (6)

and the empirical copula process is defined by

Zn(u,v) = /n(Cp — C)(u,v), 0<u,v<1. (7)

Deheuvels (1979) proved uniform consistency of the empirical copula,
while Deheuvels (1981a, 1981b) obtained results concerning limits for Z,, in
the case of independent marginals. In particular, he proposed a Kolmogorov-
Smirnov-type statistic for testing the independence hypothesis that C(u,v) =
uv and obtained its asymptotic distribution under the null hypothesis. Fer-
manian et al. (2004) proved that the empirical copula process converges
weakly to a Gaussian process in Ly [0,1]? (the space of a.e. bounded func-
tions on I? with sup-norm), under the assumption that C' has continuous
partial derivatives. See also Ibragimov (2005) for a similar result in the case
of a stationary S-mixing process.

2.2 Wavelets

We will need two-dimensional wavelets in this paper, but start for
motivation with the one-dimensional case. For additional background see
Daubechies (1992) and Meyer (1993). From a mother wavelet 1 and a father
wavelet ¢ (or scaling function), an orthonormal system for Ly(IR) is gener-
ated by setting ¢; (z) = 27/2¢(27x—k), j > jo and v; (z) = 2//2h(2 2 —k),
j,k € Z, for some coarse scale jy, which we take as zero. Hence, for any
f € La(IR) we may write, uniquely,

@) =Y aordor(@) + 33 Brathyula), (8)
k
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where the wavelet coefficients are given by

o =l/ﬂm%ﬂmm, (9)
Bik = /f(@%,k(@dﬂ (10)

In our case, copulas belongs to Lo (I?), so we may first consider periodized
wavelets in the interval [0, 1], defined by

Gin(r) = djr(x—n), bin(@) =D vjxla—n),

see Vidakovic (1999). For notational simplicity we will suppress the upper
tilde from now on. For any function f € Ly(I?) we have a similar expan-
sion to (8), where the wavelets are obtained as products of one-dimensional
wavelets. One can, for example, consider a basis with a single scale. For
this we define the bivariate scaling function as ®(x,y) = ¢(z)¢(y) and the
wavelets by Uh(z,y) =

P(@)y(y), VW (w,y) = P(x)d(y) and ¥ (z,y) = P(2)y(y), where h, v and
d indicate the horizontal, vertical and diagonal directions, respectively. Let
k = (k1,k2). Then a wavelet expansion for f(z,y) is

f($>y) = 0,0 + ZZ Z dﬁkq};‘ik(xvy% (11)

7j=0 k wp=h,vd

with the wavelet coefficients given by

o= [ fezdy, &= [ fapVioydedy. (12

Another possibility is to build a basis as the tensor product of two one-
dimensional bases with different scales for each dimension; see Morettin et
al. (2008).

We mention the comprehensive treatments of wavelets for economics and
finance in the paper by Ramsey (2002) and the book by Gengay et al. (2002).

3 Estimation for time series data

As remarked in Section 1, most of the results available in the litera-
ture of copulas apply to i.i.d. samples (X;,Y;),i = 1,...,n, from a distribu-
tion function F. As remarked by Mikosch (2006), “it is contradictory that



in risk management, where one observes a lot of dependence through time,
copulas are applied most frequently”.

In this section we discuss copula estimation techniques in the presence
of time series data. We repeat that one approach often used is to apply
directly the methods available for i.i.d. data (mostly using parametric copula
models), however may be misleading.

3.1 Fitting univariate and multivariate models

This method, used for example by Dias and Embrechts (2007a,b) and
Patton (2006), consists in estimating the copula for the standardized resid-
uals after fitting linear and/or non-linear univariate or multivariate models
to the series. In the case of high-frequency data (intraday, for example) it is
often necessary to deseasonalize the data first. The deseasonalized data in
turn may reveal the presence of time-varying variance (heteroskedasticity)
and heavy tails, so it may be appropriate to fit ARMA-GARCH models to
each of the marginal series, with proper innovations (for example the use of
t-distributions). The effect of asymmetric impacts of negative returns may
be also incorporated in these models.

After the fitting of the models for both series, some parametric family of
copulas may be used for the standardized residuals. Possible families are: t,
Gaussian, Frank, Gumbel, Clayton etc. See Nelsen (2006) for details. Some
criterion, like AIC or BIC, may be used to choose the best fit amongst the
possible choices. This procedure does not produce, of course, i.i.d. samples,
but at least the autocorrelation of each series is removed.

Another possibility is to fit a bivariate GARCH-type model to both series
and then apply a copula family to the bivariate standardized residuals, with
a time-dependent parameter vector ;. An issue here is the choice of a
suitable dynamics for 6;. See Dias and Embrechts (2007a,b), Patton (2006)
and Rockinger and Jondeau (2001).

3.2 Nonparametric estimation

By (4), to estimate the copula C' we need to estimate the marginal d.f.’s,
F, followed by the quantiles F; ' (u), Fy ! (v).

Fermanian and Scaillet (2003) (written F'S from here on) use kernel esti-
mates for C: they estimate the marginal density and distribution functions,
then the joint density and distribution functions, next estimate the quantiles
and finally the copula. FS prove some asymptotic results for the various esti-
mators, assuming that the process is strongly mixing plus further conditions



on F; and the bandwidths of the kernels.

Morettin et al. (2008) (referred to as MTCM from here on) follow the
same route, but using wavelets instead of kernels. Both FS and MTCM
present simulations and applications to real data. In Section 4 these estima-
tors will be compared with the estimators proposed in the present paper.

We now propose a wavelet-smoothed empirical copula estimator. This
approach is different from MTCM in the sense that the copula is estimated
directly, without a need for estimating densities, distribution functions and
quantiles. Assume that {(X,Y;),t € Z} is a strictly stationary process.

Since the copula C(u,v) is in Ly([0,1]?), we can consider its wavelet
expansion

Clu,v) =coo+ Y Y Y. dh 0 (u,v), (13)

7=0 k p=h,vd

with the wavelet coefficients given by

0,0 = /C(u,v)dudv, dﬁk = /C(u, U)\I/Zk(u,v)dudv. (14)

For estimates of the wavelet coefficients we shall take the empirical
wavelet coefficients,

djk = /C’T(u,v)\llzk(u, v)dudv, (15)

with a similar expression for ¢g g, where Cr is the empirical copula function
based on observations (X¢,Y:),t =1,...,T and defined in (6).
The corresponding estimator for C'(u,v) is then:

Clu,v) = oo+ Y o(d, MU, (u,v), (16)
7k K

where 0(-, A) is a threshold. Both hard and soft thresholds are often used;
see Donoho et al. (1995) for details on thresholds. In this paper we will
take for threshold a high quantile. The sums in (16) will be computed for
0 < j < J, where J = J(T') is the maximum scale analyzed, chosen (for
theoretical purposes) in such a way that J — oo, J/T — 0, as T — oo. In
turn, k1, ko will vary from zero to 27 — 1.

There are several possible choices for the wavelets to be employed: Haar
wavelets, compactly supported Daubechies wavelets, or Shannon, Meyer,
Mexican hat or Morlet wavelet. The last of these is often used in physi-
cal sciences problems. Sometimes one encounters categorical type data, for



which the Haar wavelet may be appropriate. In other situations compactly
supported wavelets are more suitable, for example in theoretical considera-
tions. In Morettin et al. (2008) we used Haar wavelets for the simulations
and applications. Our choice here will be the d8 wavelet of the Daubechies
family. We note that the choice of the wavelet family parallels the choice
of the kernel in the case of kernel estimators. In this case the choice of the
smoothing parameters (i.e. bandwidths) is crucial. In our situation, the
choice of J is as important as the choice of the wavelet, as discussed further
below.

We will not develop here theoretical properties of these smoothed wavelet
estimators; this will be done elsewhere. Here, instead, we present some
simulations to assess their performance, and we compare this with FS and
MTCM results. We also provide applications with real data.

4 Simulations

In this section we present simulation examples of the wavelet esti-
mators proposed in section 3, using the examples of Fermanian and Scaillet
(2003) for ease of comparison. The choice of J is implemented by an heuris-
tic approach. For J = 2,3,4,5 we calculated biases, MSE, minimum and
maximum values of these quantities and associated ranges. Then a value of
J was chosen, looking at an overall performance of the estimator according
to these measures. We mention that another possibility would be to use the
following rule of thumb: truncate the series expansion at some level J(T')
such that 27/ ig approximately of order T’ 1/2,

(1) We consider the smoothed empirical copula estimator (16) in the case
of a stationary bivariate autoregressive process of order one:

Xt :A+BXt_1 + €4, (17)

where X; = (X1, Xot), with independent components and thus C(uy,us) =
uiug, € ~ N(0,%), A = (1,1), vec(B) = (0.25,0,0,0.75)" and vec(X) =
(0.75,0,0,1.25)".

The number of Monte Carlo replications is 1,000, while the data length
is T =210 = 1,024.

Table 1 shows the bias, IE(C) — C, and mean squared error (MSE),
]E[(C’ — C)?], computed for the Daubechies d8 wavelet using J = 5, chosen
as above. All values (the true value of the copula, the bias and MSE) are

expressed as multiples of 1074, These results are satisfactory in terms of bias



and MSE, comparable with those of MTCM, but are outperformed by those
of FS. However, we remark that FS used series of the same length 1,024,
but with 5,000 replications, while MTCM used a different wavelet, namely
Haar, with 7" = 1,024 and 500 replications. Figure 1 shows the estimated
copula and the contour plot.

Table Al in the Appendix gives a larger grid of values for the wavelet
estimator considered in this paper, showing an overall good performance
both in terms of bias and of mean square error.

Table 1: Biases and MSE of estimators: independent case

(a) d8 wavelet estimator (1,000 replications)

x10-1 | C(.01,01) C(.05,05) C(.25,25) C(.50,50) C(75,75) C(.95,05) C(.99,.09)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00
Bias 0.66 1.31 1.76 11.59 16.16 3.38 9.27
MSE 0.00 0.03 0.42 0.42 0.40 0.02 0.01
(b) MTCM Haar wavelet estimator (500 replications)
x10-% | C(.01,01) C(.05,05) C(.25,25) C(.50,.50) C(.75,75) C(.95,95) C(.99,.99)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00
Bias 0.05 0.72 9.06 25.32 28.57 13.56 5.32
MSE 0.00 0.00 0.02 0.11 0.15 0.03 0.01
(c¢) FS estimator with product of two Gaussian kernels (5,000 replications)
x10-% | C(.01,01) C(.05,05) C(25,25) C(50,50) C(.75,75) ©(.95,95) C(.99,.99)
True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00
Bias -.09 -0.08 0.40 1.12 -0.90 -0.04 4.66
MSE 0.00 0.01 0.25 0.48 0.25 0.01 0.05
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Figure 1: d8 wavelet estimated Copula based on empirical copulas and
contour plot: independent case.

(2) We now turn to the case where the components of X; are dependent
processes, with A = (1,1)", vec(B) = (0.25,0.2,0.2,0.75)" and vec(X) =
(0.75,0.5,0.5,1.25)".

Since X1; and Xy, are positively dependent, we have C'(uy,u2) > ujus.
For 1,000 Monte Carlo replications with the data length 7' = 1,024, our
results are reported in Table 2. These results outperform those of Fermanian
and Scaillet and are comparable with those of Morettin et al. (2008). Our
previous remarks concerning the number of observations and replications
again hold here. Figure 2 shows the estimated copula and contour plot.
Again, we have used the d8 wavelet with J = 5.

Table A2 in the Appendix shows biases and MSE for the wavelet esti-
mator of this paper, for a larger grid of quantiles.

Table 2: Biases and MSE of estimators: dependent case

(a) d8 wavelet estimator (1,000 replications)

x10~% | C(.01,01) C(.05,.05) C(.25,25) C(.50,.50) C(.75,.75) C(.95,95) C(.99,.99)
True 27.08 197.95 1511.74 3747.68 6511.74 9197.95 9827.08
Bias -0.30 0.96 3.89 7.37 9.56 0.05 1.99
MSE 0.02 0.11 0.50 0.66 0.52 0.11 0.02

10



(b) MTCM Haar wavelet estimator (500 replications)
x10-% [ C(.01,01) C(.05,05) C(25,25) C(50,50) C(.75,.75)

C(.95,.95) C(.99,.99)
True 27.08 197.95 1511.74 3747.68 6511.74 9197.95 9827.08
Bias 0.60 -1.69 -21.32 -32.93 -13.27 9.22 16.75
MSE 0.02 0.11 0.46 0.73 0.50 0.11 0.05

(c) FS estimator with product of two Gaussian kernels (5,000 replications)

x10~% | C(.01,01) C(.05,.05) C(.25,.25) C(.50,.50) C(.75,.75)

C(.95,.95) C(.99,.99)
True 27.08 197.95 1511.74 3747.68 6511.74 9197.95 9827.08
Bias -7.47 -34.88 -130.32 -172.28 -130.53 -35.25 -7.65
MSE 0.01 0.18 1.98 3.36 1.99 0.18 0.01

c(ulu2)
0 02 04 06 08 1

Figure 2: d8 wavelet estimated copula, based on empirical copulas, and
contour plot: dependent case.

5 Empirical Applications

In this section we illustrate the estimation of copulas using the
smoothed wavelet estimator given by (16), considering several pairs of series.
In the first example we consider the daily returns of the following stock mar-
ket indices: Ibovespa (Brazil) and IPC (Mexico), from September 4, 1995 to
June 5, 2000 (with 7' = 1,024 observations). In the second example we con-
sider daily returns of SP500 and DJIA, as in F'S, recorded from 03/01/1994
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to 07/07/2000 with 1,700 observations, but take only 7" = 1,024 so as to
use a fast wavelet transform. Finally, in the third example we use again an
example of F'S, considering the pair of stock indices CAC40-DAX35, for the
same period as the pair SP-DJ and the for same number of observations

(1) Figure 3 shows the scatter plot of Brazilian (Ibovespa) and Mexican
(IPC) indices. The contemporaneous correlation coefficient is a moderate
0.552. In Figure 4 we have the plot of the estimated copula using (16)
with the d8 wavelet, J = 5 (we have used this value based on the con-
siderations made in the simulation results) and the corresponding contour
plot, respectively. We have used the 0.90 percentile as the A parameter of
the thresholding procedure: all empirical wavelet coefficients smaller than
A were discarded. We see the same kind of behavior as in the simulated
dependent case above, where the correlation coefficient was also moderate.
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Figure 3: Scatter plot for the returns of Ibovespa and IPC.
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(2) Figure 5 shows the scatter plot of the returns of SP500 and DJIA. There
is a high correlation between both series, specifically the contemporaneous
correlation coefficient is 0.933. The wavelet estimator, using again the d8
wavelet and J = 5, is presented in Figure 6, left panel. We see the expected
comonotonic behaviour, due to the large dependence. The Kendall and
Spearman coefficients are 7 = 0.7341 and pg = 0.9009, respectively.

After fitting ARMA-GARCH models to the series, the (standardized)
residual series have a correlation coefficient of 0.926. Specifically, an AR(3)-
GARCH(1,1) model with t-errors was fitted to the SP500 series, and an
AR(10)-GARCH(1,1) model also with ¢-errors was fitted to the DJIA series.
These models passed the usual diagnostic checks; details are available upon
request from the authors.

The wavelet estimator of the copula between residuals is shown in the
right panel of Figure 6, and this plot is similar to the plot obtained for
the original series. In turn these two plots are quite similar to the kernel
copula estimator of FS. Lastly in Figure 7 we have the contour plots of the
estimated Gaussian copula for the residuals, at left the distribution function
and at right the density function; note the similarity of Figures 6 and 7.

| \

cuLu2)
02002040608 1

Figure 4: d8 wavelet estimated copula for Ibovespa and IPC and contour
plot.
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Figure 6: Contour plots of d8 wavelet estimated copulas: before and after
fitting ARMA-GARCH models.
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Figure 7: Contour plots of distribution (left) and density (right) of a
Gaussian copula fitted to residuals of SP500 and DJIA.

(3) In Figure 8 we have the scatter plot of the returns of the stock indices
CAC40-DAX35, as described above. The contemporaneous correlation co-
efficient is moderate, 0.67. Figure 9 shows the d8 wavelet estimator of
the copula for the original series and Figure 10 the corresponding normal
copula, after model fitting. The models fitted to the returns were AR(7)-
GARCH(1,1) for CA40 and AR(6)-GARCH(1,1) for DAX35, respectively,
both with errors following a t-distribution. These plots suggest a depen-
dence, but not as strong as in the case of SP500-DJ. The Kendall 7 is
0.4805 and the Spearman pg is 0.6557.
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Figure 8: Scatter plot of returns of CAC40 and DAX35 series.

6 Further remarks

In this work we have developed wavelet estimators of copulas based
on empirical copulas. Although the idea here was to use these estimators
with time series data, they can also be applied to i.i.d. samples. An ad-
vantage of the wavelet (and kernel) approach is that it can be used directly
with the original series, as no model fitting is necessary. We have compared
our proposal with two others: one using kernel methods and the other us-
ing wavelets, but with a different approach. The results seem satisfactory.
Further studies are necessary to find the sample properties of the proposed
estimator; this will be carried out elesewhere.
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Figure 9: d8 wavelet estimator for the original stock indices returns of
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Figure 10. Normal copula after model fitting for the series CAC40-DAX35.
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Appendix

Table Al: Biases and MSE of wavelet estimates: independent case(10~%)

u/v 0.01 0.05 0.25 0.50 0.75 0.95 0.99
True 1.00 5.00 25.00 50.00 75.00 95.00 99.00
0.01 | Bias 0.66 0.39 1.73 3.57 5.79 7.24 7.78
MSE | 0.00 0.00 0.02 0.03 0.02 0.01 0.01

True 5.00 25.00 125.00 250.00 375.00 475.00 495.00
0.05 | Bias 0.24 1.31 1.63 4.21 7.42 8.30 9.56
MSE | 0.00 0.03 0.10 0.13 0.10 0.03 0.01

True | 25.00 125.00  625.00 1250.00 1875.00 2375.00  2475.00
0.25 | Bias 1.15 2.09 1.76 6.87 9.20 10.39 12.66
MSE | 0.02 0.10 0.42 0.56 0.40 0.12 0.04

True | 50.00 250.00 1250.00 2500.00 3750.00 4750.00 4950.00
0.50 | Bias 3.08 4.24 6.66 11.59 14.58 10.99 13.70
MSE | 0.03 0.14 0.55 0.75 0.57 0.15 0.04

True | 75.00 375.00 1875.00 3750.00 5625.00 7125.00 7425.00
0.75 | Bias 4.77 6.01 6.85 11.47 16.16 10.96 14.04
MSE | 0.02 0.11 0.39 0.55 0.40 0.10 0.04

True | 95.00 475.00 2375.00 4750.00 7125.00 9025.00 9405.00
0.95 | Bias 6.55 7.75 8.77 10.24 10.66 3.38 6.67
MSE | 0.01 0.03 0.10 0.13 0.10 0.02 0.01

True | 99.00 495.00 2475.00 4950.00 7425.00 9405.00 9801.00
0.99 | Bias 0.01 0.01 0.03 0.04 0.04 0.01 0.01
MSE | 0.01 0.01 0.03 0.04 0.04 0.01 0.01

Table A2: Biases and MSE of wavelet estimates: dependent case(10~%)

u/v 0.01 0.05 0.25 0.50 0.75 0.95 0.99

True 26.92 61.82 94.74 99.45 99.97 100.00 100.00
0.01 | Bias -0.30 1.43 6.18 7.17 7.41 7.42 7.33
MSE 0.02 0.03 0.01 0.01 0.01 0.01 0.01

True 61.82 197.17  423.68 486.81 498.93 499.99 500.00
0.05 | Bias 1.90 0.96 3.84 6.48 7.56 7.82 7.87
MSE 0.03 0.11 0.08 0.02 0.01 0.01 0.01

True 94.74  423.68 1508.83 2181.06 2447.04 2498.93  2499.97
0.25 | Bias 5.95 4.27 3.89 4.89 8.43 9.75 9.76
MSE 0.01 0.08 0.50 0.33 0.07 0.01 0.01

True 99.45  486.81 2181.06 3739.88 4681.06 4986.81  4999.45
0.50 | Bias 7.14 7.25 7.20 7.37 6.30 8.92 9.60
MSE 0.01 0.02 0.34 0.66 0.35 0.02 0.01

True 99.97  498.93  2447.04 4681.06 6508.83  7423.68  7494.74
0.75 | Bias 7.39 7.71 8.22 9.51 9.56 7.97 9.08
MSE 0.01 0.01 0.07 0.33 0.51 0.09 0.01

True | 100.00 499.99 2498.93 4986.81 7423.68 9197.17 9461.82
0.95 | Bias 7.41 7.81 9.65 9.16 8.22 0.05 0.91
MSE 0.01 0.01 0.01 0.02 0.09 0.11 0.02

True | 100.00 500.00 2499.97 4999.45 7494.74 9461.82 9826.92
0.99 | Bias 7.33 7.86 9.74 9.59 9.13 1.14 1.99
MSE 0.01 0.01 0.01 0.01 0.01 0.02 0.02
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