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Figure 3: The Daubechies(4) Father and Mother Wavelet
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A Transformada de Ondaletas
The wavelet transform consists of the vector of all coefficients w = [ co, coo, c10, ci1,
C20, C21, ... ].

Let v be a data vector with 2" elements that can be represented by a piecewise constant function,
fix) on [0,1].% The wavelet transformation of f(x) is then given by
n-12'-1

Jx)=c0()+ 3 D cpwp(x) .

j=0k=0

Here, ¢(x) is the father wavelet, also referred to as the scaling function that represents the coarsest
components or the smooth baseline trend of the function. For the simplest wavelet, the Haar

Decomposicao e reconstruc¢ao

In=fn-1+gn-1,
where fy.3 € Vy_1 and gn_1 € Wy _. By repeating this process, we have
fn=gN-a+gn_a+-+gn-Mm+ fN-M (1.6.1)

where f; € V; and g; € W; for any j, and M is so chosen that fy_p is
sufficiently “blurred”. The “decomposition” in (1.6.1). which is unique, is

dN——l dN——Q dN—M

dN-M dN—M+1 del

~\ N N

CN"M — (:f"r"M'H —_ ... C

Figure 1.6.2. Wavelet reconstruction.



Figure 4: Daubechies(4) Wavelet Basis
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Usualmente, nao se consideram todos os niveis de resolugao, J, mas um valor
Jo, que corresponde A escala mais fina, 270, Nesse caso, podemos escrever

Jo—127—1

f(x) = coodoo(x) + Z Z d; k(). (4.38)

=0 k=0

Exemplo 4.7. Na Figura 4.7 (a), temos representada a fungio
flt)y =+/t(1 —t)sen(2, 17 /(t +0,05)), 0<t <1, (4.39)

conhecida como Doppler e calculada em n=1024 pontos igualmente espagados. Na
Figura 4.7 (b) temos os coeficientes de ondaletas, computados pelo pacote WaveTh-
resh, com a ondaleta de Daubechies d2.

Observamos que as frequéncias mais altas, presentes no comeco da funcao, resul-
tam em coeficientes de ondaletas maiores nas escalas mais finas (7.8 e 9), enquanto
as frequencias mais baixas aparecem nos coeficientes de escalas mais grossas.
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Figura 4.7: (a) A fungao Doppler; (b)Coeficientes de ondaletas da fungao Doppler.
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Consider, for example, the four-dimensional vector y=[ 2, 5,2, 7] . Its wavelet representation is

given by y = W ¢, where W contains the Haar basis vectors, W = [%0 Voo V1o q;“] :

11 J2 0o €
11 -2 0| |€o0
-1 0 2| |ew
1-1 0 —J/2] [c1

~N W
I

The matrix of basis vectors ¥ can be inverted easily, since the inverse of any orthogonal matrix 1s

equal to its transpose divided by 4.% The solution for the wavelet coefficients is then given by

2

4. In general, the inverse of a (real valued) orthogonal matrix A with dimension # is 004", witho = IA\W.
N i - 4
€o | 1 1 | 2 -1/2
col 1|1 1 =1 =1] [s| | 3
col A N2-V20 0] |2 2.2
c 0 0 S22 T |5




A similar representation could have been achieved by any orthogonal basis, such as the identity
matrix /4. However, the wavelet transform has the advantage of decomposing the data into
different scales; that is, different levels of fineness. The vector of wavelet coefficients from our
example consists of three levels (or scales): ¢, ¢, and ¢ = (¢|gc} ). Setting the last level equal
to zero and premultiplying with /¥ sets the input vector y equal to [ 7/2 7/2 9/2 9/2 ]’; that is, the
first two and the last two elements are averaged. In signal processing this is equivalent to applying
a low-pass filter. Setting the last two levels equal to zero results in the transformed input vector [ 4
4 4 47, the mean of y. Conversely, we could set all coefficients, except ¢, equal to zero and
mnvert the transform by multiplying by W. The result would be the vector [ -1/2 -1/2 1/2 1/27,
the difference between the mean and the second level of smoothness [ 7/2 7/2 9/2 9/2 ]’ Finally,
setting all coefficients except ¢ ¢ equal to zero and reversing the transform gives the vector
[-3/2 3/2 -5/2 5/2], the difference between the second level of smoothness and the original
data. We can therefore use the wavelet decomposition to represent the vector y as the sum of its

smooth component, S,, and detail components 1), and D:

We can therefore use the wavelet decomposition to represent the vector y as the sum of it

smooth component, §,, and detail components 1, and D:

4 |-1/2] |-3/2

y=2S8+D,+D, = 4|12 4] 372
- - 4 1/2 -5/2

4 1/2 5/2

Figure 5 shows the wavelet transformation for a more complicated function, the Doppler function
(taken from Vidakovice 1999).5 Each additional level doubles the resolution and adds more detail
to the function. It 1s also clear that the Haar wavelet 1s not the optimal choice for continuous and
smooth functions, because a Daubechies wavelet achieves a much better approximation at four

levels of depth.



Figure 5: Approximation of the Doppler Function using Different Levels of Fineness®
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Figure 7: Multiresolution Analysis of the Vector y=[4 -1 3 2 1 4 -2 2], using the
Haar Wavelet Filter Coefficients
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Figure 8:

Reverse Wavelet Transform
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