Mapa da cidade de São Paulo

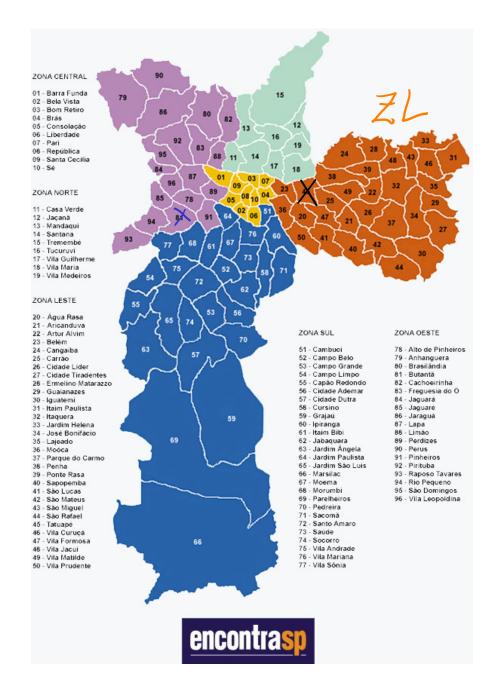


Figure 1: Fonte: Mapa de São Paulo, Mapa bairros SP - EncontraSP

Hoye: Mathews our Sinai ganharam 0 con curso de fundo de tela. Acho.

A maioria dos emojis foram copiados de Emoji Island. Tem também emojis de NicePng, Pinterest,.

3 Reunião 03: 30/ABR/2021

3.1Reuniões passadas

Números primos: 3, 5, 7, 11, 13, ... 4

Vimos uma demonstração do Teorema de Euclides

Teorema 1 (Teorema de Euclides). Existem infinitos números primos.

Também vimos outra uma demonstração do Teorema de Euclides e conversamos sobre Números de Euclides.

Fomos apresentados ao chamado **algoritmo da divisão**: 7 d = 2

Sejam n e d são inteiros tais que d > 0. Então existe um único par de inteiros q e r tais que

$$n = q \times d + r \quad e \quad 0 \le r < d.$$

O número q é o **quociente** r é o **resto** da **divisão** de n por d.

Exemplos: d

•
$$(2716)/(0) = (271) \times 10 + (6)$$

•
$$-11/7 = -2 \times 7 + 3$$

In [1]: -11 // 7 # divisão inteira

Out[1]: -2

In [2]: -11 % 7 # resto de divisão Em progra Mara

Out[2]: 3

In [3]: -11 == -2 * 7 + 3

Out[3]: True

tomem andado com divisa en volvendo

numeros negativos resultado despende da linguasem

Dizemos que a divide b (notação $(a \mid b)$ se ak = b para algum inteiro k. $(a \mid b)$

Hoje 3.2

Pergunta: Quantos meses têm 28 dias?

Resposta: 7 0005

Os tópicos principais de nossa reunião de hoje serão:

· proposições -> a firma ções < falsa

· algumes de monstracos
· demonstraco du reta se se então a
· demonstraco (= 7 -> se esumente se esume

sem capirishe (=) vou toman carpirisha

se e somente se

your toman carpirishe

Pare, respire, relaxe e pense! }

Figure 2: Fonte: depositphotos.com

3.3 Proposições

Um **proposição** ou **afirmação** é um sentença que é verdadeira ou falsa.

Para Python verdadeiro é True e false é False

A propósito, utilizaremos alguns trechos de código de Python ao longo de MAC0105 para nos ajudar a entender as coisas. Bem, esparamos que ajude.

Exemplos de proposições

- 2 + 3 = 5. Vend.
- 1 + 1 = 3. Falso

Em Python

```
Python 3.8.8 | packaged by conda-forge | (default, Feb 20 2021, 17)

Type 'copyright', 'credits' or 'license' for more information

IPython 7.22.0 -- An enhanced Interactive Python. Type '?' for he
```

```
In [1]: 2 + 3 == 5 # para Python igual é ==
Out[1]: True
```

```
In [2]: 1 + 1 == 3 # de depois de `#` é um cometário
Out[2]: False
```

Exemplos de não proposições

Há sentença que não são proposições:

- "Quero 10!": não é verdadeiro ou falso
- "Você é Sheldon Cooper?": não é verdadeiro ou falso
- "Corinthians será campeão brasileiro": é ficção, especulação, ...

3.4 Algumas provas


 $n^2 = 2 (1/1) + 1$

Proposição 2. Se n é um número inteiro ímpar, então n² é ímpar.

Pare, respire, relaxe e pense!

Se né inpar, ento n=29+1.4%

Enta
$$n^2 = (2q+1)^2 = (2q+1)(2q+1)$$

$$= 4q^{2} + 4q + 1$$

$$= 2(2q^{2} + 2q) + 1$$

Portanto, n'é impar. Fecho.

Prova. A demonstração **direta**.

Se n é ímpar, então n=2q+1 para algum inteiro q. Então,

$$n^2 = (2q+1)^2 = (2q+1)(2q+1) = 4q^2 + 2q + 2q + 1 = 4q^2 + 4q + 1$$

= $2(2q^2 + 2q) + 1$.

Logo, n^2 é impar.

Proposição 3. Se n é um número inteiro par, então n^2 é par.

$$\Rightarrow$$

Pare, respire, relaxe e pense!

First
$$n^2 = (29)^2 = 49^2 = 2(29^2)$$

$$49^2 = 2(29^2)$$

Prova. A demonstração é direta.

Se n é par, então n = 2q para algum inteiro q. Então,

$$n^2 = 2q^2 = 4q^2 = 2(2q^2).$$

Logo,
$$n^2$$
 é par.

Proposição 4.
Se n é um número inteiro, então n é par se e somente se n^2 é par.
Pare, respire, relaxe e pense!
(=>) Se né par, então pela proposico 2º nº e por.
Agora temos que mostron que se n2 é par entos n é par.
Pela Proposiço 2 sabernos que se (n e)
Roman, entos nº e impar. Portanto, n de ve ser pou,
Sabe mos que nº par foco intero à lesse par le par esse par le pa
Prova. Se n é par, então da proposição 3 sabemos que n^2 é par.
Agora, devemos mostrar que se n^2 é par então n é par.
Da proposição 2 sabemos que se n é ímpar, então n^2 é ímpar. Como por hipótese n^2 é par, então não é possível que n seja ímpar.
Portanto, n é par. \Box

Faz sentido?

Proposição 5. O número 1/2/ é irracional. em (2)

Um número x é **racional** se existem inteiros m e n tais que x = mEm caso contrário x é chamado de **irracional**.

Pare, respire, relaxe e pense!

$$\frac{1}{5} = 0.2$$

$$\frac{1}{3} = 0.3335$$

$$\frac{14285}{14285}$$

Pare, respire, relaxe e pense!
$$\frac{1}{5} = 0.2$$
 $\frac{1}{3} = 0.3335$ $\frac{3}{3} = 0.3335$ $\frac{1}{3} = 0.142857 1$

$$\frac{1}{3} = 0.33333$$

$$= \frac{3}{9} = \frac{1}{3}$$

$$= \frac{142957}{99555} = \frac{1}{7}$$

Momento kinder

Segundo o Python $\sqrt{2}$ é racional ...

In [14]: 14142135623730951/10000000000000000 == math.sqrt(2)

Out[14]: True <

Pare, respire, relaxe e pense! A dem provo é por contradiça. Suponha que V2 e racional. Ento existem interros men tais que $\sqrt{2} = \frac{M}{n} \qquad \frac{12}{18} \approx \frac{2}{3}$ Podemos supor que m/n é 11 r cdutivel ou sejo, no existe p>1 que divêde m e dividen. Temas que $\sqrt{2} = \frac{m}{n}$ $\Rightarrow 2 = \frac{m^2}{n^2}$ $\frac{1}{2} \sum_{m^2 \in par} (x)$ Como mé par, entos m= 2R 欠りの Postanto de (*), sa benos que $2n^2 = (2k)^2 = p \ 2n^2 = 4k^2$ \Rightarrow $n^2 = 2(2)$ I rie par I n e par Isso contradiz nossa escolhe de men.

Sobre frações irredutíveis

Uma fração m/n é **irredutível** se não existe inteiro p > 1 que divide ambos, $m \in n$.

```
In [28]: print(Fraction(1,2))
1/2
In [29]: print(Fraction(123,246))
1/2
In [30]: print(Fraction(12353,236346))
1123/21486
In [31]: print(Fraction(12,48))
1/4
In [32]: print(Fraction(22,48))
11/24
In [33]: print(Fraction(142857,999999)) # :-)
1/7
```

Prova da proposição 5. A demonstração é **por contradição.**Suponha que 1/2) é racional.

Então existem inteiros m e n tais que

$$\sqrt{2} = \frac{m}{n}$$
.

Podemos supor que m/n é irredutível, ou seja, não existe inteiro p>1 que divide ambos, m e n.

Temos que

$$\sqrt{n} = \frac{m}{n} \Rightarrow 2 = \frac{m^2}{n^2}$$

$$\Rightarrow 2n^2 = m^2$$

$$\Rightarrow m^2 \text{ é par}$$

$$\Rightarrow m \text{ é par.}$$

$$(1)$$

Como m é par, então m = 2k para algum k > 0.

Portanto, de (1), temos que

$$2n^{2} = (2k)^{2} \Rightarrow 2n^{2} = 4k^{2}$$

$$\Rightarrow n^{2} = 2k^{2}$$

$$\Rightarrow n^{2} \text{ é par.}$$

$$\Rightarrow n \text{ é par.}$$
(3)

De (2) e (3), concluímos que 2 divide ambos, m e n e portanto m/n não é irredutível,

Por høje e

Isso contradiz a nossa escolha de m e n.